Skip to main content

Classification of Drones with a Surveillance Radar Signal

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 11754)


This paper deals with the automatic classification of Drones using a surveillance radar signal. We show that, using state-of-the-art feature-based machine learning techniques, UAV tracks can be automatically distinguished from other object (e.g. bird, airplane, car) tracks. In fact, on a collection of real data, we measure an accuracy higher than 98%. We have also exploited the possibility of using the same features to distinguish the type of the wing of drone, between Fixed Wing and Rotary Wing, reaching an accuracy higher than 93%.


  • Surveillance radar
  • Drone
  • Counter unmanned aerial vehicle
  • Classification
  • Support Vector Machines

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-34995-0_66
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-34995-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.


  1. Tait P.: Introduction to Radar Target Recognition, IET (2005).

  2. Sullivan, R.J.: Radar Foundations for Imaging and Advanced Concepts, Revised edn. Electromagnetics and Radar, SciTech Publishing (2004)

    CrossRef  Google Scholar 

  3. Ghadaki, H., Dizaji, R.: Target track classification for airport surveillance radar (ASR). In: 2006 IEEE Conference on Radar (2006)

    Google Scholar 

  4. Dizaji, R., Ghadaki, H.: Classification System for Radar and Sonar Applications. Patent US7 567 203

    Google Scholar 

  5. de Wit, J.J.M., Harmanny, R.I.A., Molchanov, P.: Radar micro-Doppler feature extraction using the singular value decomposition. In: 2014 International Radar Conference, Lille, pp. 1–6 (2014)

    Google Scholar 

  6. Chen, V.: The Micro-Doppler Effect in Radar. Artech House Radar Library (2012)

    Google Scholar 

  7. Mohajerin, N., Histon, J., Dizaji, R., Waslander, S.L.: Feature extraction and radar track classification for detecting UAVs in civillian airspace. In: 2014 IEEE Radar Conference, Cincinnati, OH, pp. 0674–0679 (2014)

    Google Scholar 

  8. Vojtech, M.: Objects identification in signal processing of FMCW radar for Advanced Driver Assistance Systems. Diploma thesis assignment, Czech Technical University in Prague, Faculty of Electrical Engineering

    Google Scholar 

  9. Blackman, S., Popoli, R.: Design and Analysis of Modern Tracking Systems. Artech House, Boston (1999)

    MATH  Google Scholar 

  10. Klaasing, K., Wollher, D., Buss, M.: A clustering method for efficient segmentation of 3D laser data. In: 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, pp. 4043–4048, May 2008

    Google Scholar 

  11. Ivanciuc, O.: Applications of support vector machines in chemistry. Rev. Comput. Chem. 23, 291 (2007)

    CrossRef  Google Scholar 

  12. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.A.: Feature Extraction. Foundations and Applications. Springer, Heidelberg (2006).

    CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Marco Messina or Gianpaolo Pinelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Messina, M., Pinelli, G. (2019). Classification of Drones with a Surveillance Radar Signal. In: Tzovaras, D., Giakoumis, D., Vincze, M., Argyros, A. (eds) Computer Vision Systems. ICVS 2019. Lecture Notes in Computer Science(), vol 11754. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34994-3

  • Online ISBN: 978-3-030-34995-0

  • eBook Packages: Computer ScienceComputer Science (R0)