Advertisement

Archaea in Mediterranean Sea Cold Seep Sediments and Brine Pools

Chapter
  • 318 Downloads
Part of the Springer Oceanography book series (SPRINGEROCEAN)

Abstract

Cold seeps host intense and complex biochemical processes, in particular methane and sulfur cycling. Microorganisms are key players in these habitats, producing or oxidizing methane, and reducing sulfate. Mediterranean cold seep mud volcanoes are natural laboratories allowing to study how reducing fluids from different volcanoes with distinct connections to the marine subsurface, influence composition and activities of benthic microbial communities. Methane-producing and-oxidizing archaea were detected in mud volcanoes associated with different seepage intensities, in hypersaline brine-impacted sediments, as well as in pockmark structures. Because the muds and fluids expelled from the center of the mud volcanoes ascend from deep sources, they could be windows into the deep biosphere, allowing a glimpse into the diversity of communities surviving in the deep subsurface.

References

  1. Brown HE, Holbrook WS, Hornbach MJ, Nealon J (2006) Slide structure and role of gas hydrate at the northern boundary of the Storegga slide, offshore Norway. Mar Geol 229:179–186CrossRefGoogle Scholar
  2. Charlou JL, Donval JP, Zitter T, Roy N, Jean-Baptiste JP, Foucher JP, Woodside J, MEDINAUT Scientific Party (2003) Evidence of methane venting and geochemistry of brines on mud volcanoes of the eastern Mediterranean Sea. Deep-Sea Res I 50:941–958CrossRefGoogle Scholar
  3. Corliss JB, Dymond J, Gordon LI, Edmond JM, von Herzen RP, Ballard RD et al (1979) Submarine thermal springs on the Galapagos Rift. Science 203:1073–1083CrossRefGoogle Scholar
  4. Daffonchio D, Borin S, Brusa T, Brusetti L, van der Wielen PWJJ, Bolhuis H, Yakimov MM, D’Auria G et al (2006) Stratified prokaryote network in the oxic–anoxic transition of a deep-sea halocline. Nature 440:203–207CrossRefGoogle Scholar
  5. Dählmann A, de Lange GJ (2003) Fluid-sediment interactions at Eastern Mediterranean mud volcanoes: a stable isotope study from ODP Leg 160. Earth Planet Sci Lett 212:377–391CrossRefGoogle Scholar
  6. Dimitrov L, Woodside J (2003) Deep sea pockmark environments in the eastern Mediterranean. Marine Geol 195:263–276CrossRefGoogle Scholar
  7. Dupré S, Woodside J, Foucher J-P, Lange G, Mascle J, Boetius A et al (2007) Seafloor geological studies above active gas chimneys off Egypt (Central Nile Deep Sea Fan). Deep Sea Res I 54:1146–1172CrossRefGoogle Scholar
  8. Fang J, Shizuka A, Kato C, Schouten S (2006) Microbial diversity of cold-seep sediments in Sagami Bay, Japan, as determined by 16S rRNA gene and lipid analyses. FEMS Microbiol Ecol 57:429–441CrossRefGoogle Scholar
  9. Girguis PR, Cozen AE, DeLong EF (2005) Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor. Appl Environ Microbiol 71:3725–3733CrossRefGoogle Scholar
  10. Glissmann K, Chin K-J, Casper P, Conrad R (2004) Methanogenic pathway and archaeal community structure in the sediment of eutrophic lake Dagow: effect of temperature. Microb Ecol 48:389–399CrossRefGoogle Scholar
  11. Goffredi SK, Wilpiszeki R, Lee R, Orphan VJ (2008) Temporal evolution of methane cycling and phylogenetic diversity of archaea in sediments from a deep-sea whale-fall in Monterey Canyon, California. ISME J 2:204–220CrossRefGoogle Scholar
  12. Gontharet S, Pierre C, Blanc-Valleron M-M, Rouchy JM, Fouquet Y, Bayon G et al (2007) Nature and origin of diagenetic carbonate crusts and concretions from mud volcanoes and pockmarks of the Nile deep-sea fan (eastern Mediterranean Sea). Deep Sea Res II 54:1292–1311CrossRefGoogle Scholar
  13. Grünke S, Felden J, Lichtschlag A, Girnth A-C, De Beer D, Wenzhöfer F, Boetius A (2011) Niche differentiation among mat-forming, sulfide-oxidizing bacteria at cold seeps of the Nile Deep Sea Fan (Eastern Mediterranean Sea). Geobiology 9:330–348CrossRefGoogle Scholar
  14. Haese RR, Hensen C, de Lange GJ (2006) Pore water geochemistry of eastern Mediterranean mud volcanoes: implications for fluid transport and fluid origin. Mar Geol 225:191–208CrossRefGoogle Scholar
  15. Hallam SJ, Girguis PR, Preston CM, Richardson PM, DeLong EF (2003) Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing Archaea. Appl Environ Microbiol 69:5483–5491CrossRefGoogle Scholar
  16. Heijs SK, Sinninghe-Damsté JS, Forney LJ (2005) Characterization of a deep-sea microbial mat from an active cold seep at the Milano mud volcano in the Eastern Mediterranean Sea. FEMS Microbiol Ecol 54:47–56CrossRefGoogle Scholar
  17. Heuer VB, Pohlman JW, Torres ME, Elvert M, Hinrichs K-U (2009) The stable carbon isotope biogeochemistry of acetate and other dissolved carbon species in deep subseafloor sediments at the northern Cascadia Margin. Geochim Cosmochim Acta 73:3323–3336CrossRefGoogle Scholar
  18. Holmer M, Kristensen E (1994) Coexistence of sulfate reduction and methane production in an organic-rich sediment. Mar Ecol Progr Ser 107:177–184CrossRefGoogle Scholar
  19. Inagaki F, Tsunogai U, Suzuki M, Kosaka A, Machiyama H, Takai K et al (2004) Characterization of C1-metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, southern Ryukyu Arc, by analyzing pmoA, mmoX, mxaF, mcrA, and 16S rRNA genes. Appl Environ Microbiol 70:7445–7455CrossRefGoogle Scholar
  20. Jørgensen BB, Kasten S (2006) Sulfur cycling and methane oxidation. In: Schulz HD, Zabel M (eds) Marine Geochemistry, 2nd edn. Springer, New York, pp 271–309Google Scholar
  21. Joye S, Connel TL, Miller LG, Oremland RS, Jellison RS (1999) Oxidation of ammonia and methane in an alkaline, saline lake. Limnol Oceanogr 44:178–188CrossRefGoogle Scholar
  22. Joye SB, Samarkin VA, Orcutt BN, MacDonald IR, Hinrichs KU, Elvert M, Teske AP, Lloyd KG et al (2009) Metabolic variability in seafloor brines revealed by carbon and sulphur dynamics. Nat Geosci 2:349–354CrossRefGoogle Scholar
  23. Knittel K, Lösekann T, Boetius A, Kort R, Amann R (2005) Diversity and distribution of methanotrophic Archaea at cold seeps. Appl Environ Microbiol 71:467–479CrossRefGoogle Scholar
  24. Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Ann Rev Microbiol 63:311–334CrossRefGoogle Scholar
  25. Kvenvolden KA (1995) A review of the geochemistry of methane in natural gas hydrate. Org Geochem 23:997–1008CrossRefGoogle Scholar
  26. Lazar CS (2010) Diversité et activité des communautés microbiennes dans des sédiments marins associés aux émissions de fluides froids. Ph.D. thesis, Université de Bretagne Occidentale, FranceGoogle Scholar
  27. Lazar CS, L’Haridon S, Pignet P, Toffin L (2011a) Archaeal populations in hypersaline sediments underlying orange microbial mats in the Napoli mud volcano. Appl Environ Microbiol 77:3120–3131CrossRefGoogle Scholar
  28. Lazar CS, Parkes RJ, Cragg BA, L’Haridon S, Toffin L (2011b) Methanogenic diversity and activity in hypersaline sediments of the centre of the Napoli mud volcano, Eastern Mediterranean Sea. Environ Microbiol 13:2078–2091CrossRefGoogle Scholar
  29. Lazar CS, Parkes RJ, Cragg BA, L’Haridon S, Toffin L (2012) Methanogenic activity and diversity in the centre of the Amsterdam Mud Volcano, Eastern Mediterranean Sea. FEMS Microbiol Ecol 81:1–12CrossRefGoogle Scholar
  30. Lazar CS, Baker BJ, Seite KW, Teske AP (2017) Genomic reconstruction of multiple lineages of uncultured benthic archaea suggests distinct biogeochemical roles and ecological niches. ISME J 11:1–12CrossRefGoogle Scholar
  31. Levin LA (2005) Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes. Oceanogr Marine Biol 43:1–46Google Scholar
  32. Lloyd KG, Lapham L, Teske A (2006) An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline Gulf of Mexico sediments. Appl Environ Microbiol 72:7218–7230CrossRefGoogle Scholar
  33. Lykousis V, Alexandri S, Woodside J, de Lange G, Dählmann A, Perissoratis C, Heeschen K et al (2009) Mud volcanoes and gas hydrates in the Anaximander mountains (Eastern Mediterranean Sea). Mar Petrol Geol 26:854–872CrossRefGoogle Scholar
  34. Mills HJ, Hodges C, Wilson K, MacDonald IR, Sobecky PA (2003) Microbial diversity in sediments associated with surface-breaching gas hydrate mounds in the Gulf of Mexico. FEMS Microbiol Ecol 46:39–52CrossRefGoogle Scholar
  35. Mills HJ, Martinez RJ, Story S, Sobecky PA (2004) Identification of members of the metabolically active microbial populations associated with Beggiatoa species mat communities form Gulf of Mexico cold-seep sediments. Appl Environ Microbiol 70:5447–5458CrossRefGoogle Scholar
  36. Olu-Le-Roy K, Sibuet M, Fiala-Médioni A, Gofas S, Salas C, Mariotti A, Foucher JP, Woodside J (2004) Cold seep communities in the deep eastern Mediterranean Sea: composition, symbiosis and spatial distribution on mud volcanoes. Deep-Sea Res I 51:1915–1936CrossRefGoogle Scholar
  37. Omoregie EO, Mastalerz V, de Lange G, Straub KL, Kappler A, Røy H et al (2008) Biogeochemistry and community composition of iron- and sulfur-precipitating microbial mats at the Chefren mud volcano (Nile Deep Sea Fan, Eastern Mediterranean). Appl Environ Microbiol 74:3198–3215CrossRefGoogle Scholar
  38. Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348CrossRefGoogle Scholar
  39. Paull CK, Hecker B, Commeau R, Freeman-Lynde RP, Neumann C, Corso WP et al (1984) Biological communities at the Florida escarpment resemble hydrothermal vent taxa. Science 226:965–967CrossRefGoogle Scholar
  40. Rossel PE, Elvert M, Ramette A, Boetius A, Hinrichs K-U (2011) Factors controlling the distribution of anaerobic methanotrophic communities in marine environments: evidence from intact polar membrane lipids. Geochim Cosmochim Acta 75:164–184CrossRefGoogle Scholar
  41. Roussel E, Sauvadet AL, Allard J, Chaduteau C, Richard P, Cambon-Bonavita MA, Chaumillon E (2009) Archaeal methane cycling communities associated with gassy subsurface sediments of Marennes-Oléron Bay (France). Geomicrobiol J 26:31–43CrossRefGoogle Scholar
  42. Sahling H, Rickert D, Lee RW, Linke P, Suess E (2002) Macrofaunal community structure and sulfide flux at gas hydrate deposits from the Cascadia convergent margin, NE Pacific. Mar Ecol Progr Ser 231:121–138CrossRefGoogle Scholar
  43. Suess E, Ritger SD, Moore JC, Jones ML, Kulm LD, Cochrane GR (1985) Biological communities at vent sites along the subduction zone off Oregon. Bull Biol Soc Washington 6:475–484Google Scholar
  44. Vetriani C, Tran HV, Kerkhof LJ (2003) Fingerprinting microbial assemblages from the oxic/anoxic chemocline of the Black Sea. Appl Environ Microbiol 69:6481–6488CrossRefGoogle Scholar
  45. Wegener G, Shovitri M, Knittel K, Niemann H, Hovland M, Boetius A (2008) Biogeochemical processes and microbial diversity of the Gullfaks and Tommeliten methane seeps (Northern North Sea). Biogeosciences 5:1127–1144CrossRefGoogle Scholar
  46. Wellsbury P, Goodman K, Barth T, Cragg BA, Barnes SP, Parkes RJ (1997) Deep marine biosphere fuelled by increasing organic matter availability during burial and heating. Nature 388:573–576CrossRefGoogle Scholar
  47. Zitter TAC, Huguen C, Woodside JM (2005) Geology of mud volcanoes in the eastern Mediterranean from combined sidescan sonar and submersible surveys. Deep-Sea Res I 52:457–475CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of Quebec in Montreal (UQAM)MontrealCanada

Personalised recommendations