Skip to main content

Dystonia

  • Chapter
  • First Online:
  • 948 Accesses

Abstract

Dystonia is a multifaceted movement disorder causing a range of types of involuntary movement. Two axes are used to distinguish different subtypes of dystonia: clinical aspects (time of onset and distribution of symptoms) and etiology (e.g., primary vs. secondary). Patients who are not adequately treated with medical therapy are referred for surgical treatment, which primarily consists of deep brain stimulation. The pallidum is the most common target for treatment of dystonia and has been shown to be effective for the heterogenous group of dystonia disorders. Other deep brain stimulation targets can also be considered. Deep brain stimulation can be performed using a variety of techniques, both awake and asleep, both with and without microelectrode recording, with a frame and frameless, and with a variety of image-guided approaches. There are some special considerations for dystonia patients that should be considered when determining the appropriate surgical treatment. New techniques for ablation have reintroduced pallidotomy as a potential surgical treatment in select cases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Steeves TD, et al. The prevalence of primary dystonia: a systematic review and meta-analysis. Mov Disord. 2012;27(14):1789–96.

    Article  PubMed  Google Scholar 

  2. Albanese A. How many Dystonias? Clinical evidence. Front Neurol. 2017;8:18.

    PubMed  PubMed Central  Google Scholar 

  3. Pirio Richardson S, et al. Research priorities in limb and task-specific Dystonias. Front Neurol. 2017;8:170.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Marsden CD. Dystonia: the spectrum of the disease. Res Publ Assoc Res Nerv Ment Dis. 1976;55:351–67.

    CAS  PubMed  Google Scholar 

  5. Albanese A, et al. Phenomenology and classification of dystonia: a consensus update. Mov Disord. 2013;28(7):863–73.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Morgan VL, Rogers BP, Abou-Khalil B. Segmentation of the thalamus based on BOLD frequencies affected in temporal lobe epilepsy. Epilepsia. 2015;56(11):1819–27.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Morgante F, Klein C. Dystonia. Continuum (Minneap Minn). 2013;19(5 Movement Disorders):1225–41.

    Google Scholar 

  8. Torres-Russotto D, Perlmutter JS. Task-specific dystonias: a review. Ann N Y Acad Sci. 2008;1142:179–99.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Frucht SJ, et al. The natural history of embouchure dystonia. Mov Disord. 2001;16(5):899–906.

    Article  CAS  PubMed  Google Scholar 

  10. Sitburana O, et al. Motor overflow and mirror dystonia. Parkinsonism Relat Disord. 2009;15(10):758–61.

    Article  PubMed  Google Scholar 

  11. Patel N, et al. Alleviating manoeuvres (sensory tricks) in cervical dystonia. J Neurol Neurosurg Psychiatry. 2014;85(8):882–4.

    Article  PubMed  Google Scholar 

  12. Broussolle E, et al. Early illustrations of Geste Antagoniste in cervical and generalized dystonia. Tremor Other Hyperkinet Mov (N Y). 2015;5:332.

    Google Scholar 

  13. Lee CN, et al. “Visual sensory trick” in patient with cervical dystonia. Neurol Sci. 2012;33(3):665–7.

    Article  PubMed  Google Scholar 

  14. Stojanovic M, et al. Improvement in laryngeal dystonia with background noise. Mov Disord. 1997;12(2):249–50.

    Article  CAS  PubMed  Google Scholar 

  15. Asmus F, et al. Reverse sensory geste in cervical dystonia. Mov Disord. 2009;24(2):297–300.

    Article  PubMed  Google Scholar 

  16. Greene PE, Bressman S. Exteroceptive and interoceptive stimuli in dystonia. Mov Disord. 1998;13(3):549–51.

    Article  CAS  PubMed  Google Scholar 

  17. Ozelius L, et al. Human gene for torsion dystonia located on chromosome 9q32-q34. Neuron. 1989;2(5):1427–34.

    Article  CAS  PubMed  Google Scholar 

  18. Klein C. Genetics in dystonia. Parkinsonism Relat Disord. 2014;20(Suppl 1):S137–42.

    Article  PubMed  Google Scholar 

  19. Phukan J, et al. Primary dystonia and dystonia-plus syndromes: clinical characteristics, diagnosis, and pathogenesis. Lancet Neurol. 2011;10(12):1074–85.

    Article  PubMed  Google Scholar 

  20. Hawker K, Lang AE. Hypoxic-ischemic damage of the basal ganglia. Case reports and a review of the literature. Mov Disord. 1990;5(3):219–24.

    Article  CAS  PubMed  Google Scholar 

  21. Lee MS, Marsden CD. Movement disorders following lesions of the thalamus or subthalamic region. Mov Disord. 1994;9(5):493–507.

    Article  CAS  PubMed  Google Scholar 

  22. Burke RE, Fahn S, Gold AP. Delayed-onset dystonia in patients with “static” encephalopathy. J Neurol Neurosurg Psychiatry. 1980;43(9):789–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hilaire MHS, et al. Delayed-onset dystonia due to perinatal or early childhood asphyxia. Neurology. 1991;41(2, Part 1):216.

    Article  Google Scholar 

  24. Zadori D, et al. Drug-induced movement disorders. Expert Opin Drug Saf. 2015;14(6):877–90.

    Article  CAS  PubMed  Google Scholar 

  25. Jankovic J, et al. Relationship between various clinical outcome assessments in patients with blepharospasm. Mov Disord. 2009;24(3):407–13.

    Article  PubMed  Google Scholar 

  26. Consky E, Lang A. Clinical assessments of patients with cervical dystonia. In: Jankovic J, Hallett M, editors. Therapy with botulinum toxin. New York: Marcel Dekker; 1994. p. 211–37.

    Google Scholar 

  27. Muller J, et al. Craniocervical dystonia questionnaire (CDQ-24): development and validation of a disease-specific quality of life instrument. J Neurol Neurosurg Psychiatry. 2004;75(5):749–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Comella CL, et al. Rating scales for dystonia: a multicenter assessment. Mov Disord. 2003;18(3):303–12.

    Article  PubMed  Google Scholar 

  29. Krystkowiak P, et al. Reliability of the Burke-Fahn-Marsden scale in a multicenter trial for dystonia. Mov Disord. 2007;22(5):685–9.

    Article  PubMed  Google Scholar 

  30. Burke RE, et al. Validity and reliability of a rating scale for the primary torsion dystonias. Neurology. 1985;35(1):73–7.

    Article  CAS  PubMed  Google Scholar 

  31. Jankovic J. Medical treatment of dystonia. Mov Disord. 2013;28(7):1001–12.

    Article  CAS  PubMed  Google Scholar 

  32. Albanese A, et al. EFNS guidelines on diagnosis and treatment of primary dystonias. Eur J Neurol. 2011;18(1):5–18.

    Article  CAS  PubMed  Google Scholar 

  33. Delnooz CC, et al. Paramedical treatment in primary dystonia: a systematic review. Mov Disord. 2009;24(15):2187–98.

    Article  PubMed  Google Scholar 

  34. De Pauw J, et al. The effectiveness of physiotherapy for cervical dystonia: a systematic literature review. J Neurol. 2014;261(10):1857–65.

    Article  PubMed  Google Scholar 

  35. Tassorelli C, et al. Botulinum toxin and neuromotor rehabilitation: an integrated approach to idiopathic cervical dystonia. Mov Disord. 2006;21(12):2240–3.

    Article  PubMed  Google Scholar 

  36. Nygaard TG, Marsden CD, Duvoisin RC. Dopa-responsive dystonia. Adv Neurol. 1988;50:377–84.

    CAS  PubMed  Google Scholar 

  37. Segawa M, et al. Hereditary progressive dystonia with marked diurnal fluctuation. Adv Neurol. 1976;14:215–33.

    CAS  PubMed  Google Scholar 

  38. Karp BI, et al. An open trial of clozapine for dystonia. Mov Disord. 1999;14(4):652–7.

    Article  CAS  PubMed  Google Scholar 

  39. Jankovic J. Tardive syndromes and other drug-induced movement disorders. Clin Neuropharmacol. 1995;18(3):197–214.

    Article  CAS  PubMed  Google Scholar 

  40. Shapleske J, Mickay AP, McKenna PJ. Successful treatment of tardive dystonia with clozapine and clonazepam. Br J Psychiatry. 1996;168(4):516–8.

    Article  CAS  PubMed  Google Scholar 

  41. Simpson GM. The treatment of tardive dyskinesia and tardive dystonia. J Clin Psychiatry. 2000;61(Suppl 4):39–44.

    CAS  PubMed  Google Scholar 

  42. Jankovic J, Beach J. Long-term effects of tetrabenazine in hyperkinetic movement disorders. Neurology. 1997;48(2):358–62.

    Article  CAS  PubMed  Google Scholar 

  43. Chen JJ, et al. Tetrabenazine for the treatment of hyperkinetic movement disorders: a review of the literature. Clin Ther. 2012;34(7):1487–504.

    Article  PubMed  CAS  Google Scholar 

  44. Jankovic J. Treatment of hyperkinetic movement disorders with tetrabenazine: a double-blind crossover study. Ann Neurol. 1982;11(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  45. Jankovic J, Orman J. Tetrabenazine therapy of dystonia, chorea, tics, and other dyskinesias. Neurology. 1988;38(3):391–4.

    Article  CAS  PubMed  Google Scholar 

  46. Boyer WF, Bakalar NH, Lake CR. Anticholinergic prophylaxis of acute haloperidol-induced acute dystonic reactions. J Clin Psychopharmacol. 1987;7(3):164–6.

    Article  CAS  PubMed  Google Scholar 

  47. Holloman LC, Marder SR. Management of acute extrapyramidal effects induced by antipsychotic drugs. Am J Health Syst Pharm. 1997;54(21):2461–77.

    Article  CAS  PubMed  Google Scholar 

  48. Stern TA, Anderson WH. Benztropine prophylaxis of dystonic reactions. Psychopharmacology (Berl). 1979;61(3):261–2.

    Article  CAS  Google Scholar 

  49. Fahn S. High dosage anticholinergic therapy in dystonia. Neurology. 1983;33(10):1255–61.

    Article  CAS  PubMed  Google Scholar 

  50. Albanese A, et al. A systematic review on the diagnosis and treatment of primary (idiopathic) dystonia and dystonia plus syndromes: report of an EFNS/MDS-ES Task Force. Eur J Neurol. 2006;13(5):433–44.

    Article  CAS  PubMed  Google Scholar 

  51. Burke RE, Fahn S, Marsden CD. Torsion dystonia: a double-blind, prospective trial of high-dosage trihexyphenidyl. Neurology. 1986;36(2):160–4.

    Article  CAS  PubMed  Google Scholar 

  52. Sanger TD, et al. Prospective open-label clinical trial of trihexyphenidyl in children with secondary dystonia due to cerebral palsy. J Child Neurol. 2007;22(5):530–7.

    Article  PubMed  Google Scholar 

  53. van den Heuvel CNAM, et al. The symptomatic treatment of acquired dystonia: a systematic review. Mov Disord Clin Pract. 2016;3(6):548–58.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Brans JW, et al. Botulinum toxin versus trihexyphenidyl in cervical dystonia: a prospective, randomized, double-blind controlled trial. Neurology. 1996;46(4):1066–72.

    Article  CAS  PubMed  Google Scholar 

  55. Hallett M, et al. Evidence-based review and assessment of botulinum neurotoxin for the treatment of movement disorders. Toxicon. 2013;67:94–114.

    Article  CAS  PubMed  Google Scholar 

  56. Simpson DM, et al. Practice guideline update summary: botulinum neurotoxin for the treatment of blepharospasm, cervical dystonia, adult spasticity, and headache: report of the guideline development Subcommittee of the American Academy of Neurology. Neurology. 2016;86(19):1818–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Simpson DM, et al. Assessment: botulinum neurotoxin for the treatment of movement disorders (an evidence-based review): report of the therapeutics and technology assessment Subcommittee of the American Academy of Neurology. Neurology. 2008;70(19):1699–706.

    Article  CAS  PubMed  Google Scholar 

  58. Kruisdijk JJ, et al. Botulinum toxin for writer’s cramp: a randomised, placebo-controlled trial and 1-year follow-up. J Neurol Neurosurg Psychiatry. 2007;78(3):264–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bentivoglio AR, et al. Fifteen-year experience in treating blepharospasm with Botox or Dysport: same toxin, two drugs. Neurotox Res. 2009;15(3):224–31.

    Article  CAS  PubMed  Google Scholar 

  60. Truong D, et al. Efficacy and safety of botulinum type A toxin (Dysport) in cervical dystonia: results of the first US randomized, double-blind, placebo-controlled study. Mov Disord. 2005;20(7):783–91.

    Article  PubMed  Google Scholar 

  61. Albavera-Hernandez C, Rodriguez JM, Idrovo AJ. Safety of botulinum toxin type A among children with spasticity secondary to cerebral palsy: a systematic review of randomized clinical trials. Clin Rehabil. 2009;23(5):394–407.

    Article  PubMed  Google Scholar 

  62. Pappert EJ, Germanson T. And G. Myobloc/Neurobloc European Cervical Dystonia Study, botulinum toxin type B vs. type A in toxin-naive patients with cervical dystonia: randomized, double-blind, noninferiority trial. Mov Disord. 2008;23(4):510–7.

    Article  PubMed  Google Scholar 

  63. Duarte GS, et al. Botulinum toxin type A versus botulinum toxin type B for cervical dystonia. Cochrane Database Syst Rev. 2016;10:CD004314.

    PubMed  Google Scholar 

  64. Cooper IS. Clinical and physiologic implications of thalamic surgery for disorders of sensory communication. 2. Intention tremor, dystonia, Wilson’s disease and torticollis. J Neurol Sci. 1965;2(6):520–53.

    Article  CAS  PubMed  Google Scholar 

  65. Cooper IS. 20-year followup study of the neurosurgical treatment of dystonia musculorum deformans. Adv Neurol. 1976;14:423–52.

    CAS  PubMed  Google Scholar 

  66. Gildenberg PL. Evolution of basal ganglia surgery for movement disorders. Stereotact Funct Neurosurg. 2006;84(4):131–5.

    Article  PubMed  Google Scholar 

  67. Cif L, Hariz M. Seventy years with the globus pallidus: Pallidal surgery for movement disorders between 1947 and 2017. Mov Disord. 2017;32:972.

    Article  PubMed  Google Scholar 

  68. Pretto TE, et al. A prospective blinded evaluation of deep brain stimulation for the treatment of secondary dystonia and primary torticollis syndromes. J Neurosurg. 2008;109(3):405–9.

    Article  PubMed  Google Scholar 

  69. Damier P, et al. Bilateral deep brain stimulation of the globus pallidus to treat tardive dyskinesia. Arch Gen Psychiatry. 2007;64(2):170–6.

    Article  PubMed  Google Scholar 

  70. Kiss ZH, et al. The Canadian multicentre study of deep brain stimulation for cervical dystonia. Brain. 2007;130(Pt 11):2879–86.

    Article  PubMed  Google Scholar 

  71. Diamond A, et al. Globus pallidus deep brain stimulation in dystonia. Mov Disord. 2006;21(5):692–5.

    Article  PubMed  Google Scholar 

  72. Vidailhet M, et al. Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. N Engl J Med. 2005;352(5):459–67.

    Article  CAS  PubMed  Google Scholar 

  73. Kupsch A, et al. Pallidal deep-brain stimulation in primary generalized or segmental dystonia. N Engl J Med. 2006;355(19):1978–90.

    Article  CAS  PubMed  Google Scholar 

  74. Moro E, et al. Efficacy of pallidal stimulation in isolated dystonia: a systematic review and meta-analysis. Eur J Neurol. 2017;24(4):552–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Romito LM, et al. Fixed dystonia unresponsive to pallidal stimulation improved by motor cortex stimulation. Neurology. 2007;68(11):875–6.

    Article  CAS  PubMed  Google Scholar 

  76. Sun B, et al. Subthalamic nucleus stimulation for primary dystonia and tardive dystonia. Acta Neurochir Suppl. 2007;97(Pt 2):207–14.

    Article  CAS  PubMed  Google Scholar 

  77. Woehrle JC, et al. Chronic deep brain stimulation for segmental dystonia. Stereotact Funct Neurosurg. 2009;87(6):379–84.

    Article  PubMed  Google Scholar 

  78. Racette BA, et al. Thalamic stimulation for primary writing tremor. J Neurol. 2001;248(5):380–2.

    Article  CAS  PubMed  Google Scholar 

  79. Minguez-Castellanos A, et al. Primary writing tremor treated by chronic thalamic stimulation. Mov Disord. 1999;14(6):1030–3.

    Article  CAS  PubMed  Google Scholar 

  80. Kuncel AM, et al. Myoclonus and tremor response to thalamic deep brain stimulation parameters in a patient with inherited myoclonus-dystonia syndrome. Clin Neurol Neurosurg. 2009;111(3):303–6.

    Article  PubMed  Google Scholar 

  81. Hedera P, et al. Surgical targets for dystonic tremor: considerations between the globus pallidus and ventral intermediate thalamic nucleus. Parkinsonism Relat Disord. 2013;19(7):684–6.

    Article  PubMed  Google Scholar 

  82. Morishita T, et al. Should we consider vim thalamic deep brain stimulation for select cases of severe refractory dystonic tremor. Stereotact Funct Neurosurg. 2010;88(2):98–104.

    Article  PubMed  Google Scholar 

  83. Fasano A, Bove F, Lang AE. The treatment of dystonic tremor: a systematic review. J Neurol Neurosurg Psychiatry. 2014;85(7):759–69.

    Article  PubMed  Google Scholar 

  84. Vercueil L, et al. Deep brain stimulation in the treatment of severe dystonia. J Neurol. 2001;248(8):695–700.

    Article  CAS  PubMed  Google Scholar 

  85. Ostrem JL, et al. Subthalamic nucleus deep brain stimulation in isolated dystonia: a 3-year follow-up study. Neurology. 2017;88(1):25–35.

    Article  PubMed  Google Scholar 

  86. Kramer DR, et al. Best surgical practices: a stepwise approach to the University of Pennsylvania deep brain stimulation protocol. Neurosurg Focus. 2010;29(2):E3.

    Article  PubMed  Google Scholar 

  87. Machado A, et al. Deep brain stimulation for Parkinson’s disease: surgical technique and perioperative management. Mov Disord. 2006;21(Suppl 14):S247–58.

    Article  PubMed  Google Scholar 

  88. Bjartmarz H, Rehncrona S. Comparison of accuracy and precision between frame-based and frameless stereotactic navigation for deep brain stimulation electrode implantation. Stereotact Funct Neurosurg. 2007;85(5):235–42.

    Article  PubMed  Google Scholar 

  89. Bot M, et al. Analysis of stereotactic accuracy in patients undergoing deep brain stimulation using Nexframe and the Leksell frame. Stereotact Funct Neurosurg. 2015;93(5):316–25.

    Article  PubMed  Google Scholar 

  90. Henderson JM, et al. The application accuracy of a skull-mounted trajectory guide system for image-guided functional neurosurgery. Comput Aided Surg. 2004;9(4):155–60.

    Article  PubMed  Google Scholar 

  91. Cheng CY, et al. Deep brain stimulation for Parkinson’s disease using frameless technology. Br J Neurosurg. 2014;28(3):383–6.

    Article  PubMed  Google Scholar 

  92. Maciunas RJ, et al. An independent application accuracy evaluation of stereotactic frame systems. Stereotact Funct Neurosurg. 1992;58(1–4):103–7.

    Article  CAS  PubMed  Google Scholar 

  93. Hariz MI. Safety and risk of microelectrode recording in surgery for movement disorders. Stereotact Funct Neurosurg. 2002;78(3–4):146–57.

    Article  PubMed  Google Scholar 

  94. Kocabicak E, et al. Is there still need for microelectrode recording now the subthalamic nucleus can be well visualized with high field and ultrahigh MR imaging? Front Integr Neurosci. 2015;9:46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Chen T, Mirzadeh Z, Ponce FA. “Asleep” deep brain stimulation surgery: a critical review of the literature. World Neurosurg. 2017;105:191–8.

    Article  PubMed  Google Scholar 

  96. Kochanski RB, Sani S. Awake versus asleep deep brain stimulation surgery: technical considerations and critical review of the literature. Brain Sci. 2018;8(1):pii: E17.

    Article  Google Scholar 

  97. Chen T, et al. Clinical outcomes following awake and asleep deep brain stimulation for Parkinson disease. J Neurosurg. 2018;130(1):109–20. p. 1–12.

    Article  PubMed  Google Scholar 

  98. Schaltenbrand G, Walker AE. Stereotaxy of the human brain. New York: Thieme-Stratton; 1982.

    Google Scholar 

  99. Talairach J, Tournoux P. Co-planar stereotaxic atlas for the human brain: 3-D proportional system: an approach to cerebral imaging. New York: Thieme; 1988.

    Google Scholar 

  100. O’Gorman RL, et al. Optimal MRI methods for direct stereotactic targeting of the subthalamic nucleus and globus pallidus. Eur Radiol. 2011;21(1):130–6.

    Article  PubMed  Google Scholar 

  101. Vayssiere N, et al. Comparison of atlas- and magnetic resonance imaging-based stereotactic targeting of the globus pallidus internus in the performance of deep brain stimulation for treatment of dystonia. J Neurosurg. 2002;96(4):673–9.

    Article  PubMed  Google Scholar 

  102. Anderson WS, et al. Applying microelectrode recordings in neurosurgery. Contemp Neurosurg. 2010;32(3):1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Anderson WS, Lenz FA. Surgery insight: deep brain stimulation for movement disorders. Nat Clin Pract Neuro. 2006;2(6):310–20.

    Article  Google Scholar 

  104. Starr PA, et al. Microelectrode-guided implantation of deep brain stimulators into the globus pallidus internus for dystonia: techniques, electrode locations, and outcomes. Neurosurg Focus. 2004;17(1):E4.

    Article  PubMed  Google Scholar 

  105. Jitkritsadakul O, et al. Systematic review of hardware-related complications of deep brain stimulation: do new indications pose an increased risk? Brain Stimul. 2017;10(5):967–76.

    Article  PubMed  Google Scholar 

  106. Bruggemann N, et al. Short- and long-term outcome of chronic pallidal neurostimulation in monogenic isolated dystonia. Neurology. 2015;84(9):895–903.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Romito LM, et al. Pallidal stimulation for acquired dystonia due to cerebral palsy: beyond 5 years. Eur J Neurol. 2014;22(3):426–e32.

    Article  PubMed  Google Scholar 

  108. Beric A, et al. Complications of deep brain stimulation surgery. Stereotact Funct Neurosurg. 2001;77(1–4):73–8.

    Article  CAS  PubMed  Google Scholar 

  109. Burdick AP, et al. Relationship between higher rates of adverse events in deep brain stimulation using standardized prospective recording and patient outcomes. Neurosurg Focus. 2010;29(2):E4.

    Article  PubMed  Google Scholar 

  110. Chen T, et al. Complication rates, lengths of stay, and readmission rates in “awake” and “asleep” deep brain simulation. J Neurosurg. 2017;127(2):360–9.

    Article  PubMed  Google Scholar 

  111. Constantoyannis C, et al. Reducing hardware-related complications of deep brain stimulation. Can J Neurol Sci. 2005;32(2):194–200.

    Article  PubMed  Google Scholar 

  112. Fenoy AJ, Simpson RK Jr. Risks of common complications in deep brain stimulation surgery: management and avoidance. J Neurosurg. 2014;120(1):132–9.

    Article  PubMed  Google Scholar 

  113. Isaias IU, Alterman RL, Tagliati M. Deep brain stimulation for primary generalized dystonia: long-term outcomes. Arch Neurol. 2009;66(4):465–70.

    Article  PubMed  Google Scholar 

  114. Kaminska M, et al. Complications of Deep Brain Stimulation (DBS) for dystonia in children – the challenges and 10 year experience in a large paediatric cohort. Eur J Paediatr Neurol. 2017;21(1):168–75.

    Article  PubMed  Google Scholar 

  115. Patel DM, et al. Adverse events associated with deep brain stimulation for movement disorders: analysis of 510 consecutive cases. Neurosurgery. 2015;11(Suppl 2):190–9.

    PubMed  Google Scholar 

  116. Sillay KA, Larson PS, Starr PA. Deep brain stimulator hardware-related infections: incidence and management in a large series. Neurosurgery. 2008;62(2):360–6. discussion 366-7

    Article  PubMed  Google Scholar 

  117. Zrinzo L, et al. Reducing hemorrhagic complications in functional neurosurgery: a large case series and systematic literature review. J Neurosurg. 2011;116(1):84–94.

    Article  PubMed  Google Scholar 

  118. Buhmann C, et al. Adverse events in deep brain stimulation: a retrospective long-term analysis of neurological, psychiatric and other occurrences. PLoS One. 2017;12(7):e0178984.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Gorgulho A, et al. Incidence of hemorrhage associated with electrophysiological studies performed using macroelectrodes and microelectrodes in functional neurosurgery. J Neurosurg. 2005;102(5):888–96.

    Article  PubMed  Google Scholar 

  120. Park CK, et al. Analysis of delayed intracerebral hemorrhage associated with deep brain stimulation surgery. World Neurosurg. 2017;104:537–44.

    Article  PubMed  Google Scholar 

  121. Binder DK, Rau GM, Starr PA. Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders. Neurosurgery. 2005;56(4):722–32. discussion 722-32

    Article  PubMed  Google Scholar 

  122. Xiaowu H, et al. Risks of intracranial hemorrhage in patients with Parkinson’s disease receiving deep brain stimulation and ablation. Parkinsonism Relat Disord. 2010;16(2):96–100.

    Article  PubMed  Google Scholar 

  123. Umemura A, et al. Deep brain stimulation for movement disorders: morbidity and mortality in 109 patients. J Neurosurg. 2003;98(4):779–84.

    Article  PubMed  Google Scholar 

  124. Obeso JA, et al. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med. 2001;345(13):956–63.

    Article  CAS  PubMed  Google Scholar 

  125. Allen NM, et al. Status dystonicus: a practice guide. Dev Med Child Neurol. 2014;56(2):105–12.

    Article  PubMed  Google Scholar 

  126. Termsarasab P, Frucht SJ. Dystonic storm: a practical clinical and video review. J Clin Mov Disord. 2017;4(10):10.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Cheung T, et al. Status dystonicus following deep brain stimulation surgery in DYT1 dystonia patients (P01.227). Neurology. 2012;78(1 Supplement):P01.227.

    Google Scholar 

  128. Kenney C, et al. Short-term and long-term safety of deep brain stimulation in the treatment of movement disorders. J Neurosurg. 2007;106(4):621–5.

    Article  PubMed  Google Scholar 

  129. Meoni S, et al. Pallidal deep brain stimulation for dystonia: a long term study. J Neurol Neurosurg Psychiatry. 2017;88(11):960–7.

    Article  PubMed  Google Scholar 

  130. Panov F, et al. Deep brain stimulation in DYT1 dystonia: a 10-year experience. Neurosurgery. 2013;73(1):86–93; discussion 93.

    Article  PubMed  Google Scholar 

  131. Sobstyl M, et al. Long-term outcomes of bilateral pallidal stimulation for primary generalised dystonia. Clin Neurol Neurosurg. 2014;126:82–7.

    Article  PubMed  Google Scholar 

  132. Tagliati M, et al. Long-term management of DBS in dystonia: response to stimulation, adverse events, battery changes, and special considerations. Mov Disord. 2011;26 Suppl 1(26):S54–62.

    Article  PubMed  Google Scholar 

  133. Piacentino M, Pilleri M, Bartolomei L. Hardware-related infections after deep brain stimulation surgery: review of incidence, severity and management in 212 single-center procedures in the first year after implantation. Acta Neurochir (Wien). 2011;153(12):2337–41.

    Article  Google Scholar 

  134. Fenoy AJ, Simpson RK Jr. Management of device-related wound complications in deep brain stimulation surgery. J Neurosurg. 2012;116(6):1324–32.

    Article  PubMed  Google Scholar 

  135. Bhatia S, et al. Infections and hardware salvage after deep brain stimulation surgery: a single-center study and review of the literature. Stereotact Funct Neurosurg. 2010;88(3):147–55.

    Article  PubMed  Google Scholar 

  136. Fernandez FS, et al. Lead fractures in deep brain stimulation during long-term follow-up. Parkinsons Dis. 2009;2010(409356):409356.

    PubMed  PubMed Central  Google Scholar 

  137. Krauss JK, et al. Pallidal deep brain stimulation in patients with cervical dystonia and severe cervical dyskinesias with cervical myelopathy. J Neurol Neurosurg Psychiatry. 2002;72(2):249–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yianni J, et al. Increased risk of lead fracture and migration in dystonia compared with other movement disorders following deep brain stimulation. J Clin Neurosci. 2004;11(3):243–5.

    Article  CAS  PubMed  Google Scholar 

  139. Jahanshahi M, Czernecki V, Zurowski AM. Neuropsychological, neuropsychiatric, and quality of life issues in DBS for dystonia. Mov Disord. 2011;26 Suppl 1(26):S63–78.

    Article  PubMed  Google Scholar 

  140. Halbig TD, et al. Pallidal stimulation in dystonia: effects on cognition, mood, and quality of life. J Neurol Neurosurg Psychiatry. 2005;76(12):1713–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. de Gusmao CM, Pollak LE, Sharma N. Neuropsychological and psychiatric outcome of GPi-deep brain stimulation in dystonia. Brain Stimul. 2017;10(5):994–6.

    Article  PubMed  Google Scholar 

  142. Volkmann J, et al. Pallidal neurostimulation in patients with medication-refractory cervical dystonia: a randomised, sham-controlled trial. Lancet Neurol. 2014;13(9):875–84.

    Article  PubMed  Google Scholar 

  143. Schrader C, et al. GPi-DBS may induce a hypokinetic gait disorder with freezing of gait in patients with dystonia. Neurology. 2011;77(5):483–8.

    Article  CAS  PubMed  Google Scholar 

  144. Blahak C, et al. Micrographia induced by pallidal DBS for segmental dystonia: a subtle sign of hypokinesia? J Neural Transm (Vienna). 2011;118(4):549–53.

    Article  Google Scholar 

  145. Berman BD, et al. Induction of bradykinesia with pallidal deep brain stimulation in patients with cranial-cervical dystonia. Stereotact Funct Neurosurg. 2009;87(1):37–44.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Huebl J, et al. Bradykinesia induced by frequency-specific pallidal stimulation in patients with cervical and segmental dystonia. Parkinsonism Relat Disord. 2015;21(7):800–3.

    Article  PubMed  Google Scholar 

  147. Yianni J, et al. Post-operative progress of dystonia patients following globus pallidus internus deep brain stimulation. Eur J Neurol. 2003;10(3):239–47.

    Article  CAS  PubMed  Google Scholar 

  148. Kupsch A, et al. The effects of frequency in pallidal deep brain stimulation for primary dystonia. J Neurol. 2003;250(10):1201–5.

    Article  CAS  PubMed  Google Scholar 

  149. Katayama Y, et al. Chronic stimulation of the globus pallidus internus for control of primary generalized dystonia. Acta Neurochir Suppl. 2003;87:125–8.

    CAS  PubMed  Google Scholar 

  150. Coubes P, et al. Electrical stimulation of the globus pallidus internus in patients with primary generalized dystonia: long-term results. J Neurosurg. 2004;101(2):189–94.

    Article  PubMed  Google Scholar 

  151. Vayssiere N, et al. Deep brain stimulation for dystonia confirming a somatotopic organization in the globus pallidus internus. J Neurosurg. 2004;101(2):181–8.

    Article  PubMed  Google Scholar 

  152. Eltahawy HA, et al. Primary dystonia is more responsive than secondary dystonia to pallidal interventions: outcome after pallidotomy or pallidal deep brain stimulation. Neurosurgery. 2004;54(3):613–9; discussion 619–21.

    Article  PubMed  Google Scholar 

  153. Valldeoriola F, et al. Efficacy and safety of pallidal stimulation in primary dystonia: results of the Spanish multicentric study. J Neurol Neurosurg Psychiatry. 2010;81(1):65–9.

    Article  CAS  PubMed  Google Scholar 

  154. Vidailhet M, et al. Bilateral, pallidal, deep-brain stimulation in primary generalised dystonia: a prospective 3 year follow-up study. Lancet Neurol. 2007;6(3):223–9.

    Article  PubMed  Google Scholar 

  155. Loher TJ, et al. Deep brain stimulation for dystonia: outcome at long-term follow-up. J Neurol. 2008;255(6):881–4.

    Article  CAS  PubMed  Google Scholar 

  156. Volkmann J, et al. Pallidal deep brain stimulation in patients with primary generalised or segmental dystonia: 5-year follow-up of a randomised trial. Lancet Neurol. 2012;11(12):1029–38.

    Article  PubMed  Google Scholar 

  157. Cacciola F, et al. Bilateral deep brain stimulation for cervical dystonia: long-term outcome in a series of 10 patients. Neurosurgery. 2010;67(4):957–63.

    Article  PubMed  Google Scholar 

  158. Hung SW, et al. Long-term outcome of bilateral pallidal deep brain stimulation for primary cervical dystonia. Neurology. 2007;68(6):457–9.

    Article  CAS  PubMed  Google Scholar 

  159. Krauss JK, et al. Bilateral stimulation of globus pallidus internus for treatment of cervical dystonia. Lancet. 1999;354(9181):837–8.

    Article  CAS  PubMed  Google Scholar 

  160. Moro E, et al. Pallidal stimulation in cervical dystonia: clinical implications of acute changes in stimulation parameters. Eur J Neurol. 2009;16(4):506–12.

    Article  CAS  PubMed  Google Scholar 

  161. Yamada K, et al. Long disease duration interferes with therapeutic effect of globus pallidus internus pallidal stimulation in primary cervical dystonia. Neuromodulation. 2013;16(3):219–25; discussion 225.

    Article  PubMed  Google Scholar 

  162. Walsh RA, et al. Bilateral pallidal stimulation in cervical dystonia: blinded evidence of benefit beyond 5 years. Brain. 2013;136(Pt 3):761–9.

    Article  PubMed  Google Scholar 

  163. Inoue N, et al. Long-term suppression of Meige syndrome after pallidal stimulation: a 10-year follow-up study. Mov Disord. 2010;25(11):1756–8.

    Article  PubMed  Google Scholar 

  164. Sako W, et al. Bilateral pallidal deep brain stimulation in primary Meige syndrome. Parkinsonism Relat Disord. 2011;17(2):123–5.

    Article  PubMed  Google Scholar 

  165. Lyons MK, et al. Long-term follow-up of deep brain stimulation for Meige syndrome. Neurosurg Focus. 2010;29(2):E5.

    Article  PubMed  Google Scholar 

  166. Reese R, et al. Long-term clinical outcome in meige syndrome treated with internal pallidum deep brain stimulation. Mov Disord. 2011;26(4):691–8.

    Article  PubMed  Google Scholar 

  167. Ostrem JL, et al. Pallidal deep brain stimulation in patients with cranial-cervical dystonia (Meige syndrome). Mov Disord. 2007;22(13):1885–91.

    Article  PubMed  Google Scholar 

  168. Wang X, et al. Deep brain stimulation for Craniocervical dystonia (Meige syndrome): a report of four patients and a literature-based analysis of its treatment effects. Neuromodulation. 2016;19(8):818–23.

    Article  PubMed  Google Scholar 

  169. Vidailhet M, et al. Deep brain stimulation for dystonia. J Neurol Neurosurg Psychiatry. 2013;84(9):1029–42.

    Article  PubMed  Google Scholar 

  170. Chang EF, et al. Long-term benefit sustained after bilateral pallidal deep brain stimulation in patients with refractory tardive dystonia. Stereotact Funct Neurosurg. 2010;88(5):304–10.

    Article  PubMed  Google Scholar 

  171. Sako W, et al. Bilateral deep brain stimulation of the globus pallidus internus in tardive dystonia. Mov Disord. 2008;23(13):1929–31.

    Article  PubMed  Google Scholar 

  172. Trottenberg T, et al. Treatment of severe tardive dystonia with pallidal deep brain stimulation. Neurology. 2005;64(2):344–6.

    Article  CAS  PubMed  Google Scholar 

  173. Gruber D, et al. Long-term effects of pallidal deep brain stimulation in tardive dystonia. Neurology. 2009;73(1):53–8.

    Article  CAS  PubMed  Google Scholar 

  174. Capelle HH, et al. Chronic deep brain stimulation in patients with tardive dystonia without a history of major psychosis. Mov Disord. 2010;25(10):1477–81.

    Article  PubMed  Google Scholar 

  175. Spindler MA, et al. Globus pallidus interna deep brain stimulation for tardive dyskinesia: case report and review of the literature. Parkinsonism Relat Disord. 2013;19(2):141–7.

    Article  PubMed  Google Scholar 

  176. Marks WA, et al. Dystonia due to cerebral palsy responds to deep brain stimulation of the globus pallidus internus. Mov Disord. 2011;26(9):1748–51.

    Article  PubMed  Google Scholar 

  177. Vidailhet M, et al. Bilateral pallidal deep brain stimulation for the treatment of patients with dystonia-choreoathetosis cerebral palsy: a prospective pilot study. Lancet Neurol. 2009;8(8):709–17.

    Article  PubMed  Google Scholar 

  178. Gimeno H, et al. Beyond the Burke-Fahn-Marsden dystonia rating scale: deep brain stimulation in childhood secondary dystonia. Eur J Paediatr Neurol. 2012;16(5):501–8.

    Article  PubMed  Google Scholar 

  179. Koy A, et al. Effects of deep brain stimulation in dyskinetic cerebral palsy: a meta-analysis. Mov Disord. 2013;28(5):647–54.

    Article  PubMed  Google Scholar 

  180. Kupsch A, et al. Early postoperative management of DBS in dystonia: programming, response to stimulation, adverse events, medication changes, evaluations, and troubleshooting. Mov Disord. 2011;26 Suppl 1:S37–53.

    Article  PubMed  Google Scholar 

  181. Picillo M, et al. Programming deep brain stimulation for tremor and dystonia: the Toronto Western hospital algorithms. Brain Stimul. 2016;9(3):438–52.

    Article  PubMed  Google Scholar 

  182. Isaias IU, et al. Managing dystonia patients treated with deep brain stimulation. In Marks Jr. WJ, editor. Deep brain stimulation management. Cambridge University Press; 2015. p. 108–17.

    Google Scholar 

  183. Beaulieu-Boire I, Fasano A. Current or voltage? Another Shakespearean dilemma. Eur J Neurol. 2015;22(6):887–8.

    Article  CAS  PubMed  Google Scholar 

  184. Bronstein JM, et al. The rationale driving the evolution of deep brain stimulation to constant-current devices. Neuromodulation. 2015;18(2):85–8; discussion 88–9.

    Article  PubMed  Google Scholar 

  185. Pinsker MO, et al. Deep brain stimulation of the internal globus pallidus in dystonia: target localisation under general anaesthesia. Acta Neurochir (Wien). 2009;151(7):751–8.

    Article  CAS  Google Scholar 

  186. Cheung T, et al. Defining a therapeutic target for pallidal deep brain stimulation for dystonia. Ann Neurol. 2014;76(1):22–30.

    Article  PubMed  Google Scholar 

  187. Hamani C, et al. Location of active contacts in patients with primary dystonia treated with globus pallidus deep brain stimulation. Neurosurgery. 2008;62(3 Suppl 1):217–23; discussion 223–5.

    PubMed  Google Scholar 

  188. Coubes P, et al. Electrical stimulation of the globus pallidus internus in patients with primary generalized dystonia: long-term results. Journal of neurosurgery. 2004;101(2):189–94.

    Article  PubMed  Google Scholar 

  189. Vercueil L, et al. Effects of pulse width variations in pallidal stimulation for primary generalized dystonia. J Neurol. 2007;254(11):1533–7.

    Article  PubMed  Google Scholar 

  190. Bereznai B, et al. Chronic high-frequency globus pallidus internus stimulation in different types of dystonia: a clinical, video, and MRI report of six patients presenting with segmental, cervical, and generalized dystonia. Mov Disord. 2002;17(1):138–44.

    Article  PubMed  Google Scholar 

  191. Liu LD, et al. Frequency-dependent effects of electrical stimulation in the globus pallidus of dystonia patients. J Neurophysiol. 2012;108(1):5–17.

    Article  PubMed  Google Scholar 

  192. Almeida L, et al. A pilot trial of square biphasic pulse deep brain stimulation for dystonia: the BIP dystonia study. Mov Disord. 2017;32(4):615–8.

    Article  PubMed  Google Scholar 

  193. Cagnan H, et al. Stimulating at the right time: phase-specific deep brain stimulation. Brain. 2017;140(1):132–45.

    Article  PubMed  Google Scholar 

  194. Bologna M, Berardelli A. Cerebellum: an explanation for dystonia? Cerebellum Ataxias. 2017;4:6.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Calderon DP, et al. The neural substrates of rapid-onset Dystonia-Parkinsonism. Nat Neurosci. 2011;14(3):357–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Chen CH, et al. Short latency cerebellar modulation of the basal ganglia. Nat Neurosci. 2014;17(12):1767–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Shakkottai VG, et al. Current opinions and areas of consensus on the role of the cerebellum in dystonia. Cerebellum. 2017;16(2):577–94.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Shaikh AG, et al. Cervical dystonia: a neural integrator disorder. Brain. 2016;139(Pt 10):2590–9.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Bertrand C, et al. Technical aspects of selective peripheral denervation for spasmodic torticollis. Appl Neurophysiol. 1982;45:326–30.

    CAS  PubMed  Google Scholar 

  200. Bertrand C, et al. Selective peripheral denervation in 111 cases of spasmodic torticollis: rationale and results. Adv Neurol. 1988;50:637–43.

    CAS  PubMed  Google Scholar 

  201. Anderson WS, et al. Selective denervation of the levator scapulae muscle: an amendment to the Bertrand procedure for the treatment of spasmodic torticollis. J Neurosurg. 2008;108(4):757.

    Article  PubMed  Google Scholar 

  202. Ford B, et al. Outcome of selective ramisectomy for botulinum toxin resistant torticollis. J Neurol Neurosurg Psychiatry. 1998;65(4):472–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Münchau A, et al. Prospective study of selective peripheral denervation for botulinum-toxin resistant patients with cervical dystonia. Brain. 2001;124(4):769–83.

    Article  PubMed  Google Scholar 

  204. Cohen-Gadol AA, et al. Selective peripheral denervation for the treatment of intractable spasmodic torticollis: experience with 168 patients at the Mayo Clinic. J Neurosurg. 2003;98(6):1247–54.

    Article  PubMed  Google Scholar 

  205. Bergenheim AT, et al. Selective peripheral denervation for cervical dystonia: long-term follow-up. J Neurol Neurosurg Psychiatry. 2015;86(12):1307–13.

    Article  PubMed  Google Scholar 

  206. Contarino MF, et al. Selective peripheral denervation: comparison with pallidal stimulation and literature review. J Neurol. 2014;261(2):300–8.

    Article  PubMed  Google Scholar 

  207. Meyer CH. Outcome of selective peripheral denervation for cervical dystonia. Stereotact Funct Neurosurg. 2001;77(1–4):44–7.

    Article  CAS  PubMed  Google Scholar 

  208. Braun V, Richter HP. Selective peripheral denervation for spasmodic torticollis: 13-year experience with 155 patients. J Neurosurg. 2002;97(2 Suppl):207–12.

    PubMed  Google Scholar 

  209. Ravindran K, et al. Deep brain stimulation versus peripheral denervation for cervical dystonia: a systematic review and meta-analysis. World Neurosurg. 2018;122:e940–6.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Laitinen LV. Leksell’s unpublished pallidotomies of 1958-1962. Stereotact Funct Neurosurg. 2000;74(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  211. Steiner L, et al. Gammathalamotomy in intractable pain. Acta Neurochir (Wien). 1980;52(3–4):173–84.

    Article  CAS  Google Scholar 

  212. Iacono RP, et al. Simultaneous bilateral pallidoansotomy for idiopathic dystonia musculorum deformans. Pediatric Neurology. 1996;14(2):145–8.

    Article  CAS  PubMed  Google Scholar 

  213. Lozano AM, et al. Globus pallidus internus pallidotomy for generalized dystonia. Movement Disorders. 1997;12(6):865–70.

    Article  CAS  PubMed  Google Scholar 

  214. Gross RE. What happened to posteroventral pallidotomy for Parkinson’s disease and dystonia? Neurotherapeutics. 2008;5(2):281–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Teive HAG, et al. Bilateral pallidotomy for generalized dystonia. Arquivos de Neuro-Psiquiatria. 2001;59:353–7.

    Article  CAS  PubMed  Google Scholar 

  216. Ondo WG, et al. Pallidotomy for generalized dystonia. Movement Disorders. 1998;13(4):693–8.

    Article  CAS  PubMed  Google Scholar 

  217. Takeda N, et al. Radiofrequency lesioning through deep brain stimulation electrodes in patients with generalized dystonia. World Neurosurg. 2018;115:220–4.

    Article  PubMed  Google Scholar 

  218. Frighetto L, et al. Stereotactic radiosurgery for movement disorders. Surg Neurol Int. 2012;3(Suppl 1):S10–6.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Kondziolka D, Flickinger JC, Lunsford LD. Stereotactic radiosurgery for epilepsy and functional disorders. Neurosurg Clin N Am. 2013;24(4):623–32.

    Article  PubMed  Google Scholar 

  220. Niranjan A, et al. Stereotactic radiosurgery for essential tremor: retrospective analysis of a 19-year experience. Mov Disord. 2017;32(5):769–77.

    Article  PubMed  Google Scholar 

  221. Gross RE, Stern MA. Magnetic resonance-guided stereotactic laser pallidotomy for dystonia. Mov Disord. 2018;33:1502.

    Article  PubMed  Google Scholar 

  222. Elias WJ, et al. A randomized trial of focused ultrasound Thalamotomy for essential tremor. N Engl J Med. 2016;375(8):730–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Wojtasiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wojtasiewicz, T., Butala, A., Anderson, W.S. (2020). Dystonia. In: Pouratian, N., Sheth, S. (eds) Stereotactic and Functional Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-030-34906-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34906-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34905-9

  • Online ISBN: 978-3-030-34906-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics