Skip to main content

In-network Hebbian Plasticity for Wireless Sensor Networks

  • Conference paper
  • First Online:
Book cover Internet and Distributed Computing Systems (IDCS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11874))

Included in the following conference series:

Abstract

In typical Wireless Sensor Networks (WSNs), all sensor data is routed to a more powerful computing entity. In the case of environmental monitoring, this enables data prediction and event detection. When the size of the network increases, processing all the input data outside the network will create a bottleneck at the gateway device. This creates delays and increases the energy consumption of the network. To solve this issue, we propose using Hebbian learning to pre-process the data in the wireless network. This method allows to reduce the dimension of the sensor data, without loosing spatial and temporal correlation. Furthermore, bottlenecks are avoided. By using a recurrent neural network to predict sensor data, we show that pre-processing the data in the network with Hebbian units reduces the computation time and increases the energy efficiency of the network without compromising learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahad, N., Qadir, J., Ahsan, N.: Neural networks in wireless networks: techniques, applications and guidelines. J. Netw. Comput. Appl. 68, 1–27 (2016)

    Article  Google Scholar 

  2. Alves, R.C.A., Margi, C.B.: IEEE 802.15.4e TSCH mode performance analysis. In: 2016 IEEE 13th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), pp. 361–362, October 2016

    Google Scholar 

  3. Bengio, Y., Simard, P., Frasconi, P., et al.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

    Article  Google Scholar 

  4. Camero, A., Toutouh, J., Alba, E.: Low-cost recurrent neural network expected performance evaluation. arXiv preprint arXiv:1805.07159 (2018)

  5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  6. Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Netw. 13(4–5), 411–430 (2000)

    Article  Google Scholar 

  7. Isomura, T., Toyoizumi, T.: On the achievability of blind source separation for high-dimensional nonlinear source mixtures. arXiv preprint arXiv:1808.00668 (2018)

  8. Ketkar, N.: Introduction to PyTorch. In: Deep Learning with Python, pp. 195–208. Springer, Heidelberg (2017)

    Chapter  Google Scholar 

  9. Kwon, H., Birdsall, T.: Channel capacity in bits per joule. IEEE J. Ocean. Eng. 11(1), 97–99 (1986)

    Article  Google Scholar 

  10. Lee, J.S., Su, Y.W., Shen, C.C., et al.: A comparative study of wireless protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. Ind. Electron. Soc. 5, 46–51 (2007)

    Google Scholar 

  11. Luo, C., Wu, F., Sun, J., Chen, C.W.: Efficient measurement generation and pervasive sparsity for compressive data gathering. IEEE Trans. Wirel. Commun. 9(12), 3728–3738 (2010)

    Article  Google Scholar 

  12. Moridi, M.A., Kawamura, Y., Sharifzadeh, M., Chanda, E.K., Jang, H.: An investigation of underground monitoring and communication system based on radio waves attenuation using ZigBee. Tunn. Undergr. Space Technol. 43, 362–369 (2014)

    Article  Google Scholar 

  13. Oja, E.: Simplified neuron model as a principal component analyzer. J. Math. Biol. 15(3), 267–273 (1982)

    Article  MathSciNet  Google Scholar 

  14. Oja, E., Karhunen, J.: An analysis of convergence for a learning version of the subspace method. J. Math. Anal. Appl. 91(1), 102–111 (1983)

    Article  MathSciNet  Google Scholar 

  15. Oliveira, L.M., Rodrigues, J.J.: Wireless sensor networks: a survey on environmental monitoring. JCM 6(2), 143–151 (2011)

    Article  Google Scholar 

  16. Pu, F., Xu, Z., Chen, H., Xu, X., Chen, N.: A DLM-LSTM framework for North-South land deformation trend analysis from low-cost GPS sensor time series. J. Sens. 2018, 11 (2018)

    Article  Google Scholar 

  17. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation, Technical report. California University San Diego La Jolla Inst for Cognitive Science (1985)

    Google Scholar 

  18. Savaglio, C., Pace, P., Aloi, G., Liotta, A., Fortino, G.: Lightweight reinforcement learning for energy efficient communications in wireless sensor networks. IEEE Access 7, 29355–29364 (2019)

    Article  Google Scholar 

  19. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE Internet Things J. 3(5), 637–646 (2016)

    Article  Google Scholar 

  20. Shu, T., Chen, J., Bhargava, V., de Silva, C.W.: An energy-efficient dual prediction scheme using LMS filter and LSTM in wireless sensor networks for environment monitoring. IEEE Internet Things J. 6, 6736–6747 (2019)

    Article  Google Scholar 

  21. Szewczyk, R., Mainwaring, A., Polastre, J., Anderson, J., Culler, D.: An analysis of a large scale habitat monitoring application. In: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, pp. 214–226. ACM (2004)

    Google Scholar 

  22. Wang, Y., Zhou, J., Chen, K., Wang, Y., Liu, L.: Water quality prediction method based on LSTM neural network. In: 2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), pp. 1–5. IEEE (2017)

    Google Scholar 

  23. Werbos, P.J., et al.: Backpropagation through time: what it does and how to do it. Proc. IEEE 78(10), 1550–1560 (1990)

    Article  Google Scholar 

  24. Winter, T., et al.: RPL: IPv6 routing protocol for low-power and lossy networks. RFC 6550, RFC Editor, March 2012

    Google Scholar 

  25. Zhang, W., et al.: LSTM-based analysis of industrial IoT equipment. IEEE Access 6, 23551–23560 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim van der Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

van der Lee, T., Exarchakos, G., de Groot, S.H. (2019). In-network Hebbian Plasticity for Wireless Sensor Networks. In: Montella, R., Ciaramella, A., Fortino, G., Guerrieri, A., Liotta, A. (eds) Internet and Distributed Computing Systems . IDCS 2019. Lecture Notes in Computer Science(), vol 11874. Springer, Cham. https://doi.org/10.1007/978-3-030-34914-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34914-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34913-4

  • Online ISBN: 978-3-030-34914-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics