Skip to main content

Distributed Core Decomposition in Probabilistic Graphs

  • Conference paper
  • First Online:
Computational Data and Social Networks (CSoNet 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11917))

Included in the following conference series:

Abstract

This paper initializes distributed algorithm studies for core decomposition in probabilistic graphs. Core decomposition has been proven to be a useful primitive for a wide range of graph analyses, but it has been rarely studied in probabilistic graphs, especially in a distributed environment. In this work, under a distributed model underlying Pregel and live distributed systems, we present the first known distributed solutions for core decomposition in probabilistic graphs, where there is an existence probability for each edge. In the scenario that the existence probability of edges are known to nodes, the proposed algorithm can get the exact coreness of nodes with a high probability guarantee. In the harsher case that the existence probability is unknown, we present a novel method to estimate the existence probability of edges, based on which the coreness of nodes with small approximation ratio guarantee can be computed. Extensive experiments are conducted on different types of real-world graphs and synthetic graphs. The results illustrate that the proposed algorithms exhibit good efficiency, stability and scalability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albert, R., Barabási, A.: Statistical mechanics of complex networks. CoRR cond-mat/0106096 (2001)

    Google Scholar 

  2. Altaf-Ul-Amin, M., Koma, T., Kurokawa, K., Kanaya, S.: Prediction of protein functions based on protein-protein interaction networks: a min-cut approach. In: Proceedings of the 21st International Conference on Data Engineering Workshops, ICDE, p. 1156 (2005)

    Google Scholar 

  3. Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: Large scale networks fingerprinting and visualization using the K-core decomposition. In: Neural Information Processing Systems, NIPS, pp. 41–50 (2005)

    Google Scholar 

  4. Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: K-core decomposition of internet graphs: hierarchies, self-similarity and measurement biases. NHM 3(2), 371–393 (2008)

    Article  MathSciNet  Google Scholar 

  5. Aridhi, S., Brugnara, M., Montresor, A., Velegrakis, Y.: Distributed K-core decomposition and maintenance in large dynamic graphs. In: Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems, DEBS, pp. 161–168 (2016)

    Google Scholar 

  6. Bader, G.D., Hogue, C.W.V.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 4, 2 (2003)

    Article  Google Scholar 

  7. Batagelj, V., Mrvar, A., Zaversnik, M.: Partitioning approach to visualization of large graphs. In: Proceedings of the 7th International Symposium Graph Drawing, GD 1999, Stirín Castle, Czech Republic, pp. 90–97, September 1999

    Chapter  Google Scholar 

  8. Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decomposition of networks. CoRR cs.DS/0310049 (2003)

    Google Scholar 

  9. Bonchi, F., Gullo, F., Kaltenbrunner, A., Volkovich, Y.: Core decomposition of uncertain graphs. In: The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014, pp. 1316–1325 (2014)

    Google Scholar 

  10. Carmi, S., Havlin, S., Kirkpatrick, S.: From the cover: a model of internet topology using K-shell decomposition. Proc. Nat. Acad. Sci. 104(27), 11150–11154 (2007)

    Article  Google Scholar 

  11. Ceccarello, M., Fantozzi, C., Pietracaprina, A., Pucci, G., Vandin, F.: Clustering uncertain graphs. PVLDB 11(4), 472–484 (2017)

    Google Scholar 

  12. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-mat: a recursive model for graph mining. In: Proceedings of the Fourth SIAM International Conference on Data Mining, pp. 442–446 (2004)

    Google Scholar 

  13. Cheng, J., Ke, Y., Chu, S., Özsu, M.T.: Efficient core decomposition in massive networks. In: Proceedings of the 27th International Conference on Data Engineering, ICDE, pp. 51–62 (2011)

    Google Scholar 

  14. Collins, S.R., Kemmeren, P., Zhao, X.C., Greenblatt, J.F., Spencer, F., Holstege, F.C., Weissman, J.S., Krogan, N.J.: Toward a comprehensive atlas of the physical interactome of saccharomyces cerevisiae. Mol. Cell. Proteomics Mcp 6(3), 439 (2007)

    Article  Google Scholar 

  15. Dasari, N.S., Ranjan, D., Zubair, M.: Park: an efficient algorithm for K-core decomposition on multicore processors. In: IEEE International Conference on Big Data, ICBD, pp. 9–16 (2014)

    Google Scholar 

  16. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. In: Proceedings of the ACM SIGCOMM Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, SIGCOMM, pp. 251–262 (1999)

    Google Scholar 

  17. Gavin, A.C., et al.: Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084), 631–636 (2006)

    Article  Google Scholar 

  18. Hahn, G.J., Doganaksoy, N.: A career in statistics. Wiley Online Library (2011)

    Google Scholar 

  19. Huang, X., Cheng, H., Li, R., Qin, L., Yu, J.X.: Top-K structural diversity search in large networks. PVLDB 6(13), 1618–1629 (2013)

    Google Scholar 

  20. Huang, X., Lu, W., Lakshmanan, L.V.S.: Truss decomposition of probabilistic graphs: semantics and algorithms. In: Proceedings of the International Conference on Management of Data, SIGMOD, pp. 77–90 (2016)

    Google Scholar 

  21. Li, C., Tang, Y., Lin, H., Chengzhe, Y., Mai, H.: Parallel overlapping community detection algorithm in complex networks based on label propagation. Scientia Sinica 46(2), 212 (2016)

    Google Scholar 

  22. Krogen, N.J.: Global landscape of protein complexes in the yeast saccharomyces cerevisiae. Nature 440(7084), 637–643 (2006)

    Article  Google Scholar 

  23. Jin, R., Liu, L., Aggarwal, C.C.: Discovering highly reliable subgraphs in uncertain graphs. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 992–1000 (2011)

    Google Scholar 

  24. Khaouid, W., Barsky, M., Venkatesh, S., Thomo, A.: K-core decomposition of large networks on a single PC. PVLDB 9(1), 13–23 (2015)

    Google Scholar 

  25. Krepska, E., Kielmann, T., Fokkink, W., Bal, H.E.: A high-level framework for distributed processing of large-scale graphs. In: Proceedings of The 12th International Conference Distributed Computing and Networking, ICDCN, pp. 155–166 (2011)

    Chapter  Google Scholar 

  26. Kitsak, M., et al.: Identification of influential spreaders in complex networks. Nature Phys. 6(11), 888–893 (2010)

    Article  Google Scholar 

  27. Malewicz, G., et al.: Pregel: a system for large-scale graph processing. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD, pp. 135–146 (2010)

    Google Scholar 

  28. Mandal, A., Hasan, M.A.: A distributed K-core decomposition algorithm on spark. In: IEEE International Conference on Big Data, ICBD, pp. 976–981 (2017)

    Google Scholar 

  29. Meyer, P., Siy, H.P., Bhowmick, S.: Identifying important classes of large software systems through K-core decomposition. Adv. Complex Syst. 17(7–8), 1550004 (2014)

    Article  MathSciNet  Google Scholar 

  30. Montresor, A., Pellegrini, F.D., Miorandi, D.: Distributed K-core decomposition. In: Proceedings of the 30th Annual ACM Symposium on Principles of Distributed Computing, PODC, pp. 207–208 (2011)

    Google Scholar 

  31. Peng, Y., Zhang, Y., Zhang, W., Lin, X., Qin, L.: Efficient probabilistic K-core computation on uncertain graphs. In: 34th IEEE International Conference on Data Engineering, ICDE, pp. 1192–1203 (2018)

    Google Scholar 

  32. Potamias, M., Bonchi, F., Gionis, A., Kollios, G.: K-nearest neighbors in uncertain graphs. PVLDB 3(1), 997–1008 (2010)

    Google Scholar 

  33. Robert, A.H., Mark, R.: Introduction to social network methods. Department of Sociology, University of California Riverside (2005)

    Google Scholar 

  34. Sariyüce, A.E., Seshadhri, C., Pinar, A., Çatalyürek, Ü.V.: Finding the hierarchy of dense subgraphs using nucleus decompositions. In: Proceedings of the 24th International Conference on World Wide Web, WWW, pp. 927–937 (2015)

    Google Scholar 

  35. Zhang, H., Zhao, H., Cai, W., Liu, J., Zhou, W.: Using the k-core decomposition to analyze the static structure of large-scale software systems. J. Supercomput. 53(2), 352–369 (2010)

    Article  Google Scholar 

  36. Zhao, X., Liu, F., Xing, S., Wang, Q.: Identifying influential spreaders in social networks via normalized local structure attributes. IEEE Access 6, 66095–66104 (2018)

    Article  Google Scholar 

  37. Zhu, R., Zou, Z., Li, J.: Diversified coherent core search on multi-layer graphs. In: 34th IEEE International Conference on Data Engineering, ICDE, pp. 701–712 (2018)

    Google Scholar 

  38. Full version. https://pan.baidu.com/s/1DK_XjOqkUhNm_NHDLgTK5w

Download references

Acknowledgement

This work is partially supported by NSFC (No. 61971269, 61832012, 61672321, 61771289, 61702304) and Shandong Provincial Natural Science Foundation (No. ZR2017QF005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongxiao Yu , Feng Li or Jiguo Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, Q. et al. (2019). Distributed Core Decomposition in Probabilistic Graphs. In: Tagarelli, A., Tong, H. (eds) Computational Data and Social Networks. CSoNet 2019. Lecture Notes in Computer Science(), vol 11917. Springer, Cham. https://doi.org/10.1007/978-3-030-34980-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34980-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34979-0

  • Online ISBN: 978-3-030-34980-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics