Large Sulfur-Oxidizing Bacteria at Gulf of Mexico Hydrocarbon Seeps

Part of the Springer Oceanography book series (SPRINGEROCEAN)


Large sulfide-oxidizing bacteria occur as visually conspicuous microbial mats in a wide range of sedimentary habitats, including estuarine and coastal marine sediments, and deep-sea vents and seeps. The microbial mats spread on the surface of sulfide-rich sediments, thus intercepting and oxidizing sulfide that diffuses upwards from the underlying sulfate reduction zone, or, that reaches the surface by advection of reduced fluids. The first intermediate of bacterial sulfide oxidation, elemental sulfur, is stored within the cytoplasm as globules, and serves as energy reserve. Large sulfide oxidizers have a wide metabolic repertoire, including autotrophic carbon fixation, sulfide and sulfur oxidation to sulfuric acid, nitrate reduction to ammonia or nitrogen gas, as well as polyphosphate storage and release causing local phosphate supersaturation and precipitation. Large sulfur-oxidizing bacteria are widespread at hydrocarbon seeps in the Gulf of Mexico, where numerous types with different morphology, phylogenetic affiliation, and physiology have been documented. In this chapter, we provide an overview of large sulfur-oxidizing bacteria in the Gulf of Mexico. We also incorporate previously unpublished sequencing data for selected filaments, and include recent observations of new morphological variants, including one that resembles sheathed marine Thioploca spp., but which shows a distinguished, unique branching morphology.



The authors were supported by NSF Microbial Observatories-Microbial Interactions and Processes grant No. 0801742. We gratefully acknowledge the crew of R/V Atlantis and Submersible Alvin for exemplary support in the field during cruise AT18-02 in the Gulf of Mexico, and Chief Scientist Mandy Joye for steady leadership during a challenging cruise. Among the science crew, we thank in particular postdoctoral scientist Sairah Malkin for sharing microelectrode equipment and expertise.


  1. Aharon P, Fu B (2000) Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico. Geochim Cosmochim Acta 64:233–246CrossRefGoogle Scholar
  2. Arvidson RS, Morse JW, Joye SB (2004) The sulfur biogeochemistry of chemosynthetic cold seep communities, Gulf of Mexico, USA. Mar Chem 87:97–119CrossRefGoogle Scholar
  3. Barry JP, Gary Greene H, Orange DL, Baxter CH, Robison BH, Kochevar RE, Nybakken JW et al (1996) Biologic and geologic characteristics of cold seeps in Monterey Bay, California. Deep Sea Res I 43:1739–1762CrossRefGoogle Scholar
  4. Fossing H, Gallardo VA, Jørgensen BB, Huttel M, Nielsen LP, Schulz H, Canfield DE et al (1995) Concentration and transport of nitrate by the mat-forming sulfur bacterium Thioploca. Nature 374:713–715CrossRefGoogle Scholar
  5. Gallardo VA (1977) Large benthic microbial communities in sulfide biota under Peru-Chile subsurface countercurrent. Nature 268:331–332CrossRefGoogle Scholar
  6. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321CrossRefGoogle Scholar
  7. Hedrick DB, Pledger RD, White DC, Baross JA (1992) In situ microbial ecology of hydrothermal vent sediments. FEMS Microbiol Lett 101:1–10CrossRefGoogle Scholar
  8. Høgslund S, Revsbech NP, Kuenen JG, Jørgensen BB, Gallardo VA, Jvd Vossenberg, Nielsen JL et al (2009) Physiology and behaviour of marine Thioploca. ISME J 3:647–657CrossRefGoogle Scholar
  9. Høgslund S, Nielsen JL, Nielsen LP (2010) Distribution, ecology and molecular identification of Thioploca from Danish brackish water sediments. FEMS Microbiol Ecol 73:110–120Google Scholar
  10. Hüttel M, Forster S, Kloser S, Fossing H (1996) Vertical migration in the sediment-dwelling sulfur bacteria Thioploca spp. in overcoming diffusion limitations. Appl Environ Microbiol 62:1863–1872CrossRefGoogle Scholar
  11. Jørgensen BB, Gallardo VA (1999) Thioploca spp.: filamentous sulfur bacteria with nitrate vacuoles. FEMS Microbiol Ecol 28:301–313CrossRefGoogle Scholar
  12. Joye SB, Boetius A, Orcutt BN, Montoya JP, Schulz HN, Erickson MJ, Lugo SK (2004) The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chem Geol 205:219–220CrossRefGoogle Scholar
  13. Joye SB, Bowles MW, Samarkin VA, Hunter KS, Niemann H (2010) Biogeochemical signatures and microbial activity of different cold-seep habitats along the Gulf of Mexico deep slope. Deep-Sea Res II 57:1990–2001CrossRefGoogle Scholar
  14. Kalanetra KM, Huston SL, Nelson DC (2004) Novel, attached, sulfur-oxidizing bacteria at shallow hydrothermal vents possess vacuoles not involved in respiratory nitrate accumulation. Appl Environ Microbiol 70:7487–7496CrossRefGoogle Scholar
  15. Kalanetra KM, Joye SB, Sunseri NR, Nelson DC (2005) Novel vacuolate sulfur bacteria from the Gulf of Mexico reproduce by reductive division in three dimensions. Environ Microbiol 7:1451–1460CrossRefGoogle Scholar
  16. Kalanetra KM, Nelson DC (2010) Vacuolate-attached filaments: highly productive Ridgeia piscesae epibionts at the Juan de Fuca hydrothermal vents. Mar Biol 157:791–800CrossRefGoogle Scholar
  17. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587CrossRefGoogle Scholar
  18. Kojima H, Fukui M (2003) Phylogenetic analysis of Beggiatoa spp. from organic rich sediment of Tokyo Bay, Japan. Water Res 37:3216–3223CrossRefGoogle Scholar
  19. Larkin JM, Henk MC (1996) Filamentous sulfide-oxidizing bacteria at hydrocarbon seeps of the Gulf of Mexico. Microsc Res Tech 33:23–31CrossRefGoogle Scholar
  20. Lloyd KG, Albert DB, Biddle JF, Chanton JP, Pizarro O, Teske A (2010) Spatial structure and activity of sedimentary microbial communities underlying a Beggiatoa spp. mat in a Gulf of Mexico hydrocarbon seep. PLoS ONE 5:e8738CrossRefGoogle Scholar
  21. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar Buchner A et al (2004) ARB: a software environment for sequence data. Nucl Acids Res 32:1363–1371CrossRefGoogle Scholar
  22. MacDonald IR, Boland GS, Baker JS, Brooks JM, Kennicutt MC, Bidigare RR (1989) Gulf of Mexico hydrocarbon seep communities. Mar Biol 101:235–247CrossRefGoogle Scholar
  23. MacGregor BJ, Biddle JF, Siebert JR, Staunton E, Hegg EL, Matthysse AG, Teske A (2013) Why orange Guaymas Basin Beggiatoa spp. are orange: single-filament-genome-enabled identification of an abundant octaheme cytochrome with hydroxylamine oxidase, hydrazine oxidase, and nitrite reductase activities. Appl Environ Microbiol 79:1183–1190CrossRefGoogle Scholar
  24. Maier S, Preissner WC (1979) Occurrence of Thioploca in lake constance and Lower Saxony, Germany. Microb Ecol 5:117–119CrossRefGoogle Scholar
  25. McKay LJ, MacGregor BJ, Biddle JF, Albert DB, Mendlovitz HP, Hoer DR, Lipp JS et al (2012) Spatial heterogeneity and underlying geochemistry of phylogenetically diverse orange and white Beggiatoa mats in Guaymas Basin hydrothermal sediments. Deep-Sea Res I 67:21–31CrossRefGoogle Scholar
  26. Mills HJ, Martinez RJ, Story S, Sobecky PA (2004) Identification of members of the metabolically active microbial populations associated with Beggiatoa species mat communities from Gulf of Mexico cold-seep sediments. Appl Environ Microbiol 70:5447–5458CrossRefGoogle Scholar
  27. Minh BQ, Nguyen MAT, von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 30:1188–1195CrossRefGoogle Scholar
  28. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2014) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274CrossRefGoogle Scholar
  29. Nikolaus R, Ammerman JW, MacDonald IR (2003) Distinct pigmentation and trophic modes in Beggiatoa from hydrocarbon seeps in the Gulf of Mexico. Aquat Microb Ecol 32:85–93CrossRefGoogle Scholar
  30. Otte S, Kuenen JG, Nielsen LP, Paerl HW, Zopfi J, Schulz HN, Teske A, Strothmann B, Gallardo VA, Jørgensen BB (1999) Nitrogen, carbon, and sulfur metabolism in natural Thioploca samples. Appl Environ Microbiol 65:3148–3157CrossRefGoogle Scholar
  31. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acids Res 41:D590–D596CrossRefGoogle Scholar
  32. Roberts HH, Aharon P, Carney R, Larkin J, Sassen R (1990) Sea floor responses to hydrocarbon seeps, Louisiana continental slope. Geo-Mar Lett 10:232–243CrossRefGoogle Scholar
  33. Roberts HH, Neurauter TW (1990) Direct observations of a large active mud vent on the Louisiana continental slope. AAPG Bulletin 74:1508Google Scholar
  34. Salman-Carvalho V, Fadeev E, Joye SB, Teske A (2016) How clonal is clonal Genome plasticity across multicellular segments of a “Candidatus Marithrix sp.” filament from sulfidic, briny seafloor sediments in the Gulf of Mexico. Front Microbiol 7:1173CrossRefGoogle Scholar
  35. Salman V, Amann R, Girnth A-C, Polerecky L, Bailey JV, Høgslund S, Jessen G et al (2011) A single-cell sequencing approach to the classification of large, vacuolated sulfur bacteria. Syst Appl Microbiol 34:243–259CrossRefGoogle Scholar
  36. Salman V, Bailey JV, Teske A (2013) Phylogenetic and morphologic complexity of giant sulphur bacteria. Antonie van Leeuw 104:169–186CrossRefGoogle Scholar
  37. Sassen R, Roberts HH, Aharon P, Larkin J, Chinn EW, Carney R (1993) Chemosynthetic bacterial mats at cold hydrocarbon seeps, Gulf of Mexico continental slope. Org Geochem 20:77–89CrossRefGoogle Scholar
  38. Schulz HN, Brinkhoff T, Ferdelman TG, Marine MH, Teske A, Jørgensen BB (1999) Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284:493–495CrossRefGoogle Scholar
  39. Schulz HN, Jørgensen BB (2001) Big bacteria. Annu Rev Microbiol 55:105–137CrossRefGoogle Scholar
  40. Sen Gupta BK, Platon E, Bernhard JM, Aharon P (1997) Foraminiferal colonization of hydrocarbon-seep bacterial mats and underlying sediment, Gulf of Mexico slope. J Foramin Res 27:292–300CrossRefGoogle Scholar
  41. Stevens EWN, Bailey JV, Flood BE, Jones DS, Gilhooly WP III, Joye SB, Teske A, Mason OU (2015) Barite encrustation of benthic sulfur-oxidizing bacteria at a marine cold seep. Geobiology 13:588–603CrossRefGoogle Scholar
  42. Teske A, Salman V (2014) The family Beggiatoaceae. In: Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson FL (eds) The prokaryotes: gammaproteobacteria. Springer, Berlin-Heidelberg, pp 93–143Google Scholar
  43. Williams TM, Unz RF, Doman JT (1987) Ultrastructure of Thiothrix spp. and “Type 021 N” bacteria. Appl Environ Microbiol 53:1560–1570CrossRefGoogle Scholar
  44. Wirsen CO, Jannasch HW, Molyneaux SJ (1992) Results of studies concerning microbiota. In: MacDonald IR, Schroeder W (eds). Chemosynthetic ecosystems study interim report, Appendix A. US Dept. Interior, minerals management service. Gulf of Mexico OCS Region, New Orleans, pp. A1–A14Google Scholar
  45. Zhang CL, Huang Z, Cantu J, Pancost RD, Brigmon RL, Lyons TW, Sassen R (2005) Lipid biomarkers and carbon isotope signatures of a microbial Beggiatoa mat associated with gas hydrates in the Gulf of Mexico. Appl Environ Microbiol 71:2106–2112CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of North Carolina at Chapel HillChapel HillUSA
  2. 2.Max Planck Institute for Marine MicrobiologyBremenGermany

Personalised recommendations