Skip to main content

Planar Pose Estimation Using Object Detection and Reinforcement Learning

  • Conference paper
  • First Online:
Book cover Computer Vision Systems (ICVS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11754))

Included in the following conference series:

  • 2599 Accesses

Abstract

Pose estimation concerns systems or models dealing with the determination of a static object’s pose using, in this case, vision. This paper approaching the problem with an active vision-based solution, that integrates both perception and action in the same model. The problem is solved using a combination of neural networks for object detection and a reinforcement learning architecture for moving a camera and estimating the pose. A robotic implementation of the proposed active vision system is used for testing with promising results. Experiments show that our approach does not only solve the simple task of planar visual pose estimation, but also exhibits robustness to changes in the environment.

F. N. Rasmussen and S. T. Andersen—The two authors have contributed equally to the work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boukas, E., Gasteratos, A.: Modeling regions of interest on orbital and rover imagery for planetary exploration missions. Cybern. Syst. 47(3), 180–205 (2016). https://doi.org/10.1080/01969722.2016.1154771

    Article  Google Scholar 

  2. Brockman, G., et al.: OpenAI Gym (2016)

    Google Scholar 

  3. Brooks, R.A.: Intelligence without representation. Artif. Intell. 47, 139–159 (1991)

    Article  Google Scholar 

  4. Huang, J., et al.: Speed/accuracy trade-offs for modern convolutional object detectors. In: Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  5. Jia, Z., Chang, Y.J., Chen, T.: Active view selection for object and pose recognition. In: 2009 IEEE 12th International Conference on Computer Vision Workshops, September 2009, pp. 641–648 (2009)

    Google Scholar 

  6. Kostavelis, I., Nalpantidis, L., Gasteratos, A.: Object recognition using saliency maps and HTM learning. In: IEEE International Conference on Imaging Systems and Techniques, pp. 528–532. IEEE, Manchester (2012)

    Google Scholar 

  7. Krull, A., Brachmann, E., Michel, F., Yang, M.Y., Gumhold, S.: Learning analysis-by-synthesis for 6D pose estimation in RGB-D images. In: 2015 IEEE International Conference on Computer Vision, December 2015, pp. 954–962 (2015)

    Google Scholar 

  8. Krull, A., Brachmann, E., Nowozin, S., Michel, F., Shotton, J., Rother, C.: PoseAgent: budget-constrained 6D object pose estimation via reinforcement learning. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, July 2017, pp. 2566–2574 (2017)

    Google Scholar 

  9. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015). https://doi.org/10.1038/nature14236

    Article  Google Scholar 

  10. Piater, J., Jodogne, S., Detry, R., Kraft, D., Krueger, N., Kroemer, O.: Learning visual representations for perception-action systems. Int. J. Robot. Res. 30, 294–307 (2015)

    Article  Google Scholar 

  11. Plappert, M.: Keras-RL (2016). https://github.com/keras-rl/keras-rl

  12. Polydoros, A.S., Boukas, E., Nalpantidis, L.: Online multi-target learning of inverse dynamics models for computed-torque control of compliant manipulators. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver (2017)

    Google Scholar 

  13. Toshev, A., Szegedy, C.: DeepPose: human pose estimation via deep neural networks. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, June 2014, pp. 1653–1660 (2014)

    Google Scholar 

  14. Tremblay, J., To, T., Sundaralingam, B., Xiang, Y., Fox, D., Birchfield, S.: Deep object pose estimation for semantic robotic grasping of household objects. Cornell University Library (2018)

    Google Scholar 

  15. Wooldridge, M., Jennings, N.R.: Agent theories, architectures, and languages: a survey. In: Wooldridge, M.J., Jennings, N.R. (eds.) ATAL 1994. LNCS, vol. 890, pp. 1–39. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-58855-8_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lazaros Nalpantidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nørby Rasmussen, F., Terp Andersen, S., Grossmann, B., Boukas, E., Nalpantidis, L. (2019). Planar Pose Estimation Using Object Detection and Reinforcement Learning. In: Tzovaras, D., Giakoumis, D., Vincze, M., Argyros, A. (eds) Computer Vision Systems. ICVS 2019. Lecture Notes in Computer Science(), vol 11754. Springer, Cham. https://doi.org/10.1007/978-3-030-34995-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34995-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34994-3

  • Online ISBN: 978-3-030-34995-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics