Abstract
Agriculture and pest control are fundamental for ensuring worldwide food provisioning. ICT-based systems have proven to be useful for various tasks in the agronomy domain. In particular, several pest recognition tools have been developed that assist in the early identification of plant pests and diseases. However, in most cases expensive devices (e.g., high-resolution cameras) are necessary in association with such tools. In general, smallholders do not have access to those sophisticated devices and so cannot benefit from those tools. In this work, we present a Web-based application that makes use of natural language processing technologies to help (inexperienced) farm workers and managers in recognizing the pests or diseases affecting their crops. End users should submit a text describing the visible symptoms in the plant, and the application returns a sorted list of the most likely causes of the described problem along with the recommended treatments. The prototypical implementation is restricted to the known pathogens infecting almond trees, a crop very rooted in the Spanish agriculture. Early tests have shown promising results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Current World Population. https://www.worldometers.info/world-population/. Accessed 04 Aug 2019
How to Use Fruits and Vegetables to Help Manage Your Weight. https://www.cdc.gov/healthyweight/healthy_eating/fruits_vegetables.html. Accessed 04 Aug 2019
Healthy Eating Plate & Healthy Eating Pyramid. https://www.hsph.harvard.edu/nutritionsource/healthy-eating-plate/. Accessed 04 Aug 2019
Loizou, E., Karelakis, C., Galanopoulos, K., Mattas, K.: The role of agriculture as a development tool for a regional economy. Agric. Syst. 173, 482–490 (2019). https://doi.org/10.1016/J.AGSY.2019.04.002
Woodard, J., et al.: ICT in Agriculture (Updated Edition): Connecting Smallholders to Knowledge, Networks, and Institutions. The World Bank (2017). https://doi.org/10.1596/978-1-4648-1002-2
Velásquez, A.C., Castroverde, C.D.M., He, S.Y.: Plant-pathogen warfare under changing climate conditions. Curr. Biol. 28, R619–R634 (2018). https://doi.org/10.1016/j.cub.2018.03.054
Pan, L., et al.: Early diagnosis of plant disease via NIR spectroscopy: a study in Bursaphelenchus Xylophilus disease. Int. J. Robot. Autom. 33 (2018). https://doi.org/10.2316/Journal.206.2018.3.206-5535
Iqbal, Z., Khan, M.A., Sharif, M., Shah, J.H., ur Rehman, M.H., Javed, K.: An automated detection and classification of citrus plant diseases using image processing techniques: a review. Comput. Electron. Agric. 153, 12–32 (2018). https://doi.org/10.1016/j.compag.2018.07.032
Ferentinos, K.P.: Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 145, 311–318 (2018). https://doi.org/10.1016/j.compag.2018.01.009
Cui, S., Ling, P., Zhu, H., Keener, H.: Plant pest detection using an artificial nose system: a review. Sensors 18, 378 (2018). https://doi.org/10.3390/s18020378
Aasha Nandhini, S., Hemalatha, R., Radha, S., Indumathi, K.: Web enabled plant disease detection system for agricultural applications using WMSN. Wireless Pers. Commun. 102, 725–740 (2018). https://doi.org/10.1007/s11277-017-5092-4
Sun, G., Jia, X., Geng, T.: Plant diseases recognition based on image processing technology. J. Electr. Comput. Eng. 2018, 1–7 (2018). https://doi.org/10.1155/2018/6070129
Labaña, F.M., Ruiz, A., García-Sánchez, F.: PestDetect: pest recognition using convolutional neural network. In: Valencia-García, R., Alcaraz-Mármol, G., Cioppo-Morstadt, J., Vera-Lucio, N., Bucaram-Leverone, M. (eds.) CITAMA2019 2019. AISC, vol. 901, pp. 99–108. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10728-4_11
Garcerán-Sáez, J., García-Sánchez, F.: SePeRe: semantically-enhanced system for pest recognition. In: Valencia-García, R., Alcaraz-Mármol, G., Cioppo-Morstadt, J., Vera-Lucio, N., Bucaram-Leverone, M. (eds.) CITAMA2019 2019. AISC, vol. 901, pp. 3–11. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10728-4_1
Lagos-Ortiz, K., Medina-Moreira, J., Paredes-Valverde, M.A., Espinoza-Morán, W., Valencia-García, R.: An ontology-based decision support system for the diagnosis of plant diseases. J. Inf. Technol. Res. 10, 42–55 (2017). https://doi.org/10.4018/JITR.2017100103
Gelbukh, A.: Introduction to the thematic issue on natural language processing. Computación y Sistemas 22, 721–727 (2018). https://doi.org/10.13053/cys-22-3-3032
Chowdhury, G.G.: Natural language processing. Ann. Rev. Inf. Sci. Technol. 37, 51–89 (2005). https://doi.org/10.1002/aris.1440370103
Paredes-Valverde, M.A., Valencia-García, R., Rodríguez-García, M.Á., Colomo-Palacios, R., Alor-Hernández, G.: A semantic-based approach for querying linked data using natural language. J. Inf. Sci. 42, 851–862 (2016). https://doi.org/10.1177/0165551515616311
Endara, L., Burleigh, J.G., Cooper, L., Jaiswal, P., Laporte, M.-A., Cui, H.: A natural language processing pipeline to extract phenotypic data from formal taxonomic descriptions with a focus on flagellate plants. In: Jaiswal, P., Cooper, L., Haendel, M.A., Mungall, C.J. (eds.) Proceedings of the 9th International Conference on Biological Ontology (ICBO 2018), CEUR Workshop Proceedings 2285, Corvallis, Oregon, USA, pp. 1–4 (2018). http://www.CEUR-WS.org
Sharma, V., Law, W., Balick, M.J., Sarkar, I.N.: Harnessing biomedical natural language processing tools to identify medicinal plant knowledge from historical texts. In: AMIA Annual Symposium Proceedings, Washington, DC, USA, pp. 1537–1546. American Medical Informatics Association (2017)
Dreisbach, C., Koleck, T.A., Bourne, P.E., Bakken, S.: A systematic review of natural language processing and text mining of symptoms from electronic patient-authored text data. Int. J. Med. Informatics 125, 37–46 (2019). https://doi.org/10.1016/j.ijmedinf.2019.02.008
Koleck, T.A., Dreisbach, C., Bourne, P.E., Bakken, S.: Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review. J. Am. Med. Inform. Assoc. 26, 364–379 (2019). https://doi.org/10.1093/jamia/ocy173
Cambria, E., White, B.: Jumping NLP curves: a review of natural language processing research. IEEE Comput. Intell. Mag. 9, 48–57 (2014). https://doi.org/10.1109/MCI.2014.2307227
Young, T., Hazarika, D., Poria, S., Cambria, E.: Recent trends in deep learning based natural language processing. IEEE Comput. Intell. Mag. 13, 55–75 (2018). https://doi.org/10.1109/MCI.2018.2840738
Academic and Open Source Natural Language Toolkits. http://alias-i.com/lingpipe/web/competition.html. Accessed 09 Aug 2019
Ramos Gourcy, F.: Una lista de la gama de las aplicaciones móviles (“apps”) para la agricultura. https://www.hortalizas.com/proteccion-de-cultivos/61807/. Accessed 12 Aug 2019
Lagos-Ortiz, K., Medina-Moreira, J., Sinche-Guzmán, A., Garzón-Goya, M., Vergara-Lozano, V., Valencia-García, R.: Mobile applications for crops management. In: Valencia-García, R., Alcaraz-Mármol, G., Del Cioppo-Morstadt, J., Vera-Lucio, N., Bucaram-Leverone, M. (eds.) CITI 2018. CCIS, vol. 883, pp. 57–69. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00940-3_5
Yue, Y., et al.: Deep recursive super resolution network with Laplacian Pyramid for better agricultural pest surveillance and detection. Comput. Electron. Agric. 150, 26–32 (2018). https://doi.org/10.1016/j.compag.2018.04.004
Goodridge, W., Bernard, M., Jordan, R., Rampersad, R.: Intelligent diagnosis of diseases in plants using a hybrid multi-criteria decision making technique. Comput. Electron. Agric. 133, 80–87 (2017). https://doi.org/10.1016/j.compag.2016.12.003
Patil, J.K., Kumar, R.: Analysis of content based image retrieval for plant leaf diseases using color, shape and texture features. Eng. Agric. Environ. Food 10, 69–78 (2017). https://doi.org/10.1016/j.eaef.2016.11.004
Zhang, S., Wu, X., You, Z., Zhang, L.: Leaf image based cucumber disease recognition using sparse representation classification. Comput. Electron. Agric. 134, 135–141 (2017). https://doi.org/10.1016/j.compag.2017.01.014
Singh, V., Misra, A.K.: Detection of plant leaf diseases using image segmentation and soft computing techniques. Inf. Process. Agric. 4, 41–49 (2017). https://doi.org/10.1016/j.inpa.2016.10.005
del Águila, I.M., Cañadas, J., Túnez, S.: Decision making models embedded into a web-based tool for assessing pest infestation risk. Biosys. Eng. 133, 102–115 (2015). https://doi.org/10.1016/J.BIOSYSTEMSENG.2015.03.006
Cañadas, J., del Águila, I.M., Palma, J.: Development of a web tool for action threshold evaluation in table grape pest management. Precision Agric. 18, 974–996 (2017). https://doi.org/10.1007/s11119-016-9487-0
Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architectures (2000). https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
Krasner, G.E., Pope, S.T.: A cookbook for using the model-view controller user interface paradigm in smalltalk-80. J. Object-Oriented Program. 1, 26–49 (1988)
Ministerio de Agricultura, Alimentación y Medio Ambiente: Guía de Gestión Integrada de Plagas. Almendro. https://www.mapa.gob.es/es/agricultura/temas/sanidad-vegetal/guiadealmendroweb_tcm30-57951.pdf. Accessed 12 Aug 2019
Ministerio de Medio Ambiente y Medio Rural y Marino: Patógenos de plantas descritos en España. Sociedad Española de Fitopatología, Madrid, Spain (2010)
Lagos-Ortiz, K., Medina-Moreira, J., Morán-Castro, C., Campuzano, C., Valencia-García, R.: An ontology-based decision support system for insect pest control in crops. In: Valencia-García, R., Alcaraz-Mármol, G., Del Cioppo-Morstadt, J., Vera-Lucio, N., Bucaram-Leverone, M. (eds.) CITI 2018. CCIS, vol. 883, pp. 3–14. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00940-3_1
García-Sánchez, F., García-Díaz, J.A., Gómez-Berbís, J.M., Valencia-García, R.: Financial knowledge instantiation from semi-structured, heterogeneous data sources. In: Silhavy, R. (ed.) CSOC2018 2018. AISC, vol. 764, pp. 103–110. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91189-2_11
Acknowledgements
This work has been partially supported by the Spanish National Research Agency (AEI) and the European Regional Development Fund (FEDER/ERDF) through project KBS4FIA (TIN2016-76323-R), and Seneca Foundation-the Regional Agency for Science and Technology of Murcia (Spain)- through project 20963/PI/18.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Hernández-Castillo, C., Guedea-Noriega, H.H., Rodríguez-García, M.Á., García-Sánchez, F. (2019). Pest Recognition Using Natural Language Processing. In: Valencia-García, R., Alcaraz-Mármol, G., Del Cioppo-Morstadt, J., Vera-Lucio, N., Bucaram-Leverone, M. (eds) Technologies and Innovation. CITI 2019. Communications in Computer and Information Science, vol 1124. Springer, Cham. https://doi.org/10.1007/978-3-030-34989-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-34989-9_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34988-2
Online ISBN: 978-3-030-34989-9
eBook Packages: Computer ScienceComputer Science (R0)