Skip to main content

Hybrid Centrality Measures for Service Coverage Problem

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 11917)

Abstract

Service Coverage Problem aims to find an ideal node for installing a service station in a given network such that services requested from various nodes are satisfied while minimizing the response time. Centrality Measures have been proved to be a salient computational science tool to find important nodes in networks. With increasing complexity and vividness in the network analysis problems, there is a need to modify the existing traditional centrality measures. In this paper we propose a new way of hybridizing centrality measures based on node-weighted centrality measures to address the service coverage problem.

Keywords

  • Complex network analysis
  • Centrality measures
  • Weighted networks
  • Hybrid centrality

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-34980-6_11
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-34980-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)

References

  1. NRPG-DATA. https://www.iitk.ac.in/eeold/facilities/Research_labs/Power_System/NRPG-DATA.pdf

  2. Abbasi, A.: h-Type hybrid centrality measures for weighted networks. Scientometrics 96(2), 633–640 (2013)

    CrossRef  Google Scholar 

  3. Abbasi, A., Hossain, L.: Hybrid centrality measures for binary and weighted networks. In: Menezes, R., Evsukoff, A., González, M. (eds.) Complex Networks. Studies in Computational Intelligence, vol. 424, pp. 1–7. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30287-9_1

    CrossRef  Google Scholar 

  4. Agarwal, M., Singh, R.R., Chaudhary, S., Iyengar, S.R.S.: An efficient estimation of a node’s betweenness. In: Mangioni, G., Simini, F., Uzzo, S.M., Wang, D. (eds.) Complex Networks VI. SCI, vol. 597, pp. 111–121. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16112-9_11

    CrossRef  Google Scholar 

  5. Akanmu, A.A., Wang, F.Z., Yamoah, F.A.: Clique structure and node-weighted centrality measures to predict distribution centre location in the supply chain management. In: Science and Information Conference (SAI), pp. 100–111. IEEE (2014)

    Google Scholar 

  6. Barthelemy, M.: https://www.quanturb.com/data.html

  7. Batagelj, V., Mrvar, A.: Pajek datasets (2006). http://vlado.fmf.uni-lj.si/pub/networks/data

  8. Bonacich, P.: Factoring and weighting approaches to status scores and clique identification. J. Math. Sociol. 2(1), 113–120 (1972)

    CrossRef  Google Scholar 

  9. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2), 163–177 (2001). https://doi.org/10.1080/0022250X.2001.9990249

    CrossRef  MATH  Google Scholar 

  10. Brandes, U., Erlebach, T. (eds.): Network Analysis. LNCS, vol. 3418. Springer, Heidelberg (2005). https://doi.org/10.1007/b106453

    CrossRef  MATH  Google Scholar 

  11. Brinkhoff, T.: A framework for generating network-based moving objects. GeoInformatica 6(2), 153–180 (2002)

    CrossRef  Google Scholar 

  12. Buechel, B., Buskens, V.: The dynamics of closeness and betweenness. J. Math. Sociol. 37(3), 159–191 (2013)

    MathSciNet  CrossRef  Google Scholar 

  13. Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464(7291), 1025–1028 (2010)

    CrossRef  Google Scholar 

  14. Everett, M.G., Borgatti, S.P.: The centrality of groups and classes. J. Math. Sociol. 23(3), 181–201 (1999)

    CrossRef  Google Scholar 

  15. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1979)

    CrossRef  Google Scholar 

  16. Jackson, M.O.: Social and Economic Networks. Princeton University Press, Princeton (2008)

    CrossRef  Google Scholar 

  17. Kinney, R., Crucitti, P., Albert, R., Latora, V.: Modeling cascading failures in the north american power grid. Eur. Phys. J. B-Condens. Matter Complex Syst. 46(1), 101–107 (2005)

    CrossRef  Google Scholar 

  18. Kunegis, J.: http://konect.uni-koblenz.de/networks/

  19. Lee, G.S., Djauhari, M.A.: An overall centrality measure: the case of us stock market. Int. J. Electr. Comput. Sci. 12(6) (2012)

    Google Scholar 

  20. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection, June 2014. http://snap.stanford.edu/data

  21. Li-Qing, Q., Yong-Quan, L., Zhuo-Yan, C.: A novel algorithm for detecting local community structure based on hybrid centrality. J. Appl. Sci. 14, 3532–3537 (2014)

    CrossRef  Google Scholar 

  22. Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks: generalizing degree and shortest paths. Soc. Netw. 32(3), 245–251 (2010)

    CrossRef  Google Scholar 

  23. Puzis, R., Elovici, Y., Zilberman, P., Dolev, S., Brandes, U.: Topology manipulations for speeding betweenness centrality computation. J. Complex Netw. 3(1), 84–112 (2014)

    MathSciNet  CrossRef  Google Scholar 

  24. Qiao, S., Peng, J., Li, H., Li, T., Liu, L., Li, H.: WebRank: a hybrid page scoring approach based on social network analysis. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds.) RSKT 2010. LNCS (LNAI), vol. 6401, pp. 475–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16248-0_67

    CrossRef  Google Scholar 

  25. Qiu, L., Liang, Y., Chen, Z., Fan, J.: A new measurement for the importance of nodes in networks. In: Control Engineering and Information Systems, pp. 483–486 (2014)

    Google Scholar 

  26. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (2015). http://networkrepository.com

  27. Singh, R.R., Goel, K., Iyengar, S., Gupta, S.: A faster algorithm to update betweenness centrality after node alteration. Internet Math. 11(4–5), 403–420 (2015)

    MathSciNet  CrossRef  Google Scholar 

  28. Singh, R.R., Iyengar, S., Chaudhary, S., Agarwal, M.: An efficient heuristic for betweenness estimation and ordering. Soc. Netw. Anal. Mining 8(1), 66 (2018)

    CrossRef  Google Scholar 

  29. Son, S.W., Kim, H., Olave-Rojas, D., lvarez Miranda, E.: Edge information of chilean power grid with tap. Figshare. Dataset (2018)

    Google Scholar 

  30. Wang, J., Rong, L., Guo, T.: A new measure of node importance in complex networks with tunable parameters. In: 4th International Conference on Wireless Communications, Networking and Mobile Computing, WiCOM 2008, pp. 1–4. IEEE (2008)

    Google Scholar 

  31. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(6684), 440–442 (1998)

    CrossRef  Google Scholar 

  32. Wiedermann, M., Donges, J.F., Heitzig, J., Kurths, J.: Node-weighted interacting network measures improve the representation of real-world complex systems. EPL (Europhys. Lett.) 102(2), 28007 (2013)

    CrossRef  Google Scholar 

  33. Zhang, X.J., Wang, Z.L., Zhang, Z.X.: Finding most vital node in satellite communication network. In: Applied Mechanics and Materials, vol. 635, pp. 1136–1139. Trans Tech Publications (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rishi Ranjan Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Singh, A., Singh, R.R., Iyengar, S.R.S. (2019). Hybrid Centrality Measures for Service Coverage Problem. In: Tagarelli, A., Tong, H. (eds) Computational Data and Social Networks. CSoNet 2019. Lecture Notes in Computer Science(), vol 11917. Springer, Cham. https://doi.org/10.1007/978-3-030-34980-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34980-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34979-0

  • Online ISBN: 978-3-030-34980-6

  • eBook Packages: Computer ScienceComputer Science (R0)