The Gulf of Mexico: An Introductory Survey of a Seep-Dominated Seafloor Landscape

Part of the Springer Oceanography book series (SPRINGEROCEAN)


The Gulf of Mexico is home to numerous hydrocarbon seeps, brine lakes and mud volcanoes that provide habitats for hydrocarbon-dependent microbial communities; trophic linkages connect these hydrocarbon microbiota with benthic marine invertebrates and provide the foundation of complex benthic ecosystems that are ultimately sustained by hydrocarbon seepage. Sampling and reconnaissance by submersibles provide a first impression of the diversity of Gulf of Mexico hydrocarbon seeps, paving the way for further discoveries. This chapter provides on overview of selected hydrocarbon and brine seeps on the northern slope of the Gulf of Mexico that were visited and explored during two month-long cruises with research submersible Alvin and R/V Atlantis in 2010 and 2014.


  1. Amos S (1987) Late Triassic-Jurassic paleogeography and origin of Gulf of Mexico Basin. AAPG Bull 71(4):419–451Google Scholar
  2. Bennett SS, Hanor JS (1987) Dynamics of subsurface salt dissolution at the Welsh Dome, Louisiana Gulf Coast. In: Lerche I, O’Brien JJ (eds) Dynamical geology of salt and related structures. Academic Press, Orlando, pp 653–677CrossRefGoogle Scholar
  3. Bowles MW, Joye SB (2011) High rates of denitrification and nitrate removal in cold seep sediments. ISME J 5:565–567CrossRefGoogle Scholar
  4. Bowles MW, Samarkin VA, Bowles K, Joye SB (2011) Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex-situ incubation. Geochim Cosmochim Acta 75:500–519CrossRefGoogle Scholar
  5. Bowles MW, Hunter KS, Samarkin VA, Joye SB (2016) Variations in geochemical signatures and microbial activity within and between diverse cold seep habitats along the lower continental slope of the Gulf of Mexico. Deep-Sea Res II 129:31–40CrossRefGoogle Scholar
  6. Bowles MW, Samarkin VA, Hunter KS, Dowell E, Finke N, Teske AP, Girguis PR, Joye SB (2019) Remarkable capacity for anaerobic oxidation of methane at high methane concentration. Geophys Res Lett, in revisionGoogle Scholar
  7. Brooks JM, Kennicutt MC, Fay RR, McDonald TJ, Sassen R (1984) Thermogenic gas hydrates in the Gulf of Mexico. Science 223:696–698CrossRefGoogle Scholar
  8. Brooks JM, Cox HB, Bryan WR, Kennicutt MC, Mann RG, MacDonald TJ (1986) Association of gas hydrates and oil seepage in the Gulf of Mexico. Org Geochem 10:221–234CrossRefGoogle Scholar
  9. Brooks GR, Larson RA, Flower B, Hollander D, Schwing PT, Robero I, Moore C, Reichart G-J, Jilbert T, Chanton JP, Hastings DW, Overholt WA, Marks KP, Kostka JE, Holmes CW, Hollander D (2015) Sedimentation pulse in the NE Gulf of Mexico following the 2010 DWH blowout. PLoS ONE 10:e0132341CrossRefGoogle Scholar
  10. Bryant RW, Bryant JR, Feeley MH, Simmons GR (1990) Physiographic and bathymetric characteristics of the continental slope, Northwest Gulf of Mexico. Geo-Mar Lett 10:182–199CrossRefGoogle Scholar
  11. Chanton JP, Zhao T, Rosenheim B, Joye SB, Bosman S, Brunner C, Yaeger K, Hollander D (2015) Radiocarbon tracing of the flux of petrocarbon to the sea floor associated with the Deepwater Horizon event. Environ Sci Technol 49:847–854CrossRefGoogle Scholar
  12. Chen SC, Musat N, Lechtenfeld OJ, Paschke H, Schmidt M, Said N, Popp D, Calabrese F, Stryhanyuk H, Jaekel U, Zhu Y-G, Joye SB, Richnow HH, Widdel F, Musat F (2019) Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep. Nature 568:108–111CrossRefGoogle Scholar
  13. Conti A, D’Emidio M, Macelloni L, Lutken C, Asper V, Woolsey M, Jarnagin R (2016) Morpho-acoustic characterization of natural seepage features near the Macondo wellhead (ECOGIG site OC26, Gulf of Mexico). Deep-Sea Res II 129:53–65CrossRefGoogle Scholar
  14. Crespo-Medina M, Bowles MW, Samarkin VA, Hunter KS, Joye SB (2016) Microbial diversity and activity in seafloor brine lake sediments (Alaminos Canyon block 601, Gulf of Mexico). Geobiology 14:483–498CrossRefGoogle Scholar
  15. D’souza NA, Subramaniam A, Juhl AR, Hafez M, Chekalyuk A, Phan S, Yan B, MacDonald IR, Weber SC, Montoya JP (2016) Elevated surface chlorophyll associated with natural oil seeps in the Gulf of Mexico. Nat Geosci 9:215–218CrossRefGoogle Scholar
  16. Daly K, Passow U, Chanton J, Hollander D (2016) Assessing the impacts of oil-associated marine snow formation and sedimentation during and after the Deepwater Horizon oil spill. Anthropocene 13:18–33CrossRefGoogle Scholar
  17. Garcia-Pineda O, MacDonald IR, Zimmer B, Shedd B, Roberts H (2010) Remote- sensing evaluation of geophysical anomaly sites in the outer continental slope, northern Gulf of Mexico. Deep-Sea Res II 57:1859–1869CrossRefGoogle Scholar
  18. Haeckel M, Suess E, Wallmann K, Rickert D (2004) Rising methane gas bubbles form massive hydrate layers at the seafloor. Geochim Cosmochim Acta 68:4335–4345CrossRefGoogle Scholar
  19. Hastings DW, Schwing PT, Brooks GR, Larson RA, Morford JL, Roeder T, Quinn KA, Bartlett T, Romero IC, Hollander DJ (2016) Changes in sediment redox conditions following the BP DWH blowout event. Deep-Sea Res II 129:167–178CrossRefGoogle Scholar
  20. Hoshino T, Toki T, Ijiri A, Morono Y, Machiyama H, Ashi J, Okamura K, Inagaki F (2017) Atribacteria from the subseafloor sedimentary biosphere disperse to the hydrosphere through submarine mud volcanoes. Front Microbiol 8:1135CrossRefGoogle Scholar
  21. Johansen C, Todd AC, MacDonald IR (2017) Time series video analysis of bubble release processes at natural hydrocarbon seeps in the northern Gulf of Mexico. Mar Pet Geol 82:21–34CrossRefGoogle Scholar
  22. Joye SB (2015) Deepwater Horizon, 5 years on. Science 349:592–593CrossRefGoogle Scholar
  23. Joye SB, MacDonald IR, Montoya JP, Peccini M (2005) Geophysical and geochemical signatures of Gulf of Mexico seafloor brines. Biogeosciences 2:295–309CrossRefGoogle Scholar
  24. Joye SB, Samarkin VA, Orcutt BN, MacDonald IR, Hinrichs K-U, Elvert M, Teske A, Lloyd KG, Lever MA, Montoya JP, Meile CD (2009) Metabolic variability in seafloor brines revealed by carbon and sulphur dynamics. Nat Geosci 2:349–354CrossRefGoogle Scholar
  25. Joye SB, Bowles MW, Samarkin VA, Hunter KS, Niemann H (2010) Biogeochemical signatures and microbial activity of different cold seep habitats along the Gulf of Mexico lower slope. Deep-Sea Res II 57:1990–2001CrossRefGoogle Scholar
  26. Joye SB, Hunter KS, Medeiros P, Benitez-Nelson C, Moore WS, Asper V, Diercks A, Passow U, Yang T, Teske A, Montoya JP (2019) Soot and slime: Burning and microbial metabolism altered and transported Macondo oil from the sea surface to the seabed. Elementa: Science of the Anthropocene, submittedGoogle Scholar
  27. Kennicutt MC, Brooks JM, Denoux GJ (1988) Leakage of deep, reservoired petroleum to the near surface on the Gulf of Mexico continental slope. Mar Chem 24:39–59CrossRefGoogle Scholar
  28. Kimes NE, Callaghan AV, Aktas DF, Smith WL, Sunner J, Golding B, Drozdowska M, Hazen TC, Suflita JM, Morris PJ (2013) Genomic analysis and metabolite profiling of deep-sea sediments from the Gulf of Mexico following the Deepwater Horizon oil spill. Front Microbiol 4:50CrossRefGoogle Scholar
  29. Kleindienst S, Grim S, Sogin M, Bracco A, Crespo-Medina M, Joye SB (2016) Diverse, rare microbial taxa responded to the Deepwater Horizon deep-sea hydrocarbon plume. ISME J 10:400–415CrossRefGoogle Scholar
  30. Kniemeyer O, Musat F, Sievert SM, Knittel K, Wilkes H, Blumenberg M, Michaelis W, Classen A, Bolm C, Joye SB, Widdel F (2007) Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449:898–901CrossRefGoogle Scholar
  31. Knittel K, Boetius A, Lemke A, Eilers H, Lochte K, Pfannkuche O, Linke P, Amann R (2003) Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia Margin, Oregon). Geomicrobiol J 20:269–294CrossRefGoogle Scholar
  32. Lapham LL, Chanton JP, Martens CS, Woolsey RJ (2008) Microbial activity in surficial sediments overlying acoustic wipe-out zones at a Gulf of Mexico cold seep. Geochem Geophys Geosyst 9:Q06001CrossRefGoogle Scholar
  33. Lapham L, Chanton JP, Chapman R, Martens CS (2010) Methane under-saturated fluids in deep-sea sediments: Implications for gas hydrate stability and rates of dissolution. Earth Planet Sci Lett 298:275–285CrossRefGoogle Scholar
  34. Lapham LL, Wilson R, Riedel M, Paull CK, Holmes ME (2013) Temporal variability of in situ methane concentrations in gas-hydrate bearing sediments near Bullseye Vent, Northern Cascadia Margin. Geochem Geophys Geosyst 14:2445–2459CrossRefGoogle Scholar
  35. Laso-Pérez R, Wegener G, Knittel K, Widdel F, Harding KJ, Krukenberg V, Meier DV, Richter M, Tegetmeyer HE, Riedel D, Richnow H-H, Adrian L, Reemtsma T, Lechtenfeld O, Musat F (2016) Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature 539:396–401CrossRefGoogle Scholar
  36. Lerche I, Petersen K (1995) Salt and sediment dynamics. CRC Press, Boca Raton, FLGoogle Scholar
  37. Lever MA, Teske A (2015) Methane-cycling archaeal diversity in hydrothermal sediment investigated by general and group-specific functional gene and 16S rRNA gene PCR primers. Appl Environ Microbiol 81:1426–1441CrossRefGoogle Scholar
  38. Lin Y-S, Heuer VB, Goldhammer T, Kellermann MY, Zabel M, Hinrichs K-U (2012) Towards constraining H2 concentration in subseafloor sediment: a proposal for combined analysis by two distinct approaches. Geochim Cosmochim Acta 77:186–201CrossRefGoogle Scholar
  39. Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann NY Acad Sci 1125:171–189CrossRefGoogle Scholar
  40. Lloyd KG, Lapham L, Teske A (2006) An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline Gulf of Mexico sediments. Appl Environ Microbiol 72:7218–7230CrossRefGoogle Scholar
  41. Lloyd KG, Albert DB, Biddle JF, Chanton JP, Pizarro O, Teske A (2010) Spatial structure and activity of sedimentary microbial communities underlying a Beggiatoa spp. mat in a Gulf of Mexico hydrocarbon seep. PLoS ONE 5:e8738CrossRefGoogle Scholar
  42. Lloyd KG, Alperin M, Teske A (2011) Environmental evidence for net methane production and oxidation in putative Anaerobic MEthanotrophic (ANME) archaea. Environ Microbiol 13:2548–2564CrossRefGoogle Scholar
  43. MacDonald IR, Peccini MB (2009) Distinct activity phases during the recent geological history of a Gulf of Mexico mud volcano. Mar Petrol Geol 26:1824–1830CrossRefGoogle Scholar
  44. MacDonald IR, Reilly JF, Guinasso NL et al (1990) Chemosynthetic mussels at a brine-filled pockmark in the northern Gulf of Mexico. Science 248:1096–1099CrossRefGoogle Scholar
  45. MacDonald IR, Buthman DB, Sager WW, Peccini MB, Guinasso NL (2000) Pulsed oil discharge from a mud volcano. Geology 28:907–910CrossRefGoogle Scholar
  46. Macelloni L, Brunner CA, Caruso S, Lutken CB, D’Emidio M, Lapham LL (2013) Spatial distribution of seafloor bio-geological and geochemical processes as proxies of fluid flow regime and evolution of a carbonate/hydrates mound, Woolsey Mound. Deep-Sea Res I 74:25–38CrossRefGoogle Scholar
  47. Mason OU, Scott NM, Gonzalez A, Robbins-Pianka A, Bælum J, Kimbrel J, Bouskill NJ, Prestat E, Borglin S, Joyner DC, Fortney JL, Jurelevicius D, Stringfellow WR, Alvarez-Cohen L, Hazen TC, Knight R, Gilbert JA, Jansson JK (2014) Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill. ISME J 8:1464–1475CrossRefGoogle Scholar
  48. McGee TM (2006) A seafloor observatory to monitor gas hydrates in the Gulf of Mexico. Leading Edge 25:644–647CrossRefGoogle Scholar
  49. McHatton SC, Barry JP, Jannasch HW, Nelson DC (1996) High nitrate concentrations in vacuolate, autotrophic marine Beggiatoa spp. Appl Environ Microbiol 62:954–958CrossRefGoogle Scholar
  50. McNutt MK, Chu S, Lubchenco L, Hunter T, Dreyfus G, Murawski SA, Kennedy DM (2012) Applications of science and engineering to quantify and control the Deepwater Horizon oil spill. Proc Natl Acad Sci USA 109:20222–20228CrossRefGoogle Scholar
  51. Mills HJ, Martinez RJ, Story S, Sobecky PA (2004) Identification of members of the metabolically active microbial populations associated with Beggiatoa species mat communities from Gulf of Mexico cold-seep sediments. Appl Environ Microbiol 70:5447–5458CrossRefGoogle Scholar
  52. Mitra S, Kimmel DG, Snyder J, Scalise K, McGlaughon BD, Roman MR, Jahn GL, Pierson JJ, Brandt SB, Montoya JP, Rosenbauer RJ, Lorenson TD, Wong FL, Campbell PL (2012) Macondo-1 well oil-derived polycyclic aromatic hydrocarbons in mesozooplankton from the northern Gulf of Mexico. Geophys Res Lett 39:1–7CrossRefGoogle Scholar
  53. Nigro LM, Hyde AS, MacGregor BJ, Teske A (2016) Phylogeography, salinity adaptations and metabolic potential of the Candidate Division KB1 Bacteria based on a partial single cell genome. Front Microbiol 7:1266CrossRefGoogle Scholar
  54. Nikolaus R, Ammerman J, MacDonald IR (2003) Distinct pigmentation and trophic modes in Beggiatoa from hydrocarbon seeps in the Gulf of Mexico. Aquatic Microb Ecol 32:85–93CrossRefGoogle Scholar
  55. Orcutt B, Boetius A, Elvert M, Samarkin V, Joye SB (2005) Molecular biogeochemistry of sulfate reduction, methanogenesis and oxidation of methane at Gulf of Mexico cold seeps. Geochim Cosmochim Acta 69:4267–4281CrossRefGoogle Scholar
  56. Orcutt BN, Joye SB, Kleindienst S, Knittel K, Ramette A, Reitz A, Samarkin V, Treude T, Boetius A (2010) Impact of natural oil and higher hydrocarbons on microbial diversity, distribution, and activity in Gulf of Mexico cold-seep sediments. Deep Sea Res II 57:2008–2021CrossRefGoogle Scholar
  57. Otte S, Kuenen JG, Nielsen LP, Pearl HW, Zopfi J, Schulz HN, Teske A, Strothmann B, Gallardo VA, Jørgensen BB (1999) Nitrogen, carbon, and sulphur metabolism in natural Thioploca samples. Appl Environ Microbiol 65:3148–3157CrossRefGoogle Scholar
  58. Passow U (2016) Formation of rapidly-sinking, oil-associated marine snow. Deep Sea Res II 129:232–240CrossRefGoogle Scholar
  59. Passow U, Ziervogel K, Asper V, Diercks A (2012) Marine snow formation in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environ Res Lett 7:035031CrossRefGoogle Scholar
  60. Reddy CM, Arey JS, Seewald JS, Sylva SP, Lemkau KL, Nelson RK, Carmichael CA, McIntyre CP, Fenwick J, Ventura GT, Van Mooy BAS, Camilli R (2012) Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill. Proc Natl Acad Sci USA 109:20229–20234CrossRefGoogle Scholar
  61. Roberts HH, Carney RS (1997) Evidence of episodic fluid, gas, and sediment venting on the Northern Gulf of Mexico Slope. Econ Geol 92:863–879CrossRefGoogle Scholar
  62. Roberts HH, Aharon P, Carney R, Larkin J, Sassen R (1990) Sea floor responses to hydrocarbon seeps, Louisiana continental slope. Geo-Mar Lett 10:232–243CrossRefGoogle Scholar
  63. Roberts HH, McBride RA, Coleman J (1999) Outer shelf and slope geology of the Gulf of Mexico: an overview. In: Kumpf H, Steidinger K, Sherman K (eds) The Gulf of Mexico large marine ecosystems: assessment, sustainability, and management. Blackwell Science, pp 93–112Google Scholar
  64. Roberts HH, Fisher CR, Brooks JM, Bernard B, Carney RS, Cordes E, Shedd W, Hunt J Jr, Joye SB, MacDonald IR, Morrison C (2007) Exploration of the deep Gulf of Mexico slope using DSV Alvin: site selection and geologic character. Gulf Coast Assoc Geol Soc Trans 57:647–659Google Scholar
  65. Roberts HH, Feng D, Joye SB (2010a) Cold-seep carbonates of the middle and lower continental slope, northern Gulf of Mexico. Deep-Sea Res II 57:2040–2054CrossRefGoogle Scholar
  66. Roberts HH, Shedd W, Hunt J (2010b) Dive site geology: DSV ALVIN (2006) and ROV JASON II (2007) dives to the middle-lower continental slope, northern Gulf of Mexico. Deep Sea Res II 57:1837–1858CrossRefGoogle Scholar
  67. Saager WW, Lee CS, Macdonald IR, Schroeder WW (1999) High-frequency near-bottom acoustic reflection signatures of hydrocarbon seeps on the northern Gulf of Mexico continental slope. Geo-Mar Lett 18:267–276CrossRefGoogle Scholar
  68. Salman-Carvalho V, Fadeev E, Joye SB, Teske A (2016) How clonal is clonal? Genome plasticity across multicellular segments of a “Candidatus” Marithrix filament from sulfidic, briny seafloor sediments in the Gulf of Mexico. Front Microbiol 7:1173CrossRefGoogle Scholar
  69. Sassen R, Roberts H, Aharon R, Larkin J, Chinn E, Carney R (1993) Chemosynthetic bacterial mats at cold hydrocarbon seeps Gulf of Mexico continental slope. Org Geochem 20:77–89CrossRefGoogle Scholar
  70. Sassen R, Joye S, Sweet ST, DeFreitas DA, Milkov AV, MacDonald IR (1999) Thermogenic gas hydrates and hydrocarbon gases in complex chemosynthetic communities Gulf of Mexico continental slope. Org Geochem 30:485–497CrossRefGoogle Scholar
  71. Schreiber L, Holler T, Knittel K, Meyerdierks A, Amann R (2010) Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade. Environ Microbiol 12:2327–2340Google Scholar
  72. Stevens EN, Bailey JV, Flood BE, Jones DS, Gilhooly WP III, Joye SB, Teske A, Mason OU (2015) Barite encrustation of benthic sulfide-oxidizing bacteria at a marine cold seep. Geobiology 13:588–603CrossRefGoogle Scholar
  73. Suzuki D, Li Z, Cui X, Zhang C, Katayama A (2014) Reclassification of Desulfobacterium anilini as Desulfatiglans anilini comb. nov. within Desulfatiglans gen. nov., and description of a 4-chlorophenol-degrading sulfate-reducing bacterium, Desulfatiglans parachlorophenolica sp. nov. Int J Syst Evol Microbiol 64:3081–3086CrossRefGoogle Scholar
  74. Teske A, Salman V (2014) The family Beggiatoaceae. In: Rosenberg E, DeLong EF, Thompson F, Lory S, Stackebrandt E (eds) The prokaryotes – gammaproteobacteria. The Prokaryotes, 4th edn. Springer, Berlin/Heidelberg, Chapter 6, pp 93–134.
  75. Teske A (2019) Hydrocarbon-degrading microbial communities in natural oil seeps. In: McGenity TJ (ed) Handbook of hydrocarbon and lipid microbiology. Microbial communities utilizing hydrocarbons and lipids: members, metagenomic and ecophysiology. SpringerGoogle Scholar
  76. Torres ME, Wallmann K, Tréhu AM, Bohrmann G, Borowski WS, Tomaru H (2004) Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon. Earth Planet Sci Lett 226:225–241CrossRefGoogle Scholar
  77. Underwood S, Lapham L, Teske A, Lloyd KG (2016) Microbial community structure and methane-cycling activity of subsurface sediments at Mississippi Canyon 118 before the Deepwater Horizon Disaster. Deep-Sea Res II 129:148–156CrossRefGoogle Scholar
  78. Van Capellen P, Viollier E, Roychoudhury A, Clark L, Ingall E, Lowe K, Dichristina T (1998) Biogeochemical cycles of manganese and iron at the oxic-anoxic transition of a stratified marine basin (Orca Basin, Gulf of Mexico). Environ Sci Technol 32:2931–2939CrossRefGoogle Scholar
  79. Wankel SD, Joye SB, Samarkin VA, Shah SR, Friedrich G, Melas-Kyriazi J, Girguis PR (2010) New constraints on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico brine pool via in situ mass spectrometry. Deep-Sea Res II 57:2022–2029CrossRefGoogle Scholar
  80. Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276CrossRefGoogle Scholar
  81. Yang T, Speare K, McKay LJ, MacGregor BJ, Joye SB, Teske A (2016a) Distinct bacterial communities in surficial seafloor sediments following the 2010 Deepwater Horizon blowout. Front Microbiol 7:1384Google Scholar
  82. Yang T, Nigro LM, Gutierrez T, D’Ambrosio L, Joye SB, Highsmith R, Teske A (2016b) Pulsed blooms and persistent oil-degrading bacterial populations in the water column during and after the Deepwater Horizon blowout. Deep-Sea Res II 129:282–291CrossRefGoogle Scholar
  83. Zhuang G, Elling F, Nigro LM, Samarkin V, Joye SB, Teske A, Hinrichs K-U (2016) Multiple evidence for methylotrophic methanogenesis as the dominant methanogenic pathway in hypersaline sediments from the Orca Basin, Gulf of Mexico. Geochim Cosmochim Acta 187:1–20CrossRefGoogle Scholar
  84. Ziervogel K, McKay LJ, Rhodes B, Osburn CL, Dickson-Brown J, Arnosti C , Teske A (2012) Microbial activities and dissolved organic matter dynamics in oil-contaminated surface seawater from the Deepwater Horizon oil spill site. PLoS One 7(4):e34816CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of North Carolina at Chapel HillChapel HillUSA
  2. 2.University of GeorgiaAthensUSA

Personalised recommendations