Skip to main content

The Kähler–Ricci Flow on CP2

  • Chapter
  • First Online:
Geometric Analysis

Part of the book series: Progress in Mathematics ((PM,volume 333))

  • 1263 Accesses

Abstract

We give a direct proof of the convergence of the Kähler–Ricci flow on CP2 without assuming the existence of the Kähler–Einstein metric.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Song, J. (2020). The Kähler–Ricci Flow on CP2. In: Chen, J., Lu, P., Lu, Z., Zhang, Z. (eds) Geometric Analysis. Progress in Mathematics, vol 333. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-34953-0_18

Download citation

Publish with us

Policies and ethics