Skip to main content

Spectroscopy of Rydberg Atomic Systems in a Black-Body Radiation Field

  • Conference paper
  • First Online:
Advances in Quantum Systems in Chemistry, Physics, and Biology (QSCP 2018)

Abstract

It is presented a consistent relativistic approach to calculation of the energy, spectroscopic, radiation decay (excitation, ionization) characteristics of the Rydberg atomic systems in a Black-body radiation field. The approach is based on an advanced relativistic energy approach (in a single-electron approximation realization) and formalism of the relativistic many-body perturbation theory with the zeroth density functional approximation. The key features of the approach are connected with an accurate treatment of the complex exchange-correlation effects (interelectron polarization interaction through the Fermi sea, continuum pressure, the non-Coulomb grouping of levels in the heavy Rydberg spectra and others) and application of the optimized bases of relativistic wave functions, and correspondingly, fulfilling the principle of gauge invariance in calculation of the radiative decay characteristics. As illustration, we present the results of calculation of the spectroscopic characteristics (ionization rate, effective lifetime values etc.) for sodium Rydberg atoms in a Black-body radiation field for different states and temperatures. The obtained spectroscopic data are compared with available experimental and alternative theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beterov II, Tretyakov DV, Ryabtsev II et al (2009) Ionization of Rydberg atoms by blackbody radiation. New J Phys 11:013052

    Article  CAS  Google Scholar 

  2. Beterov II, Ryabtsev II, Tretyakov DB, Entin VM (2009) Quasiclassical calculations of blackbody-radiation-induced depopulation rates and effective lifetimes of Rydberg nS, nP, and nD alkali-metal atoms with n ~ 80. Phys Rev A 79:052504

    Article  CAS  Google Scholar 

  3. Spencer WP, Vaidyanathan AG, Kleppner D, Ducas TW (1982) Photoionization by blackbody radiation. Phys Rev A 26:1490–1493

    Article  CAS  Google Scholar 

  4. Burkhardt CE, Corey RL, Garver WP, Leventhal JJ, Allegrini M, Moi L (1986) Ionization of Rydberg atoms. Phys Rev A 34:80–88

    Article  CAS  Google Scholar 

  5. Lehman GW (1983) Rate of ionisation of H and Na Rydberg atoms by black-body radiation. J Phys B: At Mol Phys 16:2145

    Article  CAS  Google Scholar 

  6. Farley JW, Wing WH (1981) Accurate calculation of dynamic stark shifts and depopulation rates of Rydberg energy levels induced by blackbody radiation. Hydrogen, helium, alkali-metal atoms. Phys Rev A 23:2397–2410

    Article  CAS  Google Scholar 

  7. Dyachkov LG, Pankratov PM (1994) On the use of the semiclassical approximation for the calculation of oscillator strengths and photoionization cross sections. J Phys B 27(3):461

    Article  CAS  Google Scholar 

  8. Hoogenraad JH, Noordam LD (1998) Rydberg atoms in far-infrared radiation fields. I. Dipole matrix elements of H, Li, Rb. Phys Rev A 57:4533–4545

    Article  CAS  Google Scholar 

  9. Glukhov IL, Nikitina EA, Ovsiannikov VD (2016) Blackbody-radiation-induced shifts and the broadening of Rydberg states in the ions of group IIa elements. J Phys B: Atom Mol Opt Phys 49(3):035003

    Article  CAS  Google Scholar 

  10. Glukhov IL, Ovsiannikov VD (2009) Blackbody-radiation-induced decay and excitation of Rydberg states in sodium. Acta Phys Pol 116(4):528–531

    Article  Google Scholar 

  11. Nascimento V, Caliri L, de Oliveira A et al (2006) Measurement of the lifetimes of S and D states below n = 31 using cold Rydberg gas. Phys Rev A 74:054501

    Article  CAS  Google Scholar 

  12. Piotrowicz MJ, MacCormick C, Kowalczyk A et al (2011) Measurement of the electric dipole moments for transitions to rubidium Rydberg states via autler-townes splitting. New J Phys 13:093012

    Article  CAS  Google Scholar 

  13. Beterov II, Tretyakov DB, Ryabtsev II, Ekers A, Bezuglov NN (2007) Ionization of sodium and rubidium nS, nP, and nD Rydberg atoms by blackbody radiation. Phys Rev A 75:052720

    Article  CAS  Google Scholar 

  14. Ryabtsev II, Tretyakov DB, Beterov II, Bezuglov NN, Miculis K, Ekers A (2005) Collisional and thermal ionization of sodium Rydberg atoms: I. Experiment for nS and nD atoms with n = 8–20. J Phys B: Atom Mol Opt Phys 38(2):379–386

    Google Scholar 

  15. Miculis K, Beterov II, Bezuglov NN, Ryabtsev II, Tretyakov DB, Klucharev AN (2005) Collisional and thermal ionization of sodium Rydberg atoms: II. Theory for nS, nP and nD states with n = 5–25. J Phys B: Atom Mol Opt Phys 38(11):1811–1822

    Article  CAS  Google Scholar 

  16. Beterov II, Tretyakov DB, Ryabtsev II, Bezuglov NN, Miculis K, Ekers A (2005) Collisional and thermal ionization of sodium Rydberg atoms III. Experiment and theory for nS and nD states with n = 8–20 in crossed atomic beams. J Phys B: Atom Mol Opt Phys 38(24):4349–4363

    Article  CAS  Google Scholar 

  17. Li W, Noel MW, Robinson MP et al (2004) Evolution dynamics of a dense frozen Rydberg gas to plasma. Phys Rev A 70:042713

    Article  CAS  Google Scholar 

  18. Buyadzhi VV, Zaichko PA, Gurskaya MY, Kuznetsova AA, Ponomarenko EL, Ternovsky VB (2017) Relativistic theory of excitation and ionization of Rydberg atomic systems in a black-body radiation field. J Phys: Conf Ser 810:012047

    Google Scholar 

  19. Svinarenko AA, Khetselius OY, Buyadzhi VV, Florko TA, Zaichko PA, Ponomarenko EL (2014) Spectroscopy of Rydberg atoms in a black-body radiation field: relativistic theory of excitation and ionization. J Phys: Conf Ser 548:012048

    Google Scholar 

  20. Malinovskaya SV, Glushkov AV, Khetselius OY, Loboda AV, Lopatkin Y, Nikola L, Svinarenko AA, Perelygina T (2011) Generalized energy approach to calculating electron collision cross sections for multicharged ions in a plasma: debye shielding model. Int J Quant Chem 111:288–296

    Article  CAS  Google Scholar 

  21. Khetselius OY, Florko TA, Svinarenko AA, Tkach TB (2013) Radiative and collisional spectroscopy of hyperfine lines of the Li-like heavy ions and Tl atom in an atmosphere of inert gases. Phys Scr T 153:014037

    Article  CAS  Google Scholar 

  22. Wenhui L, Tanner PL, Gallagher TF (2005) Dipole-dipole excitation and ionization in an ultracold gas of Rydberg atoms. Phys Rev Lett 94:173001

    Article  CAS  Google Scholar 

  23. Viteau M, Bason MG, Radogostowicz J, Malossi N, Ciampini D, Morsch O, Arimondo E (2011) Rydberg excitations in bose-einstein condensates in quasi-one-dimensional potentials and optical lattices. Phys Rev Lett 107:060402

    Article  CAS  PubMed  Google Scholar 

  24. Galvez EJ, MacGregor CW, Chaudhuri B, Gupta S (1997) Blackbody-radiation-induced resonances between Rydberg-Stark states of Na. Phys Rev A 55:3002–3006

    Article  CAS  Google Scholar 

  25. Safronova UI, Johnson WR, Derevianko A (1999) Relativistic many-body calculations of energy levels, hyperfine constants, electric-dipole matrix elements, and static polarizabilities for alkali-metal atoms. Phys Rev A 60:4476

    Article  CAS  Google Scholar 

  26. Safronova UI, Safronova MS (2009) Third-order relativistic many-body calculations of energies, transition rates, hyperfine constants, and blackbody radiation shift in 171Yb+. Phys Rev A 79:022512

    Article  CAS  Google Scholar 

  27. Glushkov AV, Khetselius OY, Loboda AV, Ignatenko AV, Svinarenko AA, Korchevsky DA, Lovett L (2008) QED approach to modeling spectra of the multicharged ions in a plasma: oscillator and electron-ion collision strengths. AIP Conf Proc 1058:175–177

    Article  CAS  Google Scholar 

  28. Buyadzhi VV, Zaichko PA, Antoshkina OA, Kulakli TA, Prepelitsa GP, Ternovsky VB, Mansarliysky VF (2017) Computing of radiation parameters for atoms and multicharged ions within relativistic energy approach: advanced code. J Phys: Conf Ser 905:012003

    Google Scholar 

  29. Buyadzhi VV (2015) Laser multiphoton spectroscopy of atom embedded in debye plasmas: multiphoton resonances and transitions. Photoelectronics 24:128–133

    Google Scholar 

  30. Buyadzhi VV, Chernyakova YG, Smirnov AV, Tkach TB (2016) Electron-collisional spectroscopy of atoms and ions in plasma: be-like ions. Photoelectronics 25:97–101

    Google Scholar 

  31. Buyadzh VV, Chernyakova YG, Antoshkina OA, Tkach TB (2017) Spectroscopy of multicharged ions in plasmas: Oscillator strengths of Be-like ion Fe. Photoelectronics 26:94–102

    Article  Google Scholar 

  32. Florko TA, Ambrosov SV, Svinarenko AA, Tkach TB (2012) Collisional shift of the heavy atoms hyperfine lines in an atmosphere of the inert gas. J Phys: Conf Ser 397(1):012037

    Google Scholar 

  33. Buyadzhi VV, Glushkov AV, Mansarliysky VF, Ignatenko AV, Svinarenko AA (2015) Spectroscopy of atoms in a strong laser field: new method to sensing AC stark effect, multiphoton resonances parameters and ionization cross-sections. Sens Electr Microsys 12(4):27–36

    Google Scholar 

  34. Glushkov AV, Gurskaya MY, Ignatenko AV, Smirnov AV, Serga IN, Svinarenko AA, Ternovsky EV (2017) Computational code in atomic and nuclear quantum optics: advanced computing multiphoton resonance parameters for atoms in a strong laser field. J Phys: Conf Ser 905(1):012004

    Google Scholar 

  35. Dubrovskaya YV, Khetselius OY, Vitavetskaya LA, Ternovsky VB, Serga IN (2019) Quantum chemistry and spectroscopy of pionic atomic systems with accounting for relativistic, radiative, and strong interaction effects. Adv Quantum Chem 78:193–222 (Elsevier). https://doi.org/10.1016/bs.aiq.2018.06.003

    Chapter  Google Scholar 

  36. Kuznetsova AA, Glushkov AV, Ignatenko AV, Svinarenko AA, Ternovsky VB (2019) Spectroscopy of multielectron atomic systems in a DC electric field. Adv Quant Chem 78:287–306 (Elsevier)

    Google Scholar 

  37. Glushkov AV (2005) Atom in electromagnetic field. KNT, Kiev

    Google Scholar 

  38. Gross EG, Kohn W (2005) Exchange-correlation functionals in density functional theory. Plenum, New York

    Google Scholar 

  39. Glushkov AV, Lovett L, Khetselius OY, Gurnitskaya EP, Dubrovskaya YV, Loboda AV (2009) Generalized multiconfiguration model of decay of multipole giant resonances applied to analysis of reaction (µ-n) on the nucleus 40Ca. Int J Modern Phys A 24(2–3):611–615

    Article  CAS  Google Scholar 

  40. Glushkov AV, Malinovskaya SV, Sukharev DE, Khetselius OY, Loboda AV, Lovett L (2009) Green’s function method in quantum chemistry: new numerical algorithm for the dirac equation with complex energy and Fermi-model nuclear potential. Int J Quant Chem 109:1717–1727

    Article  CAS  Google Scholar 

  41. Khetselius OY (2009) Relativistic perturbation theory calculation of the hyperfine structure parameters for some heavy-element isotopes. Int J Quant Chem 109:3330–3335

    Article  CAS  Google Scholar 

  42. Khetselius OY (2009) Relativistic calculation of the hyperfine structure parameters for heavy elements and laser detection of the heavy isotopes. Phys Scr T 135:014023

    Article  CAS  Google Scholar 

  43. Serga IN, Dubrovskaya YV, Kvasikova AS, Shakhman AN, Sukharev DE (2012) Spectroscopy of hadronic atoms: energy shifts. J Phys: Conf Ser 397:012013

    Google Scholar 

  44. Svinarenko AA (2014) Study of spectra for lanthanides atoms with relativistic many-body perturbation theory: Rydberg resonances. J Phys: Conf Ser 548:012039

    Google Scholar 

  45. Indelicato P, Desclaux JP (1993) Projection operator in the multiconfiguration Dirac-Fock method. Phys Scr T46:110

    Article  CAS  Google Scholar 

  46. Sapirstein J (1998) Theoretical methods for the relativistic atomic many-body problem. Rev Mod Phys 70:55

    Article  CAS  Google Scholar 

  47. Glushkov AV, Ambrosov SV, Ignatenko AV, Korchevsky DA (2004) DC strong field stark effect for non-hydrogenic atoms: consistent quantum mechanical approach. Int J Quant Chem 99:936–939

    Article  CAS  Google Scholar 

  48. Glushkov AV, Ternovsky VB, Buyadzhi VV, Prepelitsa GP (2014) Geometry of a relativistic quantum chaos: new approach to dynamics of quantum systems in electromagnetic field and uniformity and charm of a chaos. Proc Intern Geom Cent 7(4):60–71

    Google Scholar 

  49. Ivanov LN, Ivanova EP (1979) Atomic ion energies for Na-like ions by a model potential method Z = 25–80. Atom Data Nucl Data Tabl 24:95–109

    Article  CAS  Google Scholar 

  50. Vidolova-Angelova E, Ivanov LN (1991) Autoionizing Rydberg states of thulium. Re-orientation decay due to monopole interaction. J Phys B: At Mol Opt Phys 24:4147–4158

    Article  CAS  Google Scholar 

  51. Ivanov LN, Ivanova EP (1996) Method of Sturm orbitals in calculation of physical characteristics of radiation from atoms and ions. JETP 83:258–266

    Google Scholar 

  52. Ivanova EP, Ivanov LN, Glushkov AV, Kramida AE (1985) High order corrections in the relativistic perturbation theory with the model zeroth approximation, Mg-Like and Ne-Like Ions. Phys Scr 32:513–522

    Article  CAS  Google Scholar 

  53. Ivanova EP, Glushkov AV (1986) Theoretical investigation of spectra of multicharged ions of F-like and Ne-like isoelectronic sequences. J Quant Spectr Rad Transf 36:127–145

    Article  CAS  Google Scholar 

  54. Ivanov LN, Ivanov EP, Knight L (1993) Energy approach to consistent QED theory for calculation of electron-collision strengths: ne-like ions. Phys Rev A 48:4365–4374

    Article  CAS  PubMed  Google Scholar 

  55. Glushkov AV, Ivanov LN, Ivanova EP (1986) Autoionization phenomena in atoms. Moscow University Press, Moscow

    Google Scholar 

  56. Glushkov AV, Ivano LN (1992) Radiation decay of atomic states: atomic residue polarization and gauge noninvariant contributions. Phys Lett A 170:33–36

    Article  CAS  Google Scholar 

  57. Glushkov AV (2008) Relativistic quantum theory. Quantum mechanics of atomic systems. Astroprint, Odessa

    Google Scholar 

  58. Glushkov AV (2012) Advanced relativistic energy approach to radiative decay processes in multielectron atoms and multicharged ions. In: Nishikawa K, Maruani J, Brandas E, Delgado-Barrio G, Piecuch P (eds) Advances in the theory of quantum systems in chemistry and physics. Springer, Berlin, pp 231–252 (Ser. Progress in Theor. Chemistry and Physics)

    Google Scholar 

  59. Khetselius OY (2019) Optimized relativistic many-body perturbation theory calculation of wavelengths and oscillator strengths for li-like multicharged ions. Adv Quant Chem 78:223–251 (Elsevier). https://doi.org/10.1016/bs.aiq.2018.06.001

    Chapter  Google Scholar 

  60. Glushkov AV, Multiphoton spectroscopy of atoms and nuclei in a laser field: relativistic energy approach and radiation atomic lines moments method Adv Quant Chem 78:253–285 (Elsevier). https://doi.org/10.1016/bs.aiq.2018.06.004

    Chapter  Google Scholar 

  61. Glushkov AV, Khetselius OY, Svinarenko AA, Buyadzhi VV (2015) Spectroscopy of autoionization states of heavy atoms and multiply charged ions. TEC, Odessa

    Google Scholar 

  62. Ternovsky VB, Glushkov AV, Khetselius OY, Gurskaya MY, Kuznetsova AA (2018) Spectroscopy of radiative decay processes in heavy Rydberg alkali atomic systems. In: Wang Yan A, Thachuk Mark, Krems Roman, Maruani Jean (eds) Concepts, methods and applications of quantum systems in chemistry and physics, vol 31. Springer, Cham, pp 229–241 (Series: Progress in Theoretical Chemistry and Physics)

    Chapter  Google Scholar 

  63. Glushkov AV, Khetselius OY, Svinarenko AA (2013) Theoretical spectroscopy of autoionization resonances in spectra of lanthanide atoms. Phys Scr T153:014029

    Article  CAS  Google Scholar 

  64. Malinovskaya SV, Glushkov AV, Khetselius OY, Svinarenko AA, Mischenko EV, Florko TA (2009) Optimized perturbation theory scheme for calculating the interatomic potentials and hyperfine lines shift for heavy atoms in the buffer inert gas. Int J Quant Chem 109:3325–3329

    Article  CAS  Google Scholar 

  65. Glushkov AV, Khetselius OY, Lopatkin YM, Florko TA, Kovalenko OA, Mansarliysky VF (2014) Collisional shift of hyperfine line for rubidium in an atmosphere of the buffer inert gas. J Phys: Conf Ser 548:012026

    Google Scholar 

  66. Malinovskaya SV, Dubrovskaya YV, Vitavetskaya LA (2005) Advanced quantum mechanical calculation of the beta decay probabilities. Energy approach to resonance states of compound superheavy nucleus and EPPP in heavy nuclei collisions. In: Grzonka D, Czyzykiewicz R, Oelert W, Rozek T, Winter P (eds) Low energy antiproton physics, vol 796. AIP, New York, pp 201–205 (AIP Conf. Proc.)

    Google Scholar 

  67. Malinovskaya SV, Glushkov AV, Khetselius OY (2008) New laser-electron nuclear effects in the nuclear γ transition spectra in atomic and molecular systems. In: Wilson S, Grout P, Maruani J, Delgado-Barrio G, Piecuch P (eds) Frontiers in quantum systems in chemistry and physics. Series: Progress in Theoretical Chemistry and Physics, vol 18. Springer, Dordrecht, pp 525–541

    Chapter  Google Scholar 

  68. Glushkov AV, Khetselius OY, Malinovskaya SV (2008) Optics and spectroscopy of cooperative laser-electron nuclear processes in atomic and molecular systems—new trend in quantum optics. Eur Phys J ST 160:195–204

    Article  Google Scholar 

  69. Glushkov AV, Malinovskaya SV, Gurnitskaya EP, Khetselius OY, Dubrovskaya YV (2006) Consistent quantum theory of recoil induced excitation and ionization in atoms during capture of neutron. J Phys: Conf Ser 35:425–430

    CAS  Google Scholar 

  70. Glushkov AV, Ambrosov SV, Lobod AV, Gurnitskaya EP, Prepelitsa GP (2005) Consistent QED approach to calculation of electron-collision excitation cross sections and strengths: Ne-like ions. Int J Quant Chem 104:562–569

    Article  CAS  Google Scholar 

  71. Glushkov AV, Shpinareva IM, Ignatenko V, Gura VI (2006) Study of atomic systems in strong laser fields: spectral hierarchy, dynamical stabilisation and generation of ultra-short vuv and x-ray pulses. Sens Electr Microsyst Tech 3(1):29–35

    Google Scholar 

  72. Glushkov AV (2005) Energy approach to resonance states of compound superheavy nucleus and EPPP in heavy nuclei collisions. In: Grzonka D, Czyzykiewicz R, Oelert W, Rozek T, Winter P (eds) Low energy antiproton physics, vol 796. AIP, New York, pp 206–210 (AIP Conf. Proc.)

    Google Scholar 

  73. Glushkov AV (2012) Spectroscopy of cooperative muon-gamma-nuclear processes: energy and spectral parameters. J Phys: Conf Ser 397:012011

    Google Scholar 

  74. Glushkov AV (2014) Spectroscopy of atom and nucleus in a strong laser field: Stark effect and multiphoton resonances. J Phys: Conf Ser 548:012020

    Google Scholar 

  75. Khetselius OY (2012) Spectroscopy of cooperative electron-gamma-nuclear processes in heavy atoms: NEET effect. J Phys: Conf Ser 397:012012

    Google Scholar 

  76. Khetselius OY (2012) Relativistic energy approach to cooperative electron-γ-nuclear processes: NEET effect. In: Nishikawa K, Maruani J, Brändas E, Delgado-Barrio G, Piecuch P (eds) Quantum systems in chemistry and physics. series: progress in theoretical chemistry and physics, vol 26. Springer, Dordrecht, pp 217–229

    Chapter  Google Scholar 

  77. Khetselius OY (2012) Quantum geometry: new approach to quantization of the quasistationary states of Dirac equation for super heavy ion and calculating hyper fine structure parameters. Proc Intern Geom Cent 5(3–4):39–45

    Google Scholar 

  78. Khetselius OY (2008) Hyperfine structure of atomic spectra. Astroprint, Odessa

    Google Scholar 

  79. Glushkov AV (1992) Oscillator strengths of Cs and Rb-like ions. J Appl Spectrosc 56(1):5–9

    Google Scholar 

  80. Glushkov AV (1992) Negative ions of inert gases. JETP Lett 55:97–100

    Google Scholar 

  81. Glushkov AV (1990) Relativistic polarization potential of a many-electron atom. Sov Phys J 33(1):1–4

    Article  Google Scholar 

  82. Glushkov AV, Ivanov LN (1993) DC strong-field Stark effect: consistent quantum-mechanical approach. J Phys B: At Mol Opt Phys 26:L379–L386

    Article  CAS  Google Scholar 

  83. Glushkov AV (2013) Operator perturbation theory for atomic systems in a strong DC electric field. In: Hotokka M, Brändas E, Maruani J, Delgado-Barrio G (eds) Advances in quantum methods and applications in chemistry, physics, and biology. Series: Progress in Theoretical Chemistry and Physics, vol 27. Springer, Cham, pp 161–177

    Google Scholar 

  84. Glushkov AV, Malinovskaya SV, Ambrosov SV, Shpinareva IM, Troitskaya OV (1997) Resonances in quantum systems in strong external fields consistent quantum approach. J Techn Phys 38(2):215–218

    CAS  Google Scholar 

  85. Glushkov AV, Khetselius OY, Malinovskaya SV (2008) Spectroscopy of cooperative laser-electron nuclear effects in multiatomic molecules. Mol Phys 106:1257–1260

    Article  CAS  Google Scholar 

  86. Glushkov AV (2006) Relativistic and correlation effects in spectra of atomic systems. Astroprint, Odessa

    Google Scholar 

  87. Khetselius OY (2011) Quantum structure of electroweak interaction in heavy finite Fermi-systems. Astroprint, Odessa

    Google Scholar 

  88. Glushkov AV, Khetselius OY, Svinarenko AA (2012) Relativistic theory of cooperative muon-γ -nuclear processes: negative muon capture and metastable nucleus discharge. In: Hoggan P, Brändas E, Maruani J, Delgado-Barrio G, Piecuch P (eds) Advances in the theory of quantum systems in chemistry and physics. Series: Progress in Theoretical Chemistry and Physics, vol 22. Springer, Dordrecht, pp 51–68

    Google Scholar 

  89. Glushkov AV, Khetselius OY, Lovett L (2009) Electron-β-nuclear spectroscopy of atoms and molecules and chemical bond effect on the β-decay parameters. In: Piecuch P, Maruani J, Delgado-Barrio G, Wilson S (eds) Advances in the theory of atomic and molecular systems dynamics, spectroscopy, clusters, and nanostructures. Series: Progress in Theor. Chem. and Phys., vol 20. Springer, Dordrecht, pp 125–152

    Google Scholar 

  90. Khetselius OY, Glushkov AV, Dubrovskaya YV, Chernyakova YG, Ignatenko AV, Serga IN, Vitavetskaya LA (2018) Relativistic quantum chemistry and spectroscopy of exotic atomic systems with accounting for strong interaction effects. In: Wang YA, Thachuk M, Krems R, Maruani J (eds) Concepts, methods and applications of quantum systems in chemistry and physics. Series: Progress in Theoretical Chemistry and Physics, vol 31. Springer, Dordrecht, pp 71–91

    Chapter  Google Scholar 

  91. Glushkov AV, Rusov VD, Ambrosov SV, Loboda AV (2003) Resonance states of compound super-heavy nucleus and EPPP in heavy nucleus collisions. In: Fazio G, Hanappe F (eds) New projects and new lines of research in nuclear physics. World Scientific, Singapore, pp 126–132

    Chapter  Google Scholar 

  92. Glushkov AV, Khetselius OY, Gurnitskaya EP, Loboda AV, Sukharev DE (2009) Relativistic quantum chemistry of heavy ions and hadronic atomic systems: spectra and energy shifts. Theory and applications of computational chemistry. AIP Conf Proc 1102:168–171

    Article  CAS  Google Scholar 

  93. Glushkov AV, Ambrosov SA, Loboda AV, Gurnitskaya EP, Khetselius OY (2006) QED calculation of heavy multicharged ions with account for correlation, radiative and nuclear effects. In: Julien P, Maruani J, Mayou D, Wilson S, Delgado-Barrio G (eds) Recent advances in the theory of chemical and physical systems, vol 15. Springer, Dordrecht, pp 285–299 (Series: Progress in Theoretical Chemistry and Physics)

    Chapter  Google Scholar 

  94. Glushkov AV, Dan'kov SV, Prepelitsa G, Polischuk VN, Efimov AE (1997) Qed theory of nonlinear interaction of the complex atomic systems with laser field: Multiphoton resonances. J Tech Phys 38(2):219–222

    Google Scholar 

  95. Ambrosov S, Ignatenko V, Korchevsky D, Kozlovskaya V (2005) Sensing stochasticity of atomic systems in crossed electric and magnetic fields by analysis of level statistics for continuous energy spectra. Sens Electron Microsyst Techn N2: 19–23

    Article  Google Scholar 

  96. Glushkov AV, Malinovskaya SV, Svinarenko AA, Vitavetskaya LA (2005) Sensing spectral hierarchy, quantum chaos, chaotic diffusion and dynamical stabilisation effects in a multi-photon atomic dynamics with intense laser field. Sens Electron Microsyst Tech 2(2):29–36

    Article  Google Scholar 

  97. Glushkov AV, Buyadzhi VV, Kvasikova AS, Ignatenko AV, Kuznetsova AA, Pre-pelitsa GP, Ternovsky VB (2017) Non-Linear chaotic dynamics of quantum systems: Molecules in an electromagnetic field and laser systems. In: Tadjer A, Pavlov R, Maruani J, Brändas E, Delgado-Barrio G (eds) Quantum Systems in Physics, Chemistry, and Biology, Series: Progress in Theoretical Chemistry and Physics, vol 30. Springer, Cham, pp169–180

    Chapter  Google Scholar 

  98. Khetselius OY, Glushkov AV, Gurskaya MY, Kuznetsova AA, Dubrovskaya YV, Serga IN, Vitavetskaya LA (2017) Computational modelling parity non-conservation and electroweak interaction effects in heavy atomic systems within the nuclear-relativistic many-body perturbation theory. J Phys: Conf Ser 905:012029

    Google Scholar 

  99. Ignatenko AV, Buyadzhi AA, Buyadzhi VV, Kuznetsova AA, Mashkantsev AA, Ternovsky EV (2019) Nonlinear chaotic dynamics of quantum systems: Molecules in an electromagnetic field. Adv. Quantum Chem, vol 78. Elsevier, pp 149–170

    Google Scholar 

  100. Glushkov AV, Khetselius OY, Svinarenko AA, Buyadzhi VV (2015) Methods of computational mathematics and mathematical physics. P.1. TES, Odessa

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Chair of QSCP-XXIII, Prof. Liliana Mammino, and the Cochair Prof. Jean Maruani, for their generous invitation to present this work in the Proceedings of the XXIII International workshop on Quantum Systems in Chemistry, Physics and Biology.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Glushkov, A.V., Ternovsky, V.B., Kuznetsova, A.A., Tsudik, A.V. (2020). Spectroscopy of Rydberg Atomic Systems in a Black-Body Radiation Field. In: Mammino, L., Ceresoli, D., Maruani, J., Brändas, E. (eds) Advances in Quantum Systems in Chemistry, Physics, and Biology. QSCP 2018. Progress in Theoretical Chemistry and Physics, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-34941-7_3

Download citation

Publish with us

Policies and ethics