Guaymas Basin, a Hydrothermal Hydrocarbon Seep Ecosystem

Part of the Springer Oceanography book series (SPRINGEROCEAN)


The hydrothermal sediments of Guaymas Basin in the Gulf of California combine several microbial ecosystems. Since Guaymas Basin is an active hydrothermal spreading center, it sustains chemosynthetic microbial communities with inorganic electron donors such as sulfide, hydrogen, ammonia, and reduced metals within steep thermal gradients of hydrothermal sediments and chimneys. At the same time, Guaymas Basin is an organic-rich continental margin site, where high sedimentation rates resulting from high phytoplankton productivity and terrestrial runoff produce organic-rich sediments that support abundant heterotrophic microbial populations. Most interesting in the context of hydrocarbon seepage, hydrothermal heating of organic-rich sediments creates hot hydrocarbon seeps in Guaymas Basin. Aliphatic and aromatic hydrocarbons are generated under high temperature and pressure in the subsurface, and migrate to the sediment surface where they are assimilated and oxidized by hydrocarbon-oxidizing bacteria and archaea. This complex habitat mosaic results in unusually diverse microbial communities with new phylogenetic lineages and surprising physiological capabilities. This chapter provides some background and highlights recent microbial discoveries in Guaymas Basin.


  1. Bazylinski DA, Farrington JW, Jannasch HW (1988) Hydrocarbons in surface sediments from a Guaymas Basin hydrothermal vent site. Org Geochem 12:547–558CrossRefGoogle Scholar
  2. Bazylinski DA, Wirsen CO, Jannasch HW (1989) Microbial utilization of naturally occurring hydrocarbons at the Guaymas Basin hydrothermal vent site. Appl Environ Microbiol 55:2832–2836CrossRefGoogle Scholar
  3. Berndt C, Hensen C, Mortera-Gutierrez C, Sarkar S, Geilert S, Schmidt M, Liebetrau V, Kipfer R, Scholz F, Doll M, Muff S, Karstens J, Planke S, Petersen S, Böttner C, Chi WC, Moser M, Behrendt R, Fiskal A, Lever MA, Su CC, Deng L, Brennwald MS, Lizarralde D (2016) Rifting under steam—how magmatism triggers methane venting from sedimentary basins. Geology 44:767–770CrossRefGoogle Scholar
  4. Biddle JF, Cardman Z, Mendlovitz H, Albert DB, Lloyd KG, Boetius A, Teske A (2012) Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin hydrothermal sediments. ISME J 6:1018–1031Google Scholar
  5. Bowles MW, Nigro LM, Teske AP, Joye SB (2012) Denitrification and environmental factors influencing nitrate removal in Guaymas Basin hydrothermally-altered sediments. Front Microbiol 3:377CrossRefGoogle Scholar
  6. Buckley A, MacGregor BJ, Teske A (2019) Identification, expression and activity of candidate nitrite reductases from orange Beggiatoaceae. Guaymas Basin. Front Microbiol 10:644CrossRefGoogle Scholar
  7. Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb J-F, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NSM, Weidman JF, Fuhrmann JL, Nguyen D, Utterback TR, Kelley JM, Peterson JD, Sadow PW, Hanna MC, Cotton MD, Roberts KM, Hurst MA, Kaine BP, Borodovsky M, Klenk H-P, Fraser CM, Smith HO, Woese CR, Venter JC (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 272:1058–1073CrossRefGoogle Scholar
  8. Calvert SE (1964) Factors affecting distribution of laminated diatomaceous sediments in the Gulf of California. In: Van Andel TH, Shor GG Jr (eds) Marine geology of the Gulf of California, vol 3. American Association of Petroleum Geologists Memoir, Tulsa, pp 311–330Google Scholar
  9. Calvert SE (1966) Origin of diatom-rich, varved sediments from the Gulf of California. J Geol 74:546–565CrossRefGoogle Scholar
  10. Campbell BJ, Engel AS, Porter ML, Takai K (2006) The versatile epsilon proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 4:458–468CrossRefGoogle Scholar
  11. Curray JR, Moore DG, Aguayo EJ (1979) Leg 64 seeks evidence on development of basins. Geotimes 24:18–20Google Scholar
  12. Curray JR, Moore DG (1982) Initial reports of the Deep Sea Drilling Project, vol 64. U.S. Government Printing Office, Washington, DC. Scholar
  13. Dekas AE, Poretsky RS, Orphan VJ (2009) Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science 326:422–426CrossRefGoogle Scholar
  14. De la Lanza-Espino G, Soto LA (1999) Sedimentary geochemistry of hydrothermal vents in Guaymas Basin, Gulf of California, Mexico. Appl Geochem 14:499–510CrossRefGoogle Scholar
  15. Dhillon A, Teske A, Dillon J, Stahl DA, Sogin ML (2003) Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Appl Environ Microbiol 69:2765–2772CrossRefGoogle Scholar
  16. Dhillon A, Lever M, Lloyd KG, Albert DB, Sogin ML, Teske A (2005) Methanogen diversity evidenced by molecular characterization of methyl coenzyme M reductase A genes (mcrA) in hydrothermal sediments of the Guaymas Basin. Appl Environ Microbiol 71:4592–4601CrossRefGoogle Scholar
  17. Didyk BM, Simoneit BRT (1989) Hydrothermal oil of Guaymas Basin and implications for petroleum formation mechanisms. Nature 342:65–69CrossRefGoogle Scholar
  18. Dombrowski N, Seitz K, Teske A, Baker BJ (2017) Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediment communities. Microbiome 5:106CrossRefGoogle Scholar
  19. Dombrowski N, Teske AP, Baker BJ (2018) Extensive microbial metabolic diversity and redundancy in Guaymas Basin hydrothermal sediments. Nat Commun 9:4999CrossRefGoogle Scholar
  20. Dowell F, Cardman Z, Dasarathy S, Kellermann MY, Lipp JS, Ruff SE, Biddle JF, Lloyd KG, Hinrichs K-U, Albert DB, Mendlovitz H, Teske A (2016) Microbial communities in methane- and short chain alkane-rich hydrothermal sediments of Guaymas Basin. Front Microbiol 7:17CrossRefGoogle Scholar
  21. Einsele G, Gieskes JM, Curray J, Moore DM, Aguayo E, Aubry M-P, Fornari D, Guerrero J, Kastner M, Kelts K, Lyle M, Matoba Y, Molina-Criz A, Niemitz J, Rueda J, Saunders A, Schrader H, Simoneit B, Vacquier V (1980) Intrusion of basaltic sills into highly porous sediments and resulting hydrothermal activity. Nature 283:441–445CrossRefGoogle Scholar
  22. Elsgaard L, Isaksen MF, Jørgensen BB, Alayse A-M, Jannasch HW (1994) Microbial sulfate reduction in deep-sea sediments at the Guaymas Basin hydrothermal vent area: influence of temperature and substrates. Geochim Cosmochim Acta 58:3335–3343CrossRefGoogle Scholar
  23. Eme L, Spang A, Lombard J, Stairs CW, Ettema TJG (2017) Archaea and the origin of eukaryotes. Nat Rev Microbiol 15:711–723CrossRefGoogle Scholar
  24. Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, Tyson GW (2015) Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350:434–438CrossRefGoogle Scholar
  25. Fisher AT, Becker K (1991) Heat flow, hydrothermal circulation and basalt intrusions in the Guaymas Basin, Gulf of California. Earth Plan Sci Lett 103:84–89CrossRefGoogle Scholar
  26. Galimov EM, Simoneit BRT (1982) Geochemistry of interstitial gases in sedimentary deposits of the Gulf of California, Deep Sea Drilling Project Leg 64. In: Curray JR, Blakeslee J, Platt LW, Stout LN, Moore DG, Aguayo JE et al (eds) Initial reports of the Deep Sea Drilling Project, vol 64. U.S. Government Printing Office, Washington, DC, pp 781–787Google Scholar
  27. Gieskes JM, Kastner M, Einsele G, Kelts K, Niemitz J (1982) Hydrothermal activity in the Guaymas Basin, Gulf of California: a synthesis. In Curray JR, Blakeslee J, Platt LW, Stout LN, Moore DG, Aguayo JE et al (eds) Initial reports of the Deep Sea Drilling Project, vol 64. U.S. Government Printing Office, Washington, DC, pp 1159–1167Google Scholar
  28. Götz FE, Jannasch HW (1993) Aromatic hydrocarbon-degrading bacteria in the petroleum-rich sediments of Guaymas Basin hydrothermal vent site: preference for aromatic carboxylic acids. Geomicrobiol J 11:1–18CrossRefGoogle Scholar
  29. Guezennec JG, Dussauze J, Bian M, Rocchicioli F, Ringelberg D, Hedrick DB, White DC (1996) Bacterial community structure from Guaymas Basin, Gulf of California, as determined by analysis of phospholipid ester-linked fatty acids. J Mar Biotechnol 4:165–175Google Scholar
  30. Gundersen JK, Jørgensen BB, Larsen E, Jannasch HW (1992) Mats of giant sulphur bacteria on deep-sea sediments due to fluctuating hydrothermal flow. Nature 360:454–456CrossRefGoogle Scholar
  31. Gutierrez T, Biddle JF, Teske A, Aitken MD (2015) Cultivation-dependent and cultivation-independent characterization of hydrocarbon-degrading bacteria in Guaymas Basin sediments. Front Microbiol 6:695Google Scholar
  32. He Y, Xiao X, Wang F (2013) Metagenome reveals potential microbial degradation of hydrocarbon coupled with sulfate reduction in an oil-immersed chimney from Guaymas Basin. Front Microbiol 4:148CrossRefGoogle Scholar
  33. Holler T, Widdel F, Knittel K, Amann R, Kellermann MY, Hinrichs K-U, Teske A, Boetius A (2011) Thermophilic anaerobic oxidation of methane by marine microbial consortia. ISME J 5:1946–1956CrossRefGoogle Scholar
  34. Jaekel U, Musat N, Adam B, Kuypers M, Grundmann O, Musat F (2013) Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps. ISME J 7:885–895CrossRefGoogle Scholar
  35. Jannasch HW, Nelson DC, Wirsen CO (1989) Massive natural occurrence of unusually large bacteria (Beggiatoa spp.) at a hydrothermal deep-sea vent site. Nature 342:834–836CrossRefGoogle Scholar
  36. Jeanthon C, L’Haridon S, Pradel N, Prieur D (1999) Rapid identification of hyperthermophilic methanococci isolated from deep-sea hydrothermal vents. Int J Syst Bacteriol 49:591–594CrossRefGoogle Scholar
  37. Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS (1983) Methanococus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261CrossRefGoogle Scholar
  38. Jones WJ, Stugard CE, Jannasch HW (1989) Comparison of thermophilic methanogens from submarine hydrothermal vents. Arch Microbiol 151:314–319CrossRefGoogle Scholar
  39. Jørgensen BB, Isaksen MF, Jannasch HW (1992) Bacterial sulfate reduction above 100 °C in deep-sea hydrothermal vent systems. Science 258:1756–1757CrossRefGoogle Scholar
  40. Jørgensen BB, Zawacki LX, Jannasch HW (1990) Thermophilic bacterial sulfate reduction in deep-sea sediments at the Guaymas Basin hydrothermal vents (Gulf of California). Deep Sea Res I 37:695–710CrossRefGoogle Scholar
  41. Kallmeyer J, Ferdelman TG, Jansen K-H, Jørgensen BB (2003) A high pressure thermal gradient block for investigating microbial activity in multiple deep-sea samples. J Microbiol Methods 55:165–172CrossRefGoogle Scholar
  42. Kallmeyer J, Boetius A (2004) Effects of temperature and pressure on sulfate reduction and anaerobic oxidation of methane in hydrothermal sediments of Guaymas Basin. Appl Environ Microbiol 70:1231–1233CrossRefGoogle Scholar
  43. Kastner M (1982) Evidence for two distinct hydrothermal systems in the Guaymas Basin. In: Curray JR, Blakeslee J, Platt LW, Stout LN, Moore DG, Aguayo JE, et al (eds) Initial reports of the Deep Sea Drilling Project, vol 64. U.S. Government Printing Office, Washington, DC, pp 1143–1158Google Scholar
  44. Kawka OE, Simoneit BRT (1987) Survey of hydrothermally generated petroleums from the Guaymas Basin spreading center. Org Geochem 11:311–328CrossRefGoogle Scholar
  45. Kellermann MY, Wegener G, Elvert M, Yoshinaga MY, Lin YS, Holler T, Mollar XP, Knittel K, Hinrichs K-U (2012) Autotrophy as predominant mode of carbon fixation in thermophilic anaerobic methane-oxidizing microbial communities. Proc Natl Acad Sci U S A 109:19321–19326CrossRefGoogle Scholar
  46. Kleindienst S, Ramette A, Amann R, Knittel K (2012) Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments. Environ Microbiol 14:2689–2710CrossRefGoogle Scholar
  47. Kniemeyer O, Musat F, Sievert SM, Knittel K, Wilkes H, Blumenberg M, Michaelis W, Classen A, Bolm C, Joye SB, Widdel F (2007) Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449:898–901CrossRefGoogle Scholar
  48. Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annual Rev Microbiol 63:311–334CrossRefGoogle Scholar
  49. Krukenberg V, Harding K, Richter M, Glockner FO, Gruber-Vodicka HR, Adam B, Berg JS, Knittel K, Tegetmeyer HE, Boetius A, Wegener G (2016) Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane. Environ Microbiol 18:3073–3091CrossRefGoogle Scholar
  50. Krukenberg V, Riedel D, Gruber-Vodicka HR, Buttigieg PL, Tegetmeyer HE, Boetius A, Wegener G (2018) Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia. Environ Microbiol 20:1651–1666CrossRefGoogle Scholar
  51. Kurr M, Huber R, König H, Jannasch HW, Fricke H, Trincone A et al (1991) Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110 °C. Arch Microbiol 156:239–247CrossRefGoogle Scholar
  52. Laso-Pérez R, Wegener G, Knittel K, Widdel F, Harding KJ, Krukenberg V, Meier DV, Richter M, Tegetmeyer HE, Riedel D, Richnow H-H, Adrian L, Reemtsma T, Lechtenfeld O, Musat F (2016) Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature 539:396–401CrossRefGoogle Scholar
  53. Lever MA, Teske A (2015) Methane-cycling archaeal diversity in hydrothermal sediment investigated by general and group-specific functional gene and 16S rRNA gene PCR primers. Appl Environ Microbiol 81:1426–1441CrossRefGoogle Scholar
  54. Lin Y-S, Koch BP, Feseker T, Ziervogel K, Goldhammer T, Schmidt S, Witt M, Kellermann M, Zabel M, Teske A, Hinrichs K-U (2017) Near-surface heating of young rift sediment causes mass production and discharge of reactive dissolved organic matter. Sci Rep 7:44864CrossRefGoogle Scholar
  55. Lizarralde D, Soule SA, Seewald J, Proskurowski G (2011) Carbon release by off-axis magmatism in a young sedimented spreading centre. Nat Geosci 4:50–54CrossRefGoogle Scholar
  56. Lloyd KG, Edgcomb VP, Molyneaux SJ, Boer S, Wirsen CO, Atkins MS, Teske A (2005) Effect of dissolved sulfide, pH, and temperature on growth and survival of marine hyperthermophilic archaea. Appl Environ Microbiol 71:6383–6387CrossRefGoogle Scholar
  57. Lonsdale P, Becker K (1985) Hydrothermal plumes, hot springs, and conductive heat flow in the Southern Trough of Guaymas Basin. Earth Planet Sci Lett 73:211–225CrossRefGoogle Scholar
  58. Luther GW, Rozan TF, Taillefert M, Nuzzio DB, Di Meo C, Shank TM, Lutz RA, Cary SC (2001) Chemical speciation drives hydrothermal vent ecology. Nature 410:813–816CrossRefGoogle Scholar
  59. MacGregor BJ, Biddle JF, Siebert JR, Staunton E, Hegg E, Matthysse AG, Teske A (2013a) Why orange Guaymas Basin Beggiatoa spp. are orange: single- filament genome-enabled identification of an abundant octaheme cytochrome with hydroxylamine oxidase, hydrazine oxidase and nitrite reductase activities. Appl Environ Microbiol 79:1183–1190CrossRefGoogle Scholar
  60. MacGregor BJ, Biddle JF, Harbort C, Matthysse AG, Teske A (2013b) Sulfide oxidation, nitrate respiration, carbon acquisition and electron transport pathways suggested by the draft genome of a single orange Guaymas Basin Beggiatoa (Cand. Maribeggiatoa) sp. filament. Mar Genomics 11:53–65CrossRefGoogle Scholar
  61. MacGregor BJ, Biddle JF, Teske A (2013c) Mobile elements in a single-filament orange Guaymas Basin Beggiatoa (“Candidatus Maribeggiatoa”) sp. draft genome; evidence for genetic exchange with cyanobacteria. Appl Environ Microbiol 79:3974–3985CrossRefGoogle Scholar
  62. Martens CS (1990) Generation of short chain organic acid anions in hydrothermally altered sediments of the Guaymas Basin, Gulf of California. Appl Geochem 5:71–76CrossRefGoogle Scholar
  63. McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ (2015) Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526:531–535CrossRefGoogle Scholar
  64. McKay LJ, MacGregor BJ, Biddle JF, Mendlovitz HP, Hoer D, Lipp JS, Lloyd KG, Teske AP (2012) Spatial heterogeneity and underlying geochemistry of phylogenetically diverse orange and white Beggiatoa mats in Guaymas Basin hydrothermal sediments. Deep Sea Res I 67:21–31CrossRefGoogle Scholar
  65. McKay L, Klokman VW, Mendlovitz HP, LaRowe DE, Hoer DR, Albert D, de Beer J, Amend J, Teske A (2016) Thermal and geochemical influences on microbial biogeography in the hydrothermal sediments of Guaymas Basin. Environ Microbiol Rep 8:150–161CrossRefGoogle Scholar
  66. McKay LJ, Hatzenpichler R, Inskeep WP, Fields MW (2017) Occurrence and expression of novel methyl-coenzyme M reductase gene (mcrA) variants in hot spring sediments. Scientific Reports 7:725CrossRefGoogle Scholar
  67. Meyer S, Wegener G, Lloyd KG, Teske A, Boetius A, Ramette A (2013) Microbial habitat connectivity across spatial scales and hydrothermal temperature gradients at Guaymas Basin. Front Microbiol 4:207Google Scholar
  68. Miyazaki J, Higa R, Toki T, Ashi J, Tsunogai U, Nunoura T, Imachi H, Takai K (2009) Molecular characterization of potential nitrogen fixation by anaerobic methane-oxidizing archaea in the methane seep sediments at the Number 8 Kumano Knoll in the Kumano Basin, offshore of Japan. Appl Environ Microbiol 75:7153–7162CrossRefGoogle Scholar
  69. Møller MM, Nielsen LP, Jørgensen BB (1985) Oxygen responses and mat formation of Beggiatoa spp. Appl Environ Microbiol 50:373–382CrossRefGoogle Scholar
  70. Mulder A, van de Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16:177–183CrossRefGoogle Scholar
  71. Nelson DC, Castenholz RW (1981) Use of reduced sulfur compounds by Beggiatoa sp. J Bacteriol 147:140–154CrossRefGoogle Scholar
  72. Nelson DC, Revsbech NP, Jørgensen BB (1986) Microoxic-anoxic niche of Beggiatoa spp.: microelectrode survey of marine and freshwater strains. Appl Environ Microbiol 52:161–168CrossRefGoogle Scholar
  73. Nelson DC, Wirsen CO, Jannasch HW (1989) Characterization of large, autotrophic Beggiatoa spp. abundant at hydrothermal vents of the Guaymas Basin. Appl Environ Microbiol 55:2909–2917CrossRefGoogle Scholar
  74. Nobu MK, Narihiro T, Kuroda K, Mei R, Liu WT (2016) Chasing the elusive Euryarchaeota class WSA2: Genomes reveal a uniquely fastidious methyl-reducing methanogen. ISME J 10:2478–2487CrossRefGoogle Scholar
  75. Oremland RS, Culbertson C, Simoneit BRT (1982) Methanogenic activity in sediment from leg 64, Gulf of California. In: Curray JR, Blakeslee J, Platt LW, Stout LN, Moore DG, Aguayo JE et al (eds) Initial reports of the Deep Sea Drilling Project, vol 64. U.S. Government Printing Office, Washington, DC, pp 759–762Google Scholar
  76. Pagé A, Tivey KK, Stakes DS, Reysenbach A-L (2008) Temporal and spatial archaeal colonization of hydrothermal deposits. Environ Microbiol 10:874–884CrossRefGoogle Scholar
  77. Pearson A, Seewald JS, Eglinton TI (2005) Bacterial incorporation of relict carbon in the hydrothermal environment of Guaymas Basin. Geochim Cosmochim Acta 69:5477–5486CrossRefGoogle Scholar
  78. Pernthaler A, Dekas AE, Brown CT, Goffredi SK, Embaye T, Orphan VJ (2008) Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc Natl Acad Sci U S A 105:7052–7057CrossRefGoogle Scholar
  79. Peter JM, Peltonen P, Scott SD, Simoneit BRT, Kawka OE (1991) 14C ages of hydrothermal petroleum and carbonate in Guaymas Basin, Gulf of California: implications for oil generation, expulsion, and migration. Geology 19:253–256CrossRefGoogle Scholar
  80. Rüter P, Rabus R, Wilkes H, Aeckersberg F, Rainey FA, Jannasch HW, Widdel F (1994) Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372:455–458CrossRefGoogle Scholar
  81. Rullkötter J, von der Dick H, Welte DH (1982) Organic petrography and extractable hydrocarbons of sediment from the Gulf of California, Deep Sea Drilling Project Leg 64. In: Curray JR, Blakeslee J, Platt LW, Stout LN, Moore DG, Aguayo JE et al (eds) Initial reports of the Deep Sea Drilling Project, vol 64. U.S. Government Printing Office, Washington, DC, pp 837–853Google Scholar
  82. Russ L, Kartal B, op den Camp HJM, Sollai M, Le Bruchec J, Caprais J-C, Godfroy A, Sinninghe Damsté JS, Jetten MSM (2013) Presence and diversity of anammox bacteria in cold hydrocarbon-rich seeps and hydrothermal vent sediments of the Guaymas Basin. Front Microbiol 4:219Google Scholar
  83. Saunders A, Fornari DJ, Joron JL, Tarney J, Treuil M (1982) Geochemistry of basic igneous rocks, Gulf of California. In: Curray JR, Blakeslee J, Platt LW, Stout LN, Moore DG, Aguayo JE et al (eds) Initial reports of the Deep Sea Drilling Project, vol 64. U.S. Government Printing Office, Washington, DC, pp 595–642Google Scholar
  84. Schouten S, Wakeham SG, Hopmans EC, Sinninghe Damste JS (2003) Biogeochemical evidence that thermophilic archaea mediate the anaerobic oxidation of methane. Appl Environ Microbiol 69:1680–1686CrossRefGoogle Scholar
  85. Schutte C, Teske A, MacGregor BJ, Salman-Carvalho V, Lavik G, Hach P, de Beer D (2018) Filamentous giant Beggiatoaceae from Guaymas Basin are capable of both denitrification and dissimilatory nitrate reduction to ammonium (DNRA). Appl Environ Microbiol 84:e02860–17CrossRefGoogle Scholar
  86. Seitz KW, Dombrowski N, Eme L, Spang A, Lombard J, Sieber J, Teske AP, Ettema TJG, Baker BJ (2019) Asgard Archaea capable of anaerobic hydrocarbon cycling. Nat Commun 10:1822CrossRefGoogle Scholar
  87. Simoneit BRT, Bode GR (1982) Appendix II: carbon/carbonate and nitrogen analysis, Leg 64, Gulf of California. In: Curray JR, Blakeslee J, Platt LW, Stout LN, Moore DG, Aguayo JE et al (eds) Initial reports of the Deep Sea Drilling Project, vol 64. U.S. Government Printing Office, Washington, DC, pp 1303–1305Google Scholar
  88. Simoneit BRT, Lonsdale PF (1982) Hydrothermal petroleum in mineralized mounds at the seabed of Guaymas Basin. Nature 295:198–202CrossRefGoogle Scholar
  89. Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, van Eijk R, Schleper C, Guy L, Ettema TJG (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521:173–179CrossRefGoogle Scholar
  90. Takai K, Nakamura K, Tori T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high- pressure cultivation. Proc Natl Acad Sci USA 105:10949–10954CrossRefGoogle Scholar
  91. Teske A (2019) Hydrocarbon-degrading microbial communities in natural oil seeps. In: McGenity TJ (ed) Handbook of hydrocarbon and lipid microbiology. Microbial communities utilizing hydrocarbons and lipids: members, metagenomic and ecophysiology. SpringerGoogle Scholar
  92. Teske A, Salman V (2014) The family Beggiatoaceae. In: Rosenberg E, DeLong EF, Thompson F, Lory S, Stackebrandt E (eds) The Prokaryotes—Gammaproteobacteria. The Prokaryotes, 4th edn. Springer, Berlin/Heidelberg, pp 93–134Google Scholar
  93. Teske A, Lizarralde D, Höfig TW (2018) Expedition 385 scientific prospectus: Guaymas Basin tectonics and biosphere. Int Ocean Discov Program.
  94. Teske A, Hinrichs K-U, Edgcomb VP, de Vera Gomez A, Kysela D, Sylva SP, Sogin ML, Jannasch HW (2002) Microbial diversity in hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68:1994–2007CrossRefGoogle Scholar
  95. Teske A, Edgcomb V, Rivers AR, Thompson JR, de Vera Gomez A, Molyneaux SJ, Wirsen CO (2009) A molecular and physiological survey of a diverse collection of hydrothermal vent Thermococcus and Pyrococcus isolates. Extremophiles 13:917–923CrossRefGoogle Scholar
  96. Teske A, Callaghan AV, LaRowe D (2014) Biosphere frontiers of subsurface life in the sedimented hydrothermal system of Guaymas Basin. Front Microbiol 5:362CrossRefGoogle Scholar
  97. Teske A, de Beer D, McKay L, Tivey MK, Biddle JF, Hoer D, Lloyd KG, Lever MA, Røy H, Albert DB, Mendlovitz H, MacGregor BJ (2016) The Guaymas Basin hiking guide to hydrothermal mounds, chimneys and microbial mats: complex seafloor expressions of subsurface hydrothermal circulation. Front Microbiol 7:75CrossRefGoogle Scholar
  98. Teske A, McKay LJ, Ravelo AC, Aiello I, Mortera C, Núñez-Useche F, Canet C, Chanton J, Brunner B, Hensen C, Ramirez GA, Sibert RJ, Turner T, White D, Chambers CR, Buckley A, Joye SB, Soule SA, Lizarralde D (2019) Characteristics and evolution of sill-driven off-axis hydrothermalism in Guaymas Basin – the Ringvent site. Sci Rep 9:13847Google Scholar
  99. Von Damm KL, Edmond JM, Measures CI, Grant B (1985) Chemistry of submarine hydrothermal solutions at Guaymas Basin, Gulf of California. Geochim Cosmochim Acta 49:2221–2237CrossRefGoogle Scholar
  100. Weber A, Jørgensen BB (2002) Bacterial sulfate reduction in hydrothermal sediments of the Guaymas Basin, Gulf of California, Mexico. Deep Sea Res I 149:827–841CrossRefGoogle Scholar
  101. Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A (2015) Intracellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526:587–590CrossRefGoogle Scholar
  102. Wegener G, Laso-Pérez R, Hahn C, Liebeke M, Teske A, Knittel K (2018) Anaerobic enrichment cultures from the Guaymas Basin reveal an unexpected diversity of thermophilic hydrocarbon-oxidizing archaea. In: Abstract at ISME17, International Symposium on Microbial Ecology, Leipzig, Germany, 12–17 Aug 2018Google Scholar
  103. Welhan JA (1988) Origins of methane in hydrothermal systems. Chem Geol 71:183–198CrossRefGoogle Scholar
  104. Winkel M, De Beer D, Lavik G, Peplies J, Mussmann M (2014) Close association of active nitrifyers with Beggiatoa mats covering deep-sea hydrothermal sediments. Environ Microbiol 16:1612–1626CrossRefGoogle Scholar
  105. Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Bäckström D, Juzokaite L, Vancaester E, Seitz KW, Anantharaman K, Starnawski P, Kjeldsen KU, Stott MB, Nunoura T, Banfield JF, Schramm A, Baker BJ, Spang A, Ettema TJG (2017) Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541:353–358CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations