Skip to main content

Class I Antiarrhythmic Drugs: Na+ Channel Blockers

  • Chapter
  • First Online:
Antiarrhythmic Drugs

Abstract

Class I antiarrhythmic agents or Na+ channel blockers are among the first drugs that have been used for several decades, and are divided into three groups, according to their cellular electrophysiologic effects. The sodium ion currents or INa enter the cell very fast during phase-0 of action potential and is responsible for depolarization.

Sodium channel blockers, therefore prolong conduction time, and refractoriness of the atria, ventricle, and the Purkinje system. These agents are effective against many arrhythmias such as atrial fibrillation and flutter.

Their most important side effects are proarrhythmia and inducing torsades de pointes. With introduction of newer antiarrhythmic agents, INa blockers are less frequently used.

INa currents are controlled and modulated by several genes and the most common being the SCN5A gene. Mutations in SCN5A gene cause several genetic syndromes such as Brugada syndrome, LQT3 syndrome, familial AF, and many others. The novel indications of INa blockers such as low dose quinidine in Brugada syndrome, and Mexiletine in LQT3 syndrome, provide new therapeutic options in patients with sodium channelopathies.

Discoveries of ion channels and their respective genes as well as their mutations are discussed in this chapter, including the most recently published guidelines of respective societies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAD:

Antiarrhythmic drug

AF:

Atrial fibrillation

AP:

Action potential

APD:

Action potential duration

ATP:

Adenosine triphosphate

AVNRT:

Atrioventricular nodal reentrant tachycardia

AVRT:

Atrioventricular reentrant tachycardia

CAD:

Coronary artery disease

CHF:

Congestive heart failure

CPVT:

Catecholaminergic polymorphic ventricular tachycardia

DAD/EAD:

Delayed/early afterdepolarization

ECG:

Electrocardiogram

ERP:

Effective refractory period

ICD:

Implantable cardioverter-defibrillator

LQT3:

Long QT 3 (syndrome)

LV:

Left ventricular

LVH:

Left ventricular hypertrophy

SCD:

Sudden cardiac death

TdP:

Torsades de Pointes

VF:

Ventricular fibrillation

VT:

Ventricular tachycardia

References

  1. Roden DM. Anti-arrhythmic drugs. In: Brunton L, Chabner B, Knollman B, editors. Goodman & Gilman’s: the pharmacological basis of therapeutics. New York: McGraw Hill; 2011.

    Google Scholar 

  2. Fuster V, Harrington RA, Narula J, Eapen ZJ. Hurst’s the heart. 13th ed. New York: McGraw Hill; 2011.

    Google Scholar 

  3. Williams EMV. A classification of antiarrhythmic actions reassessed after a decade of new drugs. J Clin Pharmacol. 1984;24(4):129–47. https://doi.org/10.1002/j.1552-4604.1984.tb01822.x.

    Article  CAS  Google Scholar 

  4. Williams V. Significance of classifying antiarrhythmic action since the cardiac arrhythmia suppression trial. J Clin Pharmacol. 1991;31:123–35.

    Article  Google Scholar 

  5. Williams V. Subgroups of class 1 antiarrhythmic drugs. Eur Heart J. 1984;5(2):96–8.

    Article  Google Scholar 

  6. The Sicilian Gambit. A new approach to the classification of antiarrhythmic drugs based on their actions on arrhythmogenic mechanisms. Circ. 1991;84:1831–51.

    Google Scholar 

  7. Grant AO. Cardiac ion channels. Circ Arrhythm Electrophysiol. 2009;2(2):185–94. https://doi.org/10.1161/CIRCEP.108.789081.

    Article  PubMed  Google Scholar 

  8. Nerbonne JM. Molecular basis of functional myocardial potassium channel diversity. Card Electrophysiol Clin. 2016;8(2):257–73. https://doi.org/10.1016/j.ccep.2016.01.001.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Marban E. Cardiac channelopathies. Nature. 2002;415(6868):213–8.

    Article  CAS  PubMed  Google Scholar 

  10. Lehmann-Horn F, Jurkat-Rott K. Voltage-gated ion channels and hereditary disease. Physiol Rev. 1999;79:1317–72.

    Article  CAS  PubMed  Google Scholar 

  11. Hall J. Transport of substances through cell membranes. In: Hall J, editor. Guyton and Hall textbook of medical physiology. 13th ed. Amsterdam: Elsevier; 2015.

    Google Scholar 

  12. Sheets M, Hanck D. Voltage-dependent open-state inactivation of cardiac sodium channels: gating current studies with anthopleurin-A toxin. J Gen Physiol. 1995;106:617–40.

    Article  CAS  PubMed  Google Scholar 

  13. Shih H. Anatomy of the action potential in the heart. Tex Heart Inst J. 1994;21:30–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jalife J, Delmar M, Anumonwo J, Berenfeld O, Kalifa J. Basic cardiac electrophysiology for the clinician. Hoboken: Wiley-Blackwell; 2009.

    Book  Google Scholar 

  15. Wagner S, Maier LS, Bers DM. Role of sodium and calcium dysregulation in tachyarrhythmias in sudden cardiac death. Circ Res. 2015;116(12):1956–70. https://doi.org/10.1161/CIRCRESAHA.116.304678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Abriel H, Rougier JS, Jalife J. Ion channel macromolecular complexes in cardiomyocytes: roles in sudden cardiac death. Circ Res. 2015;116(12):1971–88. https://doi.org/10.1161/CIRCRESAHA.116.305017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abriel H. Cardiac sodium channel Na(v)1.5 and interacting proteins: physiology and pathophysiology. J Mol Cell Cardiol. 2010;48(1):2–11. https://doi.org/10.1016/j.yjmcc.2009.08.025.

    Article  CAS  PubMed  Google Scholar 

  18. Rook MB, Evers MM, Vos MA, Bierhuizen MF. Biology of cardiac sodium channel Nav1.5 expression. Cardiovasc Res. 2012;93(1):12–23. https://doi.org/10.1093/cvr/cvr252.

    Article  CAS  PubMed  Google Scholar 

  19. Perez-Riera AR, Daminello Raimundo R, Akira Watanabe R, Luiz de Figueiredo J, Carlos de Abreu L. Cardiac sodium channel, its mutations and their spectrum of arrhythmia phenotypes. J Hum Growth Dev. 2016;26(3):281–96. https://doi.org/10.7322/jhgd.119236.

    Article  Google Scholar 

  20. Hund T, Mohler PJ. Biophysics of normal and abnormal cardiac sodium channel function. In: Cardiac electrophysiology: from cell to bedside. Philadelphia: Elsevier; 2014.

    Google Scholar 

  21. Wilde AA, Brugada R. Phenotypical manifestations of mutations in the genes encoding subunits of the cardiac sodium channel. Circ Res. 2011;108(7):884–97. https://doi.org/10.1161/CIRCRESAHA.110.238469.

    Article  CAS  PubMed  Google Scholar 

  22. Amin AS, Tan HL, Wilde AA. Cardiac ion channels in health and disease. Heart Rhythm. 2010;7(1):117–26. https://doi.org/10.1016/j.hrthm.2009.08.005.

    Article  PubMed  Google Scholar 

  23. Rosati B, McKinnon D. Regulation of ion channel expression. Circ Res. 2004;94(7):874–83. https://doi.org/10.1161/01.RES.0000124921.81025.1F.

    Article  CAS  PubMed  Google Scholar 

  24. Van Norstrand DW, Tester DJ, Ackerman MJ. Overrepresentation of the proarrhythmic, sudden death predisposing sodium channel polymorphism S1103Y in a population-based cohort of African-American sudden infant death syndrome. Heart Rhythm. 2008;5(5):712–5. https://doi.org/10.1016/j.hrthm.2008.02.012.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Noble D, Noble PJ. Late sodium current in the pathophysiology of cardiovascular disease: consequences of sodium-calcium overload. Heart. 2006;92(Suppl 4):iv1–5. https://doi.org/10.1136/hrt.2005.078782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Antzelevitch C, Nesterenko V, Shryock JC, Rajamani S, Song Y, Belardinelli L. The role of late INa in development of cardiac arrhythmias. Handb Exp Pharmacol. 2014;221:137–68. https://doi.org/10.1007/978-3-642-41588-3_7.

  27. Fozzard H, Hanck D. Structure and function of voltage dependent sodium channels: comparison of brain II and cardiac isoforms. Physiol Rev. 1996;76:887–926.

    Article  CAS  PubMed  Google Scholar 

  28. Balser JR. Structure and function of the cardiac sodium channels. Cardiovasc Res. 1999;42:327–38.

    Article  CAS  PubMed  Google Scholar 

  29. Catterall WA. Voltage-gated sodium channels and electrical excitability of the heart. In: Cardiac electrophysiology: from cell to bedside. Amsterdam: Elsevier; 2014.

    Google Scholar 

  30. Catterall WA. From ionic currents to molecular review mechanisms- the structure and function of voltage-gated sodium channels. Neuron. 2000;26:13–25.

    Article  CAS  PubMed  Google Scholar 

  31. Goldin A, Barchi R, Caldwell J, Hofmann F, Howe J, Hunter J, Kallen R, Mandel G, Meisler M, Netter Y, Noda M, Tamkun M, Waxman S, Wood J, Catterall WA. Nomenclature of voltage-gated sodium channels. Neuron. 2000;28:365–8.

    Article  CAS  PubMed  Google Scholar 

  32. Weirich J, Antoni H. Differential analysis of the frequency dependent effects of class I-J Cardiovasc Pharma-1990-Weirich & Antoni. J Cardiovasc Pharmacol. 1990;15:998–1009.

    Article  CAS  PubMed  Google Scholar 

  33. Hondeghem L, Snyders D. Class III antiarrhythmic agents have a lot of potential but a long way to go: reduced effectiveness and dangers of reverse use dependence. Circ. 1990;81(2):686–90.

    Google Scholar 

  34. Shryock JC, Song Y, Rajamani S, Antzelevitch C, Belardinelli L. The arrhythmogenic consequences of increasing late INa in the cardiomyocyte. Cardiovasc Res. 2013;99(4):600–11. https://doi.org/10.1093/cvr/cvt145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Belardinelli L, Giles WR, Rajamani S, Karagueuzian HS, Shryock JC. Cardiac late Na(+) current: proarrhythmic effects, roles in long QT syndromes, and pathological relationship to CaMKII and oxidative stress. Heart Rhythm. 2015;12(2):440–8. https://doi.org/10.1016/j.hrthm.2014.11.009.

    Article  PubMed  Google Scholar 

  36. Campbell T. Differing electrophysiological effects of class IA, IB and IC antiarrhythmic drugs on guinea-pig sinoatrial node. Br J Pharmacol. 1987;91:395–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Williams V. Disopyramide. Ann N Y Acad Sci. 1984;432:189–200.

    Article  CAS  Google Scholar 

  38. Podrid PJ, Kowey P. Specific Antiarrhythmic Drugs. In: Cardiac arrhythmia: mechanisms, diagnosis, and management. Philadelphia: Williams & Wilkins; 1995. p. 369.

    Google Scholar 

  39. Marquez MF, Bonny A, Hernandez-Castillo E, De Sisti A, Gomez-Flores J, Nava S, Hidden-Lucet F, Iturralde P, Cardenas M, Tonet J. Long-term efficacy of low doses of quinidine on malignant arrhythmias in Brugada syndrome with an implantable cardioverter-defibrillator: a case series and literature review. Heart Rhythm. 2012;9(12):1995–2000. https://doi.org/10.1016/j.hrthm.2012.08.027.

    Article  PubMed  Google Scholar 

  40. Antzelevitch C, Fish JM. Therapy for the Brugada syndrome. Handb Exp Pharmacol. 2006;171:305–30.

    Article  CAS  Google Scholar 

  41. Belhassen B. Is quinidine the ideal drug for Brugada syndrome? Heart Rhythm. 2012;9(12):2001–2. https://doi.org/10.1016/j.hrthm.2012.08.037.

    Article  PubMed  Google Scholar 

  42. Marquez MF, Salica G, Hermosillo AG, Pastelin G, Gomez-Flores J, Nava S, Cardenas M. Ionic basis of pharmacological therapy in Brugada syndrome. J Cardiovasc Electrophysiol. 2007;18(2):234–40. https://doi.org/10.1111/j.1540-8167.2006.00681.x.

    Article  PubMed  Google Scholar 

  43. Hermida JS, Denjoy I, Clerc J, Extramiana F, Jarry G, Milliez P, Guicheney P, Di Fusco S, Rey JL, Cauchemez B, Leenhardt A. Hydroquinidine therapy in Brugada syndrome. J Am Coll Cardiol. 2004;43(10):1853–60. https://doi.org/10.1016/j.jacc.2003.12.046.

    Article  CAS  PubMed  Google Scholar 

  44. Mizusawa Y, Sakurada H, Nishizaki M, Hiraoka M. Effects of low-dose quinidine on ventricular tachyarrhythmias in patients with Brugada syndrome low-dose quinidine therapy as an adjunctive treatment. J Cardiovasc Pharmacol. 2006;47:359–64.

    CAS  PubMed  Google Scholar 

  45. Adler A, Viskin S. Clinical features of genetic cardiac diseases related to potassium channelopathies. Card Electrophysiol Clin. 2016;8(2):361–72. https://doi.org/10.1016/j.ccep.2016.02.001.

    Article  PubMed  Google Scholar 

  46. Al-Ahmad A, Shenasa M, Shenasa H, Soleimanieh M. Incessant ventricular tachycardia and fibrillation. Card Electrophysiol Clin. 2014;6(3):613–21. https://doi.org/10.1016/j.ccep.2014.05.010.

    Article  Google Scholar 

  47. Belhassen B, Glick A, Viskin S. Excellent long-term reproducibility of the electrophysiologic efficacy of quinidine in patients with idiopathic ventricular fibrillation and Brugada syndrome. Pacing Clin Electrophysiol. 2009;32(3):294–301.

    Article  PubMed  Google Scholar 

  48. Belhassen B, Glick A, Viskin S. Efficacy of quinidine in high-risk patients with Brugada syndrome. Circ. 2004;110(13):1731–7. https://doi.org/10.1161/01.CIR.0000143159.30585.90.

  49. Viskin S, Wilde AA, Guevara-Valdivia ME, Daoulah A, Krahn AD, Zipes DP, Halkin A, Shivkumar K, Boyle NG, Adler A, Belhassen B, Schapachnik E, Asrar F, Rosso R, Fadreguilan EC, Veltman C, Veerakul G, Marquez M, Juneja R, Daoulah AN, Caorsi WR, Cuesta A, Jensen HK, Hamad AK, Spears D, Lozano IF, Urda VC, Peinado R, Panduranga P, Emkanjoo Z, Bergfeldt L, Janousek J. Quinidine, a life-saving medication for Brugada syndrome, is inaccessible in many countries. J Am Coll Cardiol. 2013;61(23):2383–7. https://doi.org/10.1016/j.jacc.2013.02.077.

    Article  PubMed  Google Scholar 

  50. Shen T, Yuan B, Geng J, Chen C, Zhou X, Shan Q. Low-dose quinidine effectively reduced shocks in Brugada syndrome patients with an implantable cardioverter defibrillator: a Chinese case series report. Ann Noninvasive Electrocardiol. 2017;22(1):e12375. https://doi.org/10.1111/anec.12375.

    Article  Google Scholar 

  51. Marquez M, Salica G, Hermosillo AG, Pastelin G, Cardenas M. Drug therapy in Brugada syndrome. Curr Drug Targets Cardiovasc Haematol Disord. 2005;5(5):409–17.

    Article  CAS  PubMed  Google Scholar 

  52. Wilde AA, Postema PG, Di Diego JM, Viskin S, Morita H, Fish JM, Antzelevitch C. The pathophysiological mechanism underlying Brugada syndrome: depolarization versus repolarization. J Mol Cell Cardiol. 2010;49(4):543–53. https://doi.org/10.1016/j.yjmcc.2010.07.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Giustetto C, Schimpf R, Mazzanti A, Scrocco C, Maury P, Anttonen O, Probst V, Blanc JJ, Sbragia P, Dalmasso P, Borggrefe M, Gaita F. Long-term follow-up of patients with short QT syndrome. J Am Coll Cardiol. 2011;58(6):587–95. https://doi.org/10.1016/j.jacc.2011.03.038.

    Article  PubMed  Google Scholar 

  54. Wolpert C, Schimpf R, Giustetto C, Antzelevitch C, Cordeiro J, Dumaine R, Brugada R, Hong K, Bauersfeld U, Gaita F, Borggrefe M. Further insights into the effect of quinidine in short QT syndrome caused by a mutation in HERG. J Cardiovasc Electrophysiol. 2005;16(1):54–8. https://doi.org/10.1046/j.1540-8167.2005.04470.x.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gaita F, Giustetto C, Bianchi F, Schimpf R, Haissaguerre M, Calo L, Brugada R, Antzelevitch C, Borggrefe M, Wolpert C. Short QT syndrome: pharmacological treatment. J Am Coll Cardiol. 2004;43(8):1494–9. https://doi.org/10.1016/j.jacc.2004.02.034.

    Article  CAS  PubMed  Google Scholar 

  56. Haissaguerre M, Derval N, Sacher F, Jesel L, Deisenhofer I, de Roy L, Pasquie JL. Sudden cardiac arrest associated with early repolarization. N Engl J Med. 2008;358:2016–23.

    Article  CAS  PubMed  Google Scholar 

  57. Antzelevitch C, Yan GX. J wave syndromes. Heart Rhythm. 2010;7(4):549–58. https://doi.org/10.1016/j.hrthm.2009.12.006.

    Article  PubMed  Google Scholar 

  58. Yan G, Antzelevitch C. Cellular basis for the Brugada syndrome and other mechanisms of arrhythmogenesis associated with ST-segment elevation. Circ. 1999;100:1660–6.

    Google Scholar 

  59. Gussak I, Antzelevitch C, Bjerregaard P, Towbin J, Chaitman B. The Brugada syndrome: clinical, electrophysiologic and genetic aspects. J Am Coll Cardiol. 1999;33(1):5–15. https://doi.org/10.1016/s0735-1097(98)00528-2.

    Article  CAS  PubMed  Google Scholar 

  60. Shimizu W, Antzelevitch C, Suyama K, Kurita T, Taguchi A, Aihara N. Effect of sodium channel blockers on ST segment, QRS duration, and corrected QT interval in patients with Brugada syndrome. J Cardiovasc Electrophysiol. 2000;11:1320–9.

    Article  CAS  PubMed  Google Scholar 

  61. Brugada R, Brugada J, Antzelevitch C, Kirsch GE, Potenza D, Towbin JA, Brugada P. Sodium channel blockers identify risk for sudden death in patients with ST-segment elevation and right bundle branch block but structurally normal hearts. Circ. 2000;101:510–5.

    Google Scholar 

  62. Morita H, Morita T, Nagase S, Banba K, Nishi N, Tani Y, Watanabe A. Ventricular arrhythmia induced by sodium channel blocker in patients with Brugada syndrome. J Am Coll Cardiol. 2003;42:1624–31. https://doi.org/10.1016/S0735-1097(03)01124-0.

    Article  CAS  PubMed  Google Scholar 

  63. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, Castella M, Diener HC, Heidbuchel H, Hendriks J, Hindricks G, Manolis AS, Oldgren J, Popescu BA, Schotten U, Van Putte B, Vardas P, ESC Scientific Document Group. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS: The Task Force for the management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESCEndorsed by the European Stroke Organisation (ESO). Eur Heart J. 2016;37(38):2893–962. https://doi.org/10.1093/eurheartj/ehw210.

    Article  PubMed  Google Scholar 

  64. Roden DM. Cellular basis of drug-induced torsades de pointes. Br J Pharmacol. 2008;154(7):1502–7. https://doi.org/10.1038/bjp.2008.238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Roten L, Derval N, Sacher F, Pascale P, Wilton SB, Scherr D, Shah A, Pedersen ME, Jadidi AS, Miyazaki S, Knecht S, Hocini M, Jais P, Haissaguerre M. Ajmaline attenuates electrocardiogram characteristics of inferolateral early repolarization. Heart Rhythm. 2012;9(2):232–9. https://doi.org/10.1016/j.hrthm.2011.09.013.

    Article  PubMed  Google Scholar 

  66. Postema PG, Wolpert C, Amin AS, Probst V, Borggrefe M, Roden DM, Priori SG, Tan HL, Hiraoka M, Brugada J, Wilde AA. Drugs and Brugada syndrome patients: review of the literature, recommendations, and an up-to-date website (http://www.brugadadrugs.org). Heart Rhythm. 2009;6(9):1335–41. https://doi.org/10.1016/j.hrthm.2009.07.002.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Somani R, Krahn AD, Healey JS, Chauhan VS, Birnie DH, Champagne J, Sanatani S, Angaran P, Gow RM, Chakrabarti S, Gerull B, Yee R, Skanes AC, Gula LJ, Leong-Sit P, Klein GJ, Gollob MH, Talajic M, Gardner M, Simpson CS. Procainamide infusion in the evaluation of unexplained cardiac arrest: from the cardiac arrest survivors with preserved ejection fraction registry (CASPER). Heart Rhythm. 2014;11(6):1047–54. https://doi.org/10.1016/j.hrthm.2014.03.022.

    Article  PubMed  Google Scholar 

  68. Fish JM, Antzelevitch C. Role of sodium and calcium channel block in unmasking the Brugada syndrome. Heart Rhythm. 2004;1(2):210–7. https://doi.org/10.1016/j.hrthm.2004.03.061.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Fujimura O, Klein GJ, Sharma AD, Yee R, Szabo T. Acute effect of disopyramide on atrial fibrillation in the Wolff-Parkinson-white syndrome. J Am Coll Cardiol. 1989;13(5):1133–7. https://doi.org/10.1016/0735-1097(89)90275-1.

    Article  CAS  PubMed  Google Scholar 

  70. Zainal N, Griffiths JW, Carmichael DJS, Besterman EMM, Kidner PH, Gillham AD, Summers GD. Oral disopyramide for the prevention of arrhythmias in patients with acute myocardial infarction admitted to open wards. Lancet. 1977;310(8044):887–9. https://doi.org/10.1016/S0140-6736(77)90829-7.

    Article  Google Scholar 

  71. Psotka MA, Lee BK. Atrial fibrillation: antiarrhythmic therapy. Curr Probl Cardiol. 2014;39(10):351–91. https://doi.org/10.1016/j.cpcardiol.2014.07.004.

    Article  PubMed  Google Scholar 

  72. Ito M, Onodera S, Hashimoto J, Noshiro H, Shinoda S, Nagashima M, Suzuki H. Effect of disopyramide on initiation of atrial fibrillation and relation to effective refractory period. Am J Cardiol. 1989;63:561–6.

    Article  CAS  PubMed  Google Scholar 

  73. Sherrid MV, Barac I, McKenna WJ, Elliott PM, Dickie S, Chojnowska L, Casey S, Maron BJ. Multicenter study of the efficacy and safety of disopyramide in obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol. 2005;45(8):1251–8. https://doi.org/10.1016/j.jacc.2005.01.012.

    Article  CAS  PubMed  Google Scholar 

  74. Reiffel J, Estes M, Waldo A, Prystowsky E, DiBianco R. A consensus report on antiarrhythmic drug use. Clin Cardiol. 1994;17:103–16.

    Article  CAS  PubMed  Google Scholar 

  75. Sherrid MV, Arabadjian M. A primer of disopyramide treatment of obstructive hypertrophic cardiomyopathy. Prog Cardiovasc Dis. 2012;54(6):483–92. https://doi.org/10.1016/j.pcad.2012.04.003.

    Article  CAS  PubMed  Google Scholar 

  76. Wellens HJJ, Bär FW, Gorgels AP, Vanagt EJ. Use of ajmaline in patients with the Wolff-Parkinson-White syndrome to disclose short refractory period of the accessory pathway. In: Smeets JLRM, Doevendans PA, Josephson ME, Kirchhof C, Vos MA, editors. Professor Hein J.J. Wellens: 33 years of cardiology and arrhythmology. Dordrecht: Springer; 2000. p. 215–9. https://doi.org/10.1007/978-94-011-4110-9_20.

    Chapter  Google Scholar 

  77. Khalilullah M, Sathyamurthy I, Singhal NK. Ajmaline in WPW syndrome: an electrophysiologic study. Am Heart J. 1980;99(6):766–71. https://doi.org/10.1016/0002-8703(80)90627-4.

    Article  CAS  PubMed  Google Scholar 

  78. Wellens HJJ, Bär FW, Dassen WRM, Brugada P, Vanagt EJ, Farré J. Effect of drugs in the wolff-parkinson-white syndrome. Am J Cardiol. 1980;46(4):665–9. https://doi.org/10.1016/0002-9149(80)90518-4.

    Article  CAS  PubMed  Google Scholar 

  79. Rolf S. The ajmaline challenge in Brugada syndrome: diagnostic impact, safety, and recommended protocol. Eur Heart J. 2003;24(12):1104–12. https://doi.org/10.1016/s0195-668x(03)00195-7.

    Article  CAS  PubMed  Google Scholar 

  80. Conte G, Sieira J, Sarkozy A, de Asmundis C, Di Giovanni G, Chierchia GB, Ciconte G, Levinstein M, Casado-Arroyo R, Baltogiannis G, Saenen J, Saitoh Y, Pappaert G, Brugada P. Life-threatening ventricular arrhythmias during ajmaline challenge in patients with Brugada syndrome: incidence, clinical features, and prognosis. Heart Rhythm. 2013;10(12):1869–74. https://doi.org/10.1016/j.hrthm.2013.09.060.

    Article  PubMed  Google Scholar 

  81. Nault I, Champagne J. How safe is ajmaline challenge in patients with suspected Brugada syndrome? Heart Rhythm. 2013;10(12):1875–6. https://doi.org/10.1016/j.hrthm.2013.10.047.

    Article  PubMed  Google Scholar 

  82. Mazzanti A, Maragna R, Faragli A, Monteforte N, Bloise R, Memmi M, Novelli V, Baiardi P, Bagnardi V, Etheridge SP, Napolitano C, Priori SG. Gene-specific therapy with mexiletine reduces arrhythmic events in patients with long QT syndrome type 3. J Am Coll Cardiol. 2016;67(9):1053–8. https://doi.org/10.1016/j.jacc.2015.12.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Badri M, Patel A, Patel C, Liu G, Goldstein M, Robinson VM, Xue X, Yang L, Kowey PR, Yan G-X. Mexiletine prevents recurrent torsades de pointes in acquired long QT syndrome refractory to conventional measures. JACC Clin Electrophysiol. 2015;1(4):315–22. https://doi.org/10.1016/j.jacep.2015.05.008.

    Article  PubMed  Google Scholar 

  84. Shimizu W, Antzelevitch C. Sodium channel block with mexiletine is effective in reducing dispersion of repolarization and preventing torsade de pointes in LQT2 and LQT3 models of the long-QT syndrome. Circ. 1997;96:2038–47.

    Google Scholar 

  85. Gao Y, Xue X, Hu D, Liu W, Yuan Y, Sun H, Li L, Timothy KW, Zhang L, Li C, Yan GX. Inhibition of late sodium current by mexiletine: a novel pharmotherapeutical approach in timothy syndrome. Circ Arrhythm Electrophysiol. 2013;6(3):614–22. https://doi.org/10.1161/CIRCEP.113.000092.

    Article  CAS  PubMed  Google Scholar 

  86. Chimienti M, Cullen M, Casadei G. Safety of long-term flecainide and propafenone in the management of patients with symptomatic paroxysmal atrial fibrillation: report from the Flecainide and Propafenone Italian Study Investigators. Am J Cardiol. 1996;77:60A–75A.

    Article  CAS  PubMed  Google Scholar 

  87. Antman EM, Beamer AD, Cantillon C, McGowan N, Goldman L, Friedman P. Long-term oral propafenone therapy for suppression of refractory atrial fibrillation and atrial flutter. J Am Coll Cardiol. 1988;12:1005–11.

    Article  CAS  PubMed  Google Scholar 

  88. Shenasa M, Shenasa H, Rouhani S. Atrial fibrillation in different clinical subsets. In: Shenasa M, Camm J, editors. Management of atrial fibrillation. Oxford: Oxford University Press; 2015. p. 25–73.

    Google Scholar 

  89. Kus T, Dubuc M, Lambert C, Shenasa M. Efficacy of propafenone in preventing ventricular tachycardia: inverse correlation with rate-related prolongation of conduction time. J Am Coll Cardiol. 1990;16(5):1229–37.

    Article  CAS  PubMed  Google Scholar 

  90. Marchlinski F. Sorting out the mechanisms of antiarrhythmic drug action. J Am Coll Cardiol. 1990;16(5):1238–9.

    Article  CAS  PubMed  Google Scholar 

  91. Napolitano C, Bloise R, Monteforte N, Priori SG. Sudden cardiac death and genetic ion channelopathies: long QT, Brugada, short QT, catecholaminergic polymorphic ventricular tachycardia, and idiopathic ventricular fibrillation. Circ. 2012;125(16):2027–34. https://doi.org/10.1161/CIRCULATIONAHA.111.055947.

  92. Schwartz PJ, Ackerman MJ, George AL Jr, Wilde AA. Impact of genetics on the clinical management of channelopathies. J Am Coll Cardiol. 2013;62(3):169–80. https://doi.org/10.1016/j.jacc.2013.04.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shea P, Lal R, Kim S, Schechtman K, Ruffy R. Flecainide and amiodarone interaction. J Am Coll Cardiol. 1986;7:1127–30.

    Article  CAS  PubMed  Google Scholar 

  94. Roden D, Woosley RL. Drug therapy: flecainide. N Engl J Med. 1986;315(1):36–41.

    Article  CAS  PubMed  Google Scholar 

  95. Priori SG, Blomstrom-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, Elliott PM, Fitzsimons D, Hatala R, Hindricks G, Kirchhof P, Kjeldsen K, Kuck KH, Hernandez-Madrid A, Nikolaou N, Norekval TM, Spaulding C, Van Veldhuisen DJ. 2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the task Force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC) endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J. 2015;36(41):2793–867. https://doi.org/10.1093/eurheartj/ehv316.

    Article  PubMed  Google Scholar 

  96. Jazayeri MR, Vanwyhe G, Avitall B, McKinnie J, Tchou P, Akhtar M. Isoproterenol reversal of antiarrhythmic effects in patients with inducible sustained ventricular tachyarrhythmias. J Am Coll Cardiol. 1989;14(3):705–11. https://doi.org/10.1016/0735-1097(89)90114-9.

    Article  CAS  PubMed  Google Scholar 

  97. Bannister ML, Thomas NL, Sikkel MB, Mukherjee S, Maxwell C, MacLeod KT, George CH, Williams AJ. The mechanism of flecainide action in CPVT does not involve a direct effect on RyR2. Circ Res. 2015;116(8):1324–35. https://doi.org/10.1161/CIRCRESAHA.116.305347.

    Article  CAS  PubMed  Google Scholar 

  98. Smith GL, MacQuaide N. The direct actions of flecainide on the human cardiac ryanodine receptor: keeping open the debate on the mechanism of action of local anesthetics in CPVT. Circ Res. 2015;116(8):1284–6. https://doi.org/10.1161/CIRCRESAHA.115.306298.

    Article  CAS  PubMed  Google Scholar 

  99. van der Werf C, Zwinderman AH, Wilde AA. Therapeutic approach for patients with catecholaminergic polymorphic ventricular tachycardia: state of the art and future developments. Europace. 2012;14(2):175–83. https://doi.org/10.1093/europace/eur277.

    Article  PubMed  Google Scholar 

  100. van der Werf C, Kannankeril PJ, Sacher F, Krahn AD, Viskin S, Leenhardt A, Shimizu W, Sumitomo N, Fish FA, Bhuiyan ZA, Willems AR, van der Veen MJ, Watanabe H, Laborderie J, Haissaguerre M, Knollmann BC, Wilde AA. Flecainide therapy reduces exercise-induced ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia. J Am Coll Cardiol. 2011;57(22):2244–54. https://doi.org/10.1016/j.jacc.2011.01.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jacquemart C, Ould Abderrahmane F, Massin MM. Effects of flecainide therapy on inappropriate shocks and arrythmias in catecholaminergic polymorphic ventricular tachycardia. J Electrocardiol. 2012;45(6):736–8. https://doi.org/10.1016/j.jelectrocard.2012.05.002.

    Article  PubMed  Google Scholar 

  102. Watanabe H, van der Werf C, Roses-Noguer F, Adler A, Sumitomo N, Veltmann C, Rosso R, Bhuiyan ZA, Bikker H, Kannankeril PJ, Horie M, Minamino T, Viskin S, Knollmann BC, Till J, Wilde AA. Effects of flecainide on exercise-induced ventricular arrhythmias and recurrences in genotype-negative patients with catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm. 2013;10(4):542–7. https://doi.org/10.1016/j.hrthm.2012.12.035.

    Article  PubMed  Google Scholar 

  103. Pellizzon OA, Kalaizich L, Ptacek LJ, Tristani-Firouzi M, Gonzalez MD. Flecainide suppresses bidirectional ventricular tachycardia and reverses tachycardia-induced cardiomyopathy in Andersen-Tawil syndrome. J Cardiovasc Electrophysiol. 2008;19(1):95–7. https://doi.org/10.1111/j.1540-8167.2007.00910.x.

    Article  PubMed  Google Scholar 

  104. Padfield GJ, AlAhmari L, Lieve KV, AlAhmari T, Roston TM, Wilde AA, Krahn AD, Sanatani S. Flecainide monotherapy is an option for selected patients with catecholaminergic polymorphic ventricular tachycardia intolerant of beta-blockade. Heart Rhythm. 2016;13(2):609–13. https://doi.org/10.1016/j.hrthm.2015.09.027.

    Article  PubMed  Google Scholar 

  105. Watanabe H, Chopra N, Laver D, Hwang HS, Davies SS, Roach DE, Duff HJ, Roden DM, Wilde AA, Knollmann BC. Flecainide prevents catecholaminergic polymorphic ventricular tachycardia in mice and humans. Nat Med. 2009;15(4):380–3. https://doi.org/10.1038/nm.1942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Meregalli PG, Ruijter JM, Hofman N, Bezzina CR, Wilde AA, Tan HL. Diagnostic value of flecainide testing in unmasking SCN5A-related Brugada syndrome. J Cardiovasc Electrophysiol. 2006;17(8):857–64. https://doi.org/10.1111/j.1540-8167.2006.00531.x.

    Article  PubMed  Google Scholar 

  107. Wolpert C, Echternach C, Veltmann C, Antzelevitch C, Thomas GP, Spehl S, Streitner F, Kuschyk J, Schimpf R, Haase KK, Borggrefe M. Intravenous drug challenge using flecainide and ajmaline in patients with Brugada syndrome. Heart Rhythm. 2005;2(3):254–60. https://doi.org/10.1016/j.hrthm.2004.11.025.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Windle J, Geletka R, Moss A, Zareba W, Atkins D. Normalization of ventricular repolarization with flecainide in long QT syndrome patients with SCN5A-DeltaKPQ mutation. Ann Noninvasive Electrocardiol. 2001;6(2):153–8.

    Article  CAS  PubMed  Google Scholar 

  109. Strizek B, Berg C, Gottschalk I, Herberg U, Geipel A, Gembruch U. High-dose flecainide is the most effective treatment of fetal supraventricular tachycardia. Heart Rhythm. 2016;13(6):1283–8. https://doi.org/10.1016/j.hrthm.2016.01.029.

    Article  PubMed  Google Scholar 

  110. Sridharan S, Sullivan I, Tomek V, Wolfenden J, Skovranek J, Yates R, Janousek J, Dominguez TE, Marek J. Flecainide versus digoxin for fetal supraventricular tachycardia: comparison of two drug treatment protocols. Heart Rhythm. 2016;13(9):1913–9. https://doi.org/10.1016/j.hrthm.2016.03.023.

    Article  PubMed  Google Scholar 

  111. Van Hare GF. Flecainide vs digoxin for fetal supraventricular tachycardia: comparison of 2 drug protocols. Heart Rhythm. 2016;13(9):1920–1. https://doi.org/10.1016/j.hrthm.2016.03.045.

    Article  PubMed  Google Scholar 

  112. Vigneswaran TV, Callaghan N, Andrews RE, Miller O, Rosenthal E, Sharland GK, Simpson JM. Correlation of maternal flecainide concentrations and therapeutic effect in fetal supraventricular tachycardia. Heart Rhythm. 2014;11(11):2047–53. https://doi.org/10.1016/j.hrthm.2014.07.031.

    Article  PubMed  Google Scholar 

  113. Cuneo BF, Benson DW. Use of maternal flecainide concentration in management of fetal supraventricular tachycardia: a step in the right direction. Heart Rhythm. 2014;11(11):2054–5. https://doi.org/10.1016/j.hrthm.2014.08.017.

    Article  PubMed  Google Scholar 

  114. Crijns HJ, van Gelder IC, Lie KI. Supraventricular tachycardia mimicking ventricular tachycardia during flecainide treatment. Am J Cardiol. 1988;62(17):1303–6. https://doi.org/10.1016/0002-9149(88)90282-2.

    Article  CAS  PubMed  Google Scholar 

  115. Camm J. Antiarrhythmic drugs for the maintenance of sinus rhythm: risks and benefits. Int J Cardiol. 2012;155(3):362–71. https://doi.org/10.1016/j.ijcard.2011.06.012.

    Article  PubMed  Google Scholar 

  116. Ranger S, Talajic M, Lemery R, Roy D, Nattel S. Amplification of flecainide-induced ventricular conduction slowing by exercise. Circ. 1989;79:1000–6.

    Google Scholar 

  117. Nieuwlaat R, Capucci A, Camm AJ, Olsson SB, Andresen D, Davies DW, Cobbe S, Breithardt G, Le Heuzey JY, Prins MH, Levy S, Crijns HJ, European Heart Survey Investigators. Atrial fibrillation management: a prospective survey in ESC member countries: the euro heart survey on atrial fibrillation. Eur Heart J. 2005;26(22):2422–34. https://doi.org/10.1093/eurheartj/ehi505.

    Article  PubMed  Google Scholar 

  118. Bailey DDG, Dresser GK. Interactions between grapefruit juice and cardiovascular drugs. Am J Cardiovasc Drugs. 2004;4(5):281–97. https://doi.org/10.2165/00129784-200404050-00002.

    Article  CAS  PubMed  Google Scholar 

  119. Fuhr U. Drug interactions with grapefruit juice. Drug safety. 1998;18(4):251–72.

    Article  CAS  PubMed  Google Scholar 

  120. Roden D. Antiarrhythmic drugs: from mechanisms to clinical practice. Heart. 2000;84:339–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zitron E, Scholz E, Owen RW, Luck S, Kiesecker C, Thomas D, Kathofer S, Niroomand F, Kiehn J, Kreye VA, Katus HA, Schoels W, Karle CA. QTc prolongation by grapefruit juice and its potential pharmacological basis: HERG channel blockade by flavonoids. Circ. 2005;111(7):835–8. https://doi.org/10.1161/01.CIR.0000155617.54749.09.

  122. Jaillon P. Antiarrhythmic drug interactions: are they important? Eur Heart J. 1987;8(Suppl A):127–32.

    Article  PubMed  Google Scholar 

  123. Colatsky T, Follmer C, Starmer CF. Channel specificity in antiarrhythmic drug action mechanism of potassium channel block and its role in suppressing and aggravating cardiac arrhythmias. Circ. 1990;82:2235–42.

    Google Scholar 

  124. Ravens U. Potassium channels in atrial fibrillation: targets for atrial and pathology-specific therapy? Heart Rhythm. 2008;5(5):758–9. https://doi.org/10.1016/j.hrthm.2007.11.008.

    Article  PubMed  Google Scholar 

  125. Burashnikov A, Antzelevitch C. Atrial-selective sodium channel blockers: do they exist? J Cardiovasc Pharmacol. 2008;52(2):121–8. https://doi.org/10.1097/FJC.0b013e31817618eb.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sicouri S, Glass A, Belardinelli L, Antzelevitch C. Antiarrhythmic effects of ranolazine in canine pulmonary vein sleeve preparations. Heart Rhythm. 2008;5(7):1019–26. https://doi.org/10.1016/j.hrthm.2008.03.018.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Sicouri S, Belardinelli L, Carlsson L, Antzelevitch C. Potent antiarrhythmic effects of chronic amiodarone in canine pulmonary vein sleeve preparations. J Cardiovasc Electrophysiol. 2009;20(7):803–10. https://doi.org/10.1111/j.1540-8167.2009.01449.x.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Ravens U, Poulet C, Wettwer E, Knaut M. Atrial selectivity of antiarrhythmic drugs. J Physiol. 2013;591(Pt 17):4087–97. https://doi.org/10.1113/jphysiol.2013.256115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Cahalan M, Begenisich T. Sodium channel selectivity: dependence on internal permeant ion concentration. J Gen Physiol. 1976;68:111–25.

    Article  CAS  PubMed  Google Scholar 

  130. Comtois P, Sakabe M, Vigmond EJ, Munoz M, Texier A, Shiroshita-Takeshita A, Nattel S. Mechanisms of atrial fibrillation termination by rapidly unbinding Na+ channel blockers: insights from mathematical models and experimental correlates. Am J Physiol Heart Circ Physiol. 2008;295(4):H1489–504. https://doi.org/10.1152/ajpheart.01054.2007.

    Article  CAS  PubMed  Google Scholar 

  131. Shenasa M. Ranolazine: electrophysiologic effect efficacy, and safety in patients with cardiac arrhythmias. Card Electrophysiol Clin. 2016;8:467–79.

    Article  PubMed  Google Scholar 

  132. Burashnikov A, Petroski A, Hu D, Barajas-Martinez H, Antzelevitch C. Atrial-selective inhibition of sodium-channel current by Wenxin Keli is effective in suppressing atrial fibrillation. Heart Rhythm. 2012;9(1):125–31. https://doi.org/10.1016/j.hrthm.2011.08.027.

    Article  PubMed  Google Scholar 

  133. Antzelevitch C, Burashnikov A. Atrial-selective sodium channel block as a novel strategy for the management of atrial fibrillation. J Electrocardiol. 2009;42(6):543–8. https://doi.org/10.1016/j.jelectrocard.2009.07.007.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Ehrlich JR, Biliczki P, Hohnloser SH, Nattel S. Atrial-selective approaches for the treatment of atrial fibrillation. J Am Coll Cardiol. 2008;51(8):787–92. https://doi.org/10.1016/j.jacc.2007.08.067.

    Article  CAS  PubMed  Google Scholar 

  135. Burashnikov A, Di Diego JM, Zygmunt AC, Belardinelli L, Antzelevitch C. Atrium-selective sodium channel block as a strategy for suppression of atrial fibrillation: differences in sodium channel inactivation between atria and ventricles and the role of ranolazine. Circ. 2007;116(13):1449–57. https://doi.org/10.1161/CIRCULATIONAHA.107.704890.

  136. Burashnikov A, Di Diego JM, Sicouri S, Ferreiro M, Carlsson L, Antzelevitch C. Atrial-selective effects of chronic amiodarone in the management of atrial fibrillation. Heart Rhythm. 2008;5(12):1735–42. https://doi.org/10.1016/j.hrthm.2008.09.015.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Burashnikov A, Di Diego JM, Zygmunt AC, Belardinelli L, Antzelevitch C. Atrial-selective sodium channel block as a strategy for suppression of atrial fibrillation. Ann N Y Acad Sci. 2008;1123:105–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Dubyak GR. Ion homeostasis, channels, and transporters: an update on cellular mechanisms. Adv Physiol Educ. 2004;28(1–4):143–54. https://doi.org/10.1152/advan.00046.2004.

    Article  PubMed  Google Scholar 

  139. Glaaser IW, Kass RS, Clancy CE. Mechanisms of genetic arrhythmias: from DNA to ECG. Prog Cardiovasc Dis. 2003;46(3):259–70. https://doi.org/10.1016/s0033-0620(03)00073-2.

    Article  CAS  PubMed  Google Scholar 

  140. Schulze-Bahr E. Arrhythmia predisposition. J Am Coll Cardiol. 2006;48(9):A67–78. https://doi.org/10.1016/j.jacc.2006.07.006.

    Article  Google Scholar 

  141. Webster G, Berul CI. An update on channelopathies: from mechanisms to management. Circ. 2013;127(1):126–40. https://doi.org/10.1161/CIRCULATIONAHA.111.060343.

  142. Wilde AA, Bezzina CR. Genetics of cardiac arrhythmias. Heart. 2005;91(10):1352–8. https://doi.org/10.1136/hrt.2004.046334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Antzelevitch C. Molecular genetics of arrhythmias and cardiovascular conditions associated with arrhythmias. J Cardiovasc Electrophysiol. 2003;14(11):1259–72. https://doi.org/10.1046/j.1540-8167.2003.03316.x.

    Article  PubMed  Google Scholar 

  144. Ruan Y, Liu N, Priori SG. Sodium channel mutations and arrhythmias. Nat Rev Cardiol. 2009;6(5):337–48. https://doi.org/10.1038/nrcardio.2009.44.

    Article  CAS  PubMed  Google Scholar 

  145. Cerrone M, Cummings S, Alansari T, Priori SG. A clinical approach to inherited arrhythmias. Circ Cardiovasc Genet. 2012;5(5):581–90. https://doi.org/10.1161/CIRCGENETICS.110.959429.

    Article  PubMed  Google Scholar 

  146. Kass RS. The channelopathies: novel insights into molecular and genetic mechanisms of human disease. J Clin Invest. 2005;115(8):1986–9. https://doi.org/10.1172/JCI26011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Abriel H, Zaklyazminskaya EV. A modern approach to classify missense mutations in cardiac channelopathy genes. Circ Cardiovasc Genet. 2012;5(5):487–9. https://doi.org/10.1161/CIRCGENETICS.112.964809.

    Article  PubMed  Google Scholar 

  148. Tsai CT, Lai LP, Hwang JJ, Lin JL, Chiang FT. Molecular genetics of atrial fibrillation. J Am Coll Cardiol. 2008;52(4):241–50. https://doi.org/10.1016/j.jacc.2008.02.072.

    Article  CAS  PubMed  Google Scholar 

  149. Tfelt-Hansen J, Winkel BG, Grunnet M, Jespersen T. Inherited cardiac diseases caused by mutations in the Nav1.5 sodium channel. J Cardiovasc Electrophysiol. 2010;21(1):107–15. https://doi.org/10.1111/j.1540-8167.2009.01633.x.

    Article  PubMed  Google Scholar 

  150. Watanabe H, Nogami A, Ohkubo K, Kawata H, Hayashi Y, Ishikawa T, Makiyama T, Nagao S, Yagihara N, Takehara N, Kawamura Y, Sato A, Okamura K, Hosaka Y, Sato M, Fukae S, Chinushi M, Oda H, Okabe M, Kimura A, Maemura K, Watanabe I, Kamakura S, Horie M, Aizawa Y, Shimizu W, Makita N. Electrocardiographic characteristics and SCN5A mutations in idiopathic ventricular fibrillation associated with early repolarization. Circ Arrhythm Electrophysiol. 2011;4(6):874–81. https://doi.org/10.1161/CIRCEP.111.963983.

    Article  CAS  PubMed  Google Scholar 

  151. Roberts JD, Gollob MH. A contemporary review on the genetic basis of atrial fibrillation. Methodist Debakey Cardiovasc J. 2014;10(1):18–24.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Mestroni L, Brun F, Spezzacatene A, Sinagra G, Taylor MR. Genetic causes of dilated cardiomyopathy. Prog Pediatr Cardiol. 2014;37(1–2):13–8. https://doi.org/10.1016/j.ppedcard.2014.10.003.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Remme CA. Cardiac sodium channelopathy associated with SCN5A mutations: electrophysiological, molecular and genetic aspects. J Physiol. 2013;591(17):4099–116. https://doi.org/10.1113/jphysiol.2013.256461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chockalingam P, Clur SA, Breur JM, Kriebel T, Paul T, Rammeloo LA, Wilde AA, Blom NA. The diagnostic and therapeutic aspects of loss-of-function cardiac sodium channelopathies in children. Heart Rhythm. 2012;9(12):1986–92. https://doi.org/10.1016/j.hrthm.2012.08.011.

    Article  PubMed  Google Scholar 

  155. Schulze-Bahr E, Eckardt L, Breithardt G, Seidl K, Wichter T, Wolpert C, Borggrefe M, Haverkamp W. Sodium channel gene (SCN5A) mutations in 44 index patients with Brugada syndrome: different incidences in familial and sporadic disease. Hum Mutat. 2003;21(6):651–2. https://doi.org/10.1002/humu.9144.

    Article  CAS  PubMed  Google Scholar 

  156. Kapplinger JD, Tester DJ, Alders M, Benito B, Berthet M, Brugada J, Brugada P, Fressart V, Guerchicoff A, Harris-Kerr C, Kamakura S, Kyndt F, Koopmann TT, Miyamoto Y, Pfeiffer R, Pollevick GD, Probst V, Zumhagen S, Vatta M, Towbin JA, Shimizu W, Schulze-Bahr E, Antzelevitch C, Salisbury BA, Guicheney P, Wilde AA, Brugada R, Schott JJ, Ackerman MJ. An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for brugada syndrome genetic testing. Heart Rhythm. 2010;7(1):33–46. https://doi.org/10.1016/j.hrthm.2009.09.069.

    Article  PubMed  Google Scholar 

  157. Vatta M, Dumaine R, Varghese G, Richard T, Shimizu W, Aihara N, Nademanee K, Brugada R, Brugada J, Veerakul G, Li H, Bowles NE, Brugada P, Antzelevitch C, Towbin JA. Genetic and biophysical basis of sudden unexplained nocturnal death syndrome (SUNDS), a disease allelic to Brugada syndrome. Hum Mol Genet. 2002;11(3):337–46.

    Article  CAS  PubMed  Google Scholar 

  158. Fenske S, Krause SC, Hassan SI, Becirovic E, Auer F, Bernard R, Kupatt C, Lange P, Ziegler T, Wotjak CT, Zhang H, Hammelmann V, Paparizos C, Biel M, Wahl-Schott CA. Sick sinus syndrome in HCN1-deficient mice. Circ. 2013;128(24):2585–94. https://doi.org/10.1161/CIRCULATIONAHA.113.003712.

  159. Zhang ZS, Tranquillo J, Neplioueva V, Bursac N, Grant AO. Sodium channel kinetic changes that produce brugada syndrome or progressive cardiac conduction system disease. Am J Physiol Heart Circ Physiol. 2007;292(1):H399–407. https://doi.org/10.1152/ajpheart.01025.2005.

    Article  CAS  PubMed  Google Scholar 

  160. Probst V, Allouis M, Sacher F, Pattier S, Babuty D, Mabo P, Mansourati J, Victor J, Nguyen JM, Schott JJ, Boisseau P, Escande D, Le Marec H. Progressive cardiac conduction defect is the prevailing phenotype in carriers of a brugada syndrome SCN5A mutation. J Cardiovasc Electrophysiol. 2006;17(3):270–5. https://doi.org/10.1111/j.1540-8167.2006.00349.x.

    Article  PubMed  Google Scholar 

  161. Schott J-J, Alshinawi C, Kyndt F, Probst V, Hoorntje TM, Hulsbeek M, Wilde AAM, Escande D, Mannens MMAM, Le Marec H. Cardiac conduction defects associate with mutations in SCN5A. Nat Genet. 1999;23(1):20–1.

    Article  CAS  PubMed  Google Scholar 

  162. Royer A, van Veen TA, Le Bouter S, Marionneau C, Griol-Charhbili V, Leoni AL, Steenman M, van Rijen HV, Demolombe S, Goddard CA, Richer C, Escoubet B, Jarry-Guichard T, Colledge WH, Gros D, de Bakker JM, Grace AA, Escande D, Charpentier F. Mouse model of SCN5A-linked hereditary Lenegre’s disease: age-related conduction slowing and myocardial fibrosis. Circ. 2005;111(14):1738–46. https://doi.org/10.1161/01.CIR.0000160853.19867.61.

  163. WP MN, Ku L, Taylor MR, Fain PR, Dao D, Wolfel E, Mestroni L, Familial Cardiomyopathy Registry Research Group. SCN5A mutation associated with dilated cardiomyopathy, conduction disorder, and arrhythmia. Circ. 2004;110(15):2163–7. https://doi.org/10.1161/01.CIR.0000144458.58660.BB.

  164. Burkett EL, Hershberger RE. Clinical and genetic issues in familial dilated cardiomyopathy. J Am Coll Cardiol. 2005;45(7):969–81. https://doi.org/10.1016/j.jacc.2004.11.066.

    Article  CAS  PubMed  Google Scholar 

  165. Hershberger RE, Siegfried JD. Update 2011: clinical and genetic issues in familial dilated cardiomyopathy. J Am Coll Cardiol. 2011;57(16):1641–9. https://doi.org/10.1016/j.jacc.2011.01.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Fatkin D. Guidelines for the diagnosis and management of familial dilated cardiomyopathy. Heart Lung Circ. 2011;20(11):691–3. https://doi.org/10.1016/j.hlc.2011.07.008.

    Article  PubMed  Google Scholar 

  167. Laurent G, Saal S, Amarouch MY, Beziau DM, Marsman RF, Faivre L, Barc J, Dina C, Bertaux G, Barthez O, Thauvin-Robinet C, Charron P, Fressart V, Maltret A, Villain E, Baron E, Merot J, Turpault R, Coudiere Y, Charpentier F, Schott JJ, Loussouarn G, Wilde AA, Wolf JE, Baro I, Kyndt F, Probst V. Multifocal ectopic Purkinje-related premature contractions: a new SCN5A-related cardiac channelopathy. J Am Coll Cardiol. 2012;60(2):144–56. https://doi.org/10.1016/j.jacc.2012.02.052.

    Article  PubMed  Google Scholar 

  168. Wan X, Chen S, Sadeghpour A, Wang Q, Kirsch GE. Accelerated inactivation in a mutant Na1 channel associated with idiopathic ventricular fibrillation. Am J Physiol Heart Circ Physiol. 2001;280:H354–60.

    Article  CAS  PubMed  Google Scholar 

  169. Hu D, Viskin S, Oliva A, Carrier T, Cordeiro JM, Barajas-Martinez H, Wu Y, Burashnikov E, Sicouri S, Brugada R, Rosso R, Guerchicoff A, Pollevick GD, Antzelevitch C. Novel mutation in the SCN5A gene associated with arrhythmic storm development during acute myocardial infarction. Heart Rhythm. 2007;4(8):1072–80. https://doi.org/10.1016/j.hrthm.2007.03.040.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Delisle BP, Anson BD, Rajamani S, January CT. Biology of cardiac arrhythmias: ion channel protein trafficking. Circ Res. 2004;94(11):1418–28. https://doi.org/10.1161/01.RES.0000128561.28701.ea.

    Article  CAS  PubMed  Google Scholar 

  171. Sarkozy A, Brugada P. Sudden cardiac death and inherited arrhythmia syndromes. J Cardiovasc Electrophysiol. 2005;16(Suppl 1):S8–20. https://doi.org/10.1111/j.1540-8167.2005.50110.x.

    Article  PubMed  Google Scholar 

  172. Remme CA, Verkerk AO, Nuyens D, van Ginneken AC, van Brunschot S, Belterman CN, Wilders R, van Roon MA, Tan HL, Wilde AA, Carmeliet P, de Bakker JM, Veldkamp MW, Bezzina CR. Overlap syndrome of cardiac sodium channel disease in mice carrying the equivalent mutation of human SCN5A-1795insD. Circ. 2006;114(24):2584–94. https://doi.org/10.1161/CIRCULATIONAHA.106.653949.

  173. Grant AO, Carboni MP, Neplioueva V, Starmer CF, Memmi M, Napolitano C, Priori S. A spontaneous mutation identifies a residue critical for closed-state inactivation of cardiac sodium channels. Circ. 2001;104(suppl II):II–310.

    Google Scholar 

  174. Havakuk O, Viskin S. A tale of 2 diseases: the history of long-QT syndrome and brugada syndrome. J Am Coll Cardiol. 2016;67(1):100–8. https://doi.org/10.1016/j.jacc.2015.10.020.

    Article  PubMed  Google Scholar 

  175. Gourraud JB, Kyndt F, Fouchard S, Rendu E, Jaafar P, Gully C, Gacem K, Dupuis JM, Longueville A, Baron E, Karakachoff M, Cebron JP, Chatel S, Schott JJ, Le Marec H, Probst V. Identification of a strong genetic background for progressive cardiac conduction defect by epidemiological approach. Heart. 2012;98(17):1305–10. https://doi.org/10.1136/heartjnl-2012-301872.

    Article  PubMed  Google Scholar 

  176. Korkmaz S, Zitron E, Bangert A, Seyler C, Li S, Hegedus P, Scherer D, Li J, Fink T, Schweizer PA, Giannitsis E, Karck M, Szabo G, Katus HA, Kaya Z. Provocation of an autoimmune response to cardiac voltage-gated sodium channel NaV1.5 induces cardiac conduction defects in rats. J Am Coll Cardiol. 2013;62(4):340–9. https://doi.org/10.1016/j.jacc.2013.04.041.

    Article  CAS  PubMed  Google Scholar 

  177. Lee HC, Huang KT, Wang XL, Shen WK. Autoantibodies and cardiac arrhythmias. Heart Rhythm. 2011;8(11):1788–95. https://doi.org/10.1016/j.hrthm.2011.06.032.

    Article  PubMed  Google Scholar 

  178. Kovach JR, Benson DW. Conduction disorders and Nav1.5. Card Electrophysiol Clin. 2014;6(4):723–31. https://doi.org/10.1016/j.ccep.2014.07.008.

    Article  Google Scholar 

  179. Tester DJ, Valdivia C, Harris-Kerr C, Alders M, Salisbury BA, Wilde AA, Makielski JC, Ackerman MJ. Epidemiologic, molecular, and functional evidence suggest A572D-SCN5A should not be considered an independent LQT3-susceptibility mutation. Heart Rhythm. 2010;7(7):912–9. https://doi.org/10.1016/j.hrthm.2010.04.014.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Lin H, Dolmatova EV, Morley MP, Lunetta KL, McManus DD, Magnani JW, Margulies KB, Hakonarson H, del Monte F, Benjamin EJ, Cappola TP, Ellinor PT. Gene expression and genetic variation in human atria. Heart Rhythm. 2014;11(2):266–71. https://doi.org/10.1016/j.hrthm.2013.10.051.

    Article  PubMed  Google Scholar 

  181. Amin AS, Boink GJ, Atrafi F, Spanjaart AM, Asghari-Roodsari A, Molenaar RJ, Ruijter JM, Wilde AA, Tan HL. Facilitatory and inhibitory effects of SCN5A mutations on atrial fibrillation in brugada syndrome. Europace. 2011;13(7):968–75. https://doi.org/10.1093/europace/eur011.

    Article  PubMed  Google Scholar 

  182. Muggenthaler M, Behr ER. Brugada syndrome and atrial fibrillation: pathophysiology and genetics. Europace. 2011;13(7):913–5. https://doi.org/10.1093/europace/eur094.

    Article  PubMed  Google Scholar 

  183. Giustetto C, Cerrato N, Gribaudo E, Scrocco C, Castagno D, Richiardi E, Giachino D, Bianchi F, Barbonaglia L, Ferraro A. Atrial fibrillation in a large population with brugada electrocardiographic pattern: prevalence, management, and correlation with prognosis. Heart Rhythm. 2014;11(2):259–65. https://doi.org/10.1016/j.hrthm.2013.10.043.

    Article  PubMed  Google Scholar 

  184. Smith JG, Melander O, Sjogren M, Hedblad B, Engstrom G, Newton-Cheh C, Platonov PG. Genetic polymorphisms confer risk of atrial fibrillation in patients with heart failure: a population-based study. Eur J Heart Fail. 2013;15(3):250–7. https://doi.org/10.1093/eurjhf/hfs176.

    Article  CAS  PubMed  Google Scholar 

  185. Lubitz SA, Rienstra M. Genetic susceptibility to atrial fibrillation: does heart failure change our perspective? Eur J Heart Fail. 2013;15(3):244–6. https://doi.org/10.1093/eurjhf/hft005.

    Article  PubMed  Google Scholar 

  186. Gollob M, Jones D, Krahn A, Danis L, Gong X, Shao Q, Liu X, Veinot J, Tang A, Stewart A, Tesson F. Somatic mutations in the connexin 40 gene (GJA5) in atrial fibrillation. N Engl J Med. 2006;354:2677–88.

    Article  CAS  PubMed  Google Scholar 

  187. Darbar D, Kannankeril PJ, Donahue BS, Kucera G, Stubblefield T, Haines JL, George AL Jr, Roden DM. Cardiac sodium channel (SCN5A) variants associated with atrial fibrillation. Circ. 2008;117(15):1927–35. https://doi.org/10.1161/CIRCULATIONAHA.107.757955.

  188. Ellinor PT, Nam EG, Shea MA, Milan DJ, Ruskin JN, MacRae CA. Cardiac sodium channel mutation in atrial fibrillation. Heart Rhythm. 2008;5(1):99–105. https://doi.org/10.1016/j.hrthm.2007.09.015.

    Article  PubMed  Google Scholar 

  189. Francis J, Antzelevitch C. Atrial fibrillation and Brugada syndrome. J Am Coll Cardiol. 2008;51(12):1149–53. https://doi.org/10.1016/j.jacc.2007.10.062.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Rodriguez-Manero M, Namdar M, Sarkozy A, Casado-Arroyo R, Ricciardi D, de Asmundis C, Chierchia GB, Wauters K, Rao JY, Bayrak F, Van Malderen S, Brugada P. Prevalence, clinical characteristics and management of atrial fibrillation in patients with Brugada syndrome. Am J Cardiol. 2013;111(3):362–7. https://doi.org/10.1016/j.amjcard.2012.10.012.

    Article  PubMed  Google Scholar 

  191. Enriquez A, Antzelevitch C, Bismah V, Baranchuk A. Atrial fibrillation in inherited cardiac channelopathies: from mechanisms to management. Heart Rhythm. 2016;13(9):1878–84. https://doi.org/10.1016/j.hrthm.2016.06.008.

    Article  PubMed  Google Scholar 

  192. Horne AJ, Eldstrom J, Sanatani S, Fedida D. A novel mechanism for LQT3 with 2:1 block: a pore-lining mutation in Nav1.5 significantly affects voltage-dependence of activation. Heart Rhythm. 2011;8(5):770–7. https://doi.org/10.1016/j.hrthm.2010.12.041.

    Article  PubMed  Google Scholar 

  193. Moss AJ, Kass RS. Long QT syndrome: from channels to cardiac arrhythmias. J Clin Invest. 2005;115(8):2018–24. https://doi.org/10.1172/JCI25537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Moss AJ, Zareba W, Schwarz KQ, Rosero S, McNitt S, Robinson JL. Ranolazine shortens repolarization in patients with sustained inward sodium current due to type-3 long-QT syndrome. J Cardiovasc Electrophysiol. 2008;19(12):1289–93. https://doi.org/10.1111/j.1540-8167.2008.01246.x.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Chockalingam P, Wilde A. The multifaceted cardiac sodium channel and its clinical implications. Heart. 2012;98(17):1318–24. https://doi.org/10.1136/heartjnl-2012-301784.

    Article  CAS  PubMed  Google Scholar 

  196. Schwartz PJ, Priori SG, Cerrone M, Spazzolini C, Odero A, Napolitano C, Bloise R, De Ferrari GM, Klersy C, Moss AJ, Zareba W, Robinson JL, Hall WJ, Brink PA, Toivonen L, Epstein AE, Li C, Hu D. Left cardiac sympathetic denervation in the management of high-risk patients affected by the long-QT syndrome. Circ. 2004;109(15):1826–33. https://doi.org/10.1161/01.CIR.0000125523.14403.1E.

  197. Silver ES, Liberman L, Chung WK, Spotnitz HM, Chen JM, Ackerman MJ, Moir C, Hordof AJ, Pass RH. Long QT syndrome due to a novel mutation in SCN5A: treatment with ICD placement at 1 month and left cardiac sympathetic denervation at 3 months of age. J Interv Card Electrophysiol. 2009;26(1):41–5. https://doi.org/10.1007/s10840-009-9428-1.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Horowitz L, Zipes D, Bigger JT, Campbell R, Morganroth J, Podrid PJ, Rosen MR, Woosley RL. Proarrhythmia, arrhythmogenesis or aggravation of arrhythmia-a status report, 1987. Am J Cardiol. 1987;59(11):54E–6E.

    Article  CAS  PubMed  Google Scholar 

  199. Josephson ME. Antiarrhythmic agents and the danger of proarrhythmic events. Ann Intern Med. 1989;111(2):101–3. https://doi.org/10.7326/0003-4819-111-2-101.

    Article  CAS  PubMed  Google Scholar 

  200. Echt D, Liebson PR, Mitchell B, Peters R, Obias-Manno D, Barker A, Arensberg D, Baker A, Friedman L, Greene L, Huther M, Richardson D. Mortality and morbidity in patients receiving encainide, flecainide, or placebo: the cardiac arrhythmia suppression trial. N Engl J Med. 1991;324(12):781–8.

    Article  CAS  PubMed  Google Scholar 

  201. Fenichel R, Malik M. Drug-induced torsades de pointes and implications for drug development. J Cardiovasc Electrophysiol. 2004;15(4):475–95.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Liu J, Laurita KR. The mechanism of pause-induced torsades de pointes in long QT syndrome. J Cardiovasc Electrophysiol. 2005;16(9):981–7. https://doi.org/10.1111/j.1540-8167.2005.40677.x.

  203. Kay GN, Plumb VJ, Arciniegas JG, Henthorn R, Waldo A. Torsades de pointes: the long-short initiating sequence and other clinical features: observations in 32 patients. J Am Coll Cardiol. 1983;2(5):806–17.

    Google Scholar 

  204. Vandersickel N, de Boer TP, Vos MA, Panfilov AV. Perpetuation of torsades de pointes in heterogeneous hearts: competing foci or re-entry? J Physiol. 2016;594(23):6865–78. https://doi.org/10.1113/JP271728.

  205. El-Sherif N, Chinushi M, Caref EB, Restivo M. Electrophysiological mechanism of the characteristic electrocardiographic morphology of torsades de pointes tachyarrhythmias in the long-QT syndrome. Detailed analysis of ventricular tridimensional activation patterns. Circ. 1997;96(12):4392–9. https://doi.org/10.1161/01.cir.96.12.4392.

  206. Viskin S, Justo D, Halkin A, Zeltser D. Long QT syndrome caused by noncardiac drugs. Prog Cardiovasc Dis. 2003;45(5):415–27. https://doi.org/10.1053/pcad.2003.00101.

    Article  CAS  PubMed  Google Scholar 

  207. Yap YG, Camm AJ. Drug induced QT prolongation and torsades de pointes. Heart. 2003;89:1363–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Roden DM, Viswanathan PC. Genetics of acquired long QT syndrome. J Clin Invest. 2005;115(8):2025–32. https://doi.org/10.1172/JCI25539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Camm AJ, Malik M, Yap YG. Acquired long QT syndrome. Hoboken: Wiley-Blackwell; 2004.

    Book  Google Scholar 

  210. Riad FS, Davis AM, Moranville MP, Beshai JF. Drug-induced QTc prolongation. Am J Cardiol. 2017;119(2):280–3. https://doi.org/10.1016/j.amjcard.2016.09.041.

    Article  CAS  PubMed  Google Scholar 

  211. Locati EH, Zareba W, Moss A, Schwartz PJ, Vincent M, Lehmann MH, Towbin JA, Priori SG, Napolitano C, Robinson JL, Andrews M, Timothy K, Hall W. Age- and sex-related differences in clinical manifestations in patients with congenital long-QT syndrome. Circ. 1998;97:2237–44.

    Google Scholar 

  212. Roden DM, Johnson JA, Kimmel SE, Krauss RM, Medina MW, Shuldiner A, Wilke RA. Cardiovascular pharmacogenomics. Circ Res. 2011;109(7):807–20. https://doi.org/10.1161/CIRCRESAHA.110.230995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Lin CY, Lin YJ, Lo LW, Chen YY, Chong E, Chang SL, Chung FP, Chao TF, Hu YF, Tuan TC, Liao JN, Chang Y, Chien KL, Chiou CW, Chen SA. Factors predisposing to ventricular proarrhythmia during antiarrhythmic drug therapy for atrial fibrillation in patients with structurally normal heart. Heart Rhythm. 2015;12:1490–500. https://doi.org/10.1016/j.hrthm.2015.04.018.

    Article  PubMed  Google Scholar 

  214. Behr ER, Roden D. Drug-induced arrhythmia: pharmacogenomic prescribing? Eur Heart J. 2013;34(2):89–95. https://doi.org/10.1093/eurheartj/ehs351.

    Article  PubMed  Google Scholar 

  215. Roden DM. Drug-induced prolongation of the QT interval. N Engl J Med. 2004;350(10):1013–22. https://doi.org/10.1056/NEJMra032426.

    Article  CAS  PubMed  Google Scholar 

  216. Padfield GJ, Escudero CA, De Souza AM, Steinberg C, Gibbs KA, Puyat JH, Lam PY, Sanatani S, Sherwin E, Potts JE, Sandor G, Krahn AD. Characterization of myocardial repolarization reserve in adolescent females with anorexia nervosa. Circ. 2016;133:557–65. https://doi.org/10.1161/CIRCULATIONAHA.115.016697.

  217. Frommeyer G, Eckardt L. Drug-induced proarrhythmia: risk factors and electrophysiological mechanisms. Nat Rev Cardiol. 2016;13(1):36–47. https://doi.org/10.1038/nrcardio.2015.110.

    Article  CAS  PubMed  Google Scholar 

  218. Schimpf R, Veltmann C, Papavassiliu T, Rudic B, Goksu T, Kuschyk J, Wolpert C, Antzelevitch C, Ebner A, Borggrefe M, Brandt C. Drug-induced QT-interval shortening following antiepileptic treatment with oral rufinamide. Heart Rhythm. 2012;9(5):776–81. https://doi.org/10.1016/j.hrthm.2012.01.006.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Behr ER, January C, Schulze-Bahr E, Grace AA, Kaab S, Fiszman M, Gathers S, Buckman S, Youssef A, Pirmohamed M, Roden D. The international serious adverse events consortium (iSAEC) phenotype standardization project for drug-induced torsades de pointes. Eur Heart J. 2013;34(26):1958–63. https://doi.org/10.1093/eurheartj/ehs172.

    Article  PubMed  Google Scholar 

  220. Drew BJ, Ackerman MJ, Funk M, Gibler WB, Kligfield P, Menon V, Philippides GJ, Roden DM, Zareba W, American Heart Association Acute Cardiac Care Committee of the Council on Clinical Cardiology, the Council on Cardiovascular Nursing, and the American College of Cardiology Foundation. Prevention of torsades de pointes in hospital settings: a scientific statement from the American Heart Association and the American College of Cardiology Foundation. Circ. 2010;121(8):1047–60. https://doi.org/10.1161/CIRCULATIONAHA.109.192704.

  221. Kowey PR, Malik M. The QT interval as it relates to the safety of non-cardiac drugs. Eur Heart J Suppl. 2007;9(Suppl G):G3–8. https://doi.org/10.1093/eurheartj/sum047.

    Article  CAS  Google Scholar 

  222. Vincent GM. Risk assessment in long QT syndrome: the Achilles heel of appropriate treatment. Heart Rhythm. 2005;2(5):505–6. https://doi.org/10.1016/j.hrthm.2005.03.002.

    Article  PubMed  Google Scholar 

  223. Colman MA, Aslanidi OV, Kharche S, Boyett MR, Garratt C, Hancox JC, Zhang H. Pro-arrhythmogenic effects of atrial fibrillation-induced electrical remodelling: insights from the three-dimensional virtual human atria. J Physiol. 2013;591(Pt 17):4249–72. https://doi.org/10.1113/jphysiol.2013.254987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Nattel S, Maguy A, Le Bouter S, Yeh YH. Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev. 2007;87(2):425–56. https://doi.org/10.1152/physrev.00014.2006.

    Article  CAS  PubMed  Google Scholar 

  225. Shinagawa K. Effects of antiarrhythmic drugs on fibrillation in the remodeled atrium: insights into the mechanism of the superior efficacy of amiodarone. Circ. 2003;107(10):1440–6. https://doi.org/10.1161/01.cir.0000055316.35552.74.

  226. Nattel S, Burstein B, Dobrev D. Atrial remodeling and atrial fibrillation: mechanisms and implications. Circ Arrhythm Electrophysiol. 2008;1(1):62–73. https://doi.org/10.1161/CIRCEP.107.754564.

    Article  PubMed  Google Scholar 

  227. Gaspo R, Bosch RF, Bou-Abboud E, Nattel S. Tachycardia-induced changes in Na current in a chronic dog model of atrial fibrillation. Circ Res. 1997;81(6):1045–52. https://doi.org/10.1161/01.res.81.6.1045.

    Article  CAS  PubMed  Google Scholar 

  228. Yue L, Melnyk P, Gaspo R, Wang Z, Nattel S. Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation. Circ Res. 1999;84(7):776–84. https://doi.org/10.1161/01.res.84.7.776.

    Article  CAS  PubMed  Google Scholar 

  229. Gaborit N, Steenman M, Lamirault G, Le Meur N, Le Bouter S, Lande G, Leger J, Charpentier F, Christ T, Dobrev D, Escande D, Nattel S, Demolombe S. Human atrial ion channel and transporter subunit gene-expression remodeling associated with valvular heart disease and atrial fibrillation. Circ. 2005;112(4):471–81. https://doi.org/10.1161/CIRCULATIONAHA.104.506857.

  230. Piccini JP, Pritchett EL, Davison BA, Cotter G, Wiener LE, Koch G, Feld G, Waldo A, van Gelder IC, Camm AJ, Kowey PR, Iwashita J, Dittrich HC. Randomized, double-blind, placebo-controlled study to evaluate the safety and efficacy of a single oral dose of vanoxerine for the conversion of subjects with recent onset atrial fibrillation or flutter to normal sinus rhythm: RESTORE SR. Heart Rhythm. 2016;0:1–7. https://doi.org/10.1016/j.hrthm.2016.04.012.

    Article  Google Scholar 

  231. Henry BL, Gabris B, Li Q, Martin B, Giannini M, Parikh A, Patel D, Haney J, Schwartzman DS, Shroff SG, Salama G. Relaxin suppresses atrial fibrillation in aged rats by reversing fibrosis and upregulating Na+ channels. Heart Rhythm. 2016;13(4):983–91. https://doi.org/10.1016/j.hrthm.2015.12.030.

    Article  PubMed  Google Scholar 

  232. Hou JW, Li W, Guo K, Chen XM, Chen YH, Li CY, Zhao BC, Zhao J, Wang H, Wang YP, Li YG. Antiarrhythmic effects and potential mechanism of WenXin KeLi in cardiac Purkinje cells. Heart Rhythm. 2016;13(4):973–82. https://doi.org/10.1016/j.hrthm.2015.12.023.

    Article  PubMed  Google Scholar 

  233. Xiao YF, Ma L, Wang SY, Josephson ME, Wang GK, Morgan JP, Leaf A. Potent block of inactivation-deficient Na+ channels by n-3 polyunsaturated fatty acids. Am J Physiol Cell Physiol. 2006;290(2):C362–70. https://doi.org/10.1152/ajpcell.00296.2005.

    Article  CAS  PubMed  Google Scholar 

  234. Xiao YF, Kang JX, Morgan JP, Leaf A. Blocking effects of polyunsaturated fatty acids on Na+ channels of neonatal rat ventricular myocytes. Proc Natl Acad Sci U S A. 1995;92:1100–11004.

    Google Scholar 

  235. Leaf A, Albert CM, Josephson M, Steinhaus D, Kluger J, Kang JX, Cox B, Zhang H, Schoenfeld D, Fatty Acid Antiarrhythmia Trial Investigators. Prevention of fatal arrhythmias in high-risk subjects by fish oil n-3 fatty acid intake. Circ. 2005;112(18):2762–8.

    Google Scholar 

  236. Raitt MH, Connor WE, Morris C, Kron J, Halperin B, Chugh SS, McClelland J, Cook J, MacMurdy K, Swenson R, Connor SL, Gerhard G, Kraemer DF, Oseran D, Marchant C, Calhoun D, Shnider R, McAnulty J. Fish oil supplementation and risk of ventricular tachycardia and ventricular fibrillation in patients with implantable defibrillators: a randomized controlled trial. JAMA. 2005;293(23):2884–91.

    Article  CAS  PubMed  Google Scholar 

  237. Goette A, Schon N, Kirchhof P, Breithardt G, Fetsch T, Hausler KG, Klein HU, Steinbeck G, Wegscheider K, Meinertz T. Angiotensin II-antagonist in paroxysmal atrial fibrillation (ANTIPAF) trial. Circ Arrhythm Electrophysiol. 2012;5(1):43–51. https://doi.org/10.1161/CIRCEP.111.965178.

    Article  PubMed  Google Scholar 

  238. Schmieder R, Kjeldsen S, Julius S, McInnes G, Zanchetti A, Hua TA. Reduced incidence of new-onset atrial fibrillation with angiotensin II receptor blockade: the VALUE trial. J Hypertens. 2008;26:403–11.

    Article  CAS  PubMed  Google Scholar 

  239. GISSI-AF Investigators, Disertori M, Latini R, Barlera S, Franzosi MG, Staszewsky L, Maggioni AP, Lucci D, Di Pasquale G, Tognoni G. Valsartan for prevention of recurrent atrial fibrillation. N Engl J Med. 2009;360:1606–17.

    Article  Google Scholar 

  240. Investigators ACTIVEI, Yusuf S, Healey JS, Pogue J, Chrolavicius S, Flather M, Hart RG, Hohnloser SH, Joyner CD, Pfeffer MA, Connolly SJ. Irbesartan in patients with atrial fibrillation. N Engl J Med. 2011;364:928–38.

    Article  Google Scholar 

  241. Tayebjee MH, Creta A, Moder S, Hunter RJ, Earley MJ, Dhinoja MB, Schilling RJ. Impact of angiotensin-converting enzyme-inhibitors and angiotensin receptor blockers on long-term outcome of catheter ablation for atrial fibrillation. Europace. 2010;12(11):1537–42. https://doi.org/10.1093/europace/euq284.

    Article  PubMed  Google Scholar 

  242. Ackerman MJ, Priori SG, Willems S, Berul C, Brugada R, Calkins H, Camm AJ, Ellinor PT, Gollob M, Hamilton R, Hershberger RE, Judge DP, Le Marec H, McKenna WJ, Schulze-Bahr E, Semsarian C, Towbin JA, Watkins H, Wilde A, Wolpert C, Zipes DP. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm. 2011;8(8):1308–39. https://doi.org/10.1016/j.hrthm.2011.05.020.

    Article  PubMed  Google Scholar 

  243. Verma A, Cairns JA, Mitchell LB, Macle L, Stiell IG, Gladstone D, McMurtry MS, Connolly S, Cox JL, Dorian P, Ivers N, Leblanc K, Nattel S, Healey JS, Committee CCSAFG. 2014 focused update of the Canadian Cardiovascular Society Guidelines for the management of atrial fibrillation. Can J Cardiol. 2014;30(10):1114–30. https://doi.org/10.1016/j.cjca.2014.08.001.

    Article  PubMed  Google Scholar 

  244. Pedersen CT, Kay GN, Kalman J, Borggrefe M, Della-Bella P, Dickfeld T, Dorian P, Huikuri H, Kim YH, Knight B, Marchlinski F, Ross D, Sacher F, Sapp J, Shivkumar K, Soejima K, Tada H, Alexander ME, Triedman JK, Yamada T, Kirchhof P, Document R, Lip GY, Kuck KH, Mont L, Haines D, Indik J, Dimarco J, Exner D, Iesaka Y, Savelieva I. EHRA/HRS/APHRS expert consensus on ventricular arrhythmias. Europace. 2014;16(9):1257–83. https://doi.org/10.1093/europace/euu194.

    Article  PubMed  Google Scholar 

  245. Nattel S. New ideas about atrial fibrillation 50 years on. Nature. 2002;415:219–26.

    Article  CAS  PubMed  Google Scholar 

  246. Bagwe S, Leonardi M, Bissett J. Novel pharmacological therapies for atrial fibrillation. Curr Opin Cardiol. 2007;22:450–7.

    Article  PubMed  Google Scholar 

  247. Van Norman GA. Drugs, devices, and the FDA: part 1. JACC Basic Transl Sci. 2016;1(3):170–9. https://doi.org/10.1016/j.jacbts.2016.03.002.

    Article  PubMed  PubMed Central  Google Scholar 

  248. Van Norman GA. Drugs, devices, and the FDA: part 2. JACC Basic Transl Sci. 2016;1(4):277–87. https://doi.org/10.1016/j.jacbts.2016.03.009.

    Article  PubMed  PubMed Central  Google Scholar 

  249. Sanguinetti MC, Bennett PB. Antiarrhythmic drug target choices and screening. Circ Res. 2003;93(6):491–9. https://doi.org/10.1161/01.RES.0000091829.63501.A8.

    Article  CAS  PubMed  Google Scholar 

  250. Cho HC, Marban E. Biological therapies for cardiac arrhythmias: can genes and cells replace drugs and devices? Circ Res. 2010;106(4):674–85. https://doi.org/10.1161/CIRCRESAHA.109.212936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Wood AJJ. Racial differences in the response to drugs — pointers to genetic differences. N Engl J Med. 2001;344(18):1394–6. https://doi.org/10.1056/NEJM200105033441811.

    Article  CAS  PubMed  Google Scholar 

  252. Cambien F, Tiret L. Genetics of cardiovascular diseases: from single mutations to the whole genome. Circ. 2007;116(15):1714–24. https://doi.org/10.1161/CIRCULATIONAHA.106.661751.

  253. Roden DM. Cardiovascular pharmacogenomics: current status and future directions. J Hum Genet. 2016;61(1):79–85. https://doi.org/10.1038/jhg.2015.78.

    Article  CAS  PubMed  Google Scholar 

  254. Roden DM. Cardiovascular pharmacogenomics. Circ. 2003;108(25):3071–4. https://doi.org/10.1161/01.CIR.0000110626.24310.18.

  255. Milan DJ, Lubitz SA, Kaab S, Ellinor PT. Genome-wide association studies in cardiac electrophysiology: recent discoveries and implications for clinical practice. Heart Rhythm. 2010;7(8):1141–8. https://doi.org/10.1016/j.hrthm.2010.04.021.

    Article  PubMed  PubMed Central  Google Scholar 

  256. Luo X, Yang B, Nattel S. MicroRNAs and atrial fibrillation: mechanisms and translational potential. Nat Rev Cardiol. 2015;12(2):80–90. https://doi.org/10.1038/nrcardio.2014.178.

    Article  CAS  PubMed  Google Scholar 

  257. Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H, Chen G, Wang Z. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med. 2007;13(4):486–91. https://doi.org/10.1038/nm1569.

    Article  CAS  PubMed  Google Scholar 

  258. Eloff BC, Gilat E, Wan X, Rosenbaum DS. Pharmacological modulation of cardiac gap junctions to enhance cardiac conduction: evidence supporting a novel target for antiarrhythmic therapy. Circ. 2003;108(25):3157–63. https://doi.org/10.1161/01.CIR.0000101926.43759.10.

  259. Priori SG. The fifteen years of discoveries that shaped molecular electrophysiology: time for appraisal. Circ Res. 2010;107(4):451–6. https://doi.org/10.1161/CIRCRESAHA.110.226811.

    Article  CAS  PubMed  Google Scholar 

  260. Priori SG, Napolitano C. Role of genetic analyses in cardiology: part I: mendelian diseases: cardiac channelopathies. Circ. 2006;113(8):1130–5. https://doi.org/10.1161/CIRCULATIONAHA.105.563205.

  261. van Asselt KM, Kok HS, van der Schouw YT, Peeters PH, Pearson PL, Grobbee DE. Role of genetic analyses in cardiology: part II: heritability estimation for gene searching in multifactorial diseases. Circ. 2006;113(8):1136–9. https://doi.org/10.1161/CIRCULATIONAHA.105.563197.

  262. Odenstedt J, Linderoth B, Bergfeldt L, Ekre O, Grip L, Mannheimer C, Andrell P. Spinal cord stimulation effects on myocardial ischemia, infarct size, ventricular arrhythmia, and noninvasive electrophysiology in a porcine ischemia-reperfusion model. Heart Rhythm. 2011;8(6):892–8. https://doi.org/10.1016/j.hrthm.2011.01.029.

    Article  PubMed  Google Scholar 

  263. Ackerman JP, Bartos DC, Kapplinger JD, Tester DJ, Delisle BP, Ackerman MJ. The promise and peril of precision medicine: phenotyping still matters most. Mayo Clin Proc. 2016;91(11):1606–16. https://doi.org/10.1016/j.mayocp.2016.08.008.

    Article  Google Scholar 

  264. Marsman RF, Bezzina CR, Freiberg F, Verkerk AO, Adriaens ME, Podliesna S, Chen C, Purfurst B, Spallek B, Koopmann TT, Baczko I, Dos Remedios CG, George AL Jr, Bishopric NH, Lodder EM, de Bakker JM, Fischer R, Coronel R, Wilde AA, Gotthardt M, Remme CA. Coxsackie and adenovirus receptor is a modifier of cardiac conduction and arrhythmia vulnerability in the setting of myocardial ischemia. J Am Coll Cardiol. 2014;63(6):549–59. https://doi.org/10.1016/j.jacc.2013.10.062.

    Article  CAS  PubMed  Google Scholar 

  265. Denegri M, Bongianino R, Lodola F, Boncompagni S, De Giusti VC, Avelino-Cruz JE, Liu N, Persampieri S, Curcio A, Esposito F, Pietrangelo L, Marty I, Villani L, Moyaho A, Baiardi P, Auricchio A, Protasi F, Napolitano C, Priori SG. Single delivery of an adeno-associated viral construct to transfer the CASQ2 gene to knock-in mice affected by catecholaminergic polymorphic ventricular tachycardia is able to cure the disease from birth to advanced age. Circ. 2014;129(25):2673–81. https://doi.org/10.1161/CIRCULATIONAHA.113.006901.

  266. Fordyce CB, Roe MT, Ahmad T, Libby P, Borer JS, Hiatt WR, Bristow MR, Packer M, Wasserman SM, Braunstein N, Pitt B, DeMets DL, Cooper-Arnold K, Armstrong PW, Berkowitz SD, Scott R, Prats J, Galis ZS, Stockbridge N, Peterson ED, Califf RM. Cardiovascular drug development: is it dead or just hibernating? J Am Coll Cardiol. 2015;65(15):1567–82. https://doi.org/10.1016/j.jacc.2015.03.016.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Sarah Janell Honoré for her superb assistance in the preparation of this manuscript.

Disclosures

The authors do not report any disclosures.

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shenasa, M., Shenasa, MA., Smith, M. (2020). Class I Antiarrhythmic Drugs: Na+ Channel Blockers. In: Martínez-Rubio, A., Tamargo, J., Dan, G . (eds) Antiarrhythmic Drugs. Current Cardiovascular Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-34893-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34893-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34891-5

  • Online ISBN: 978-3-030-34893-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics