Microbial Communities and Metabolisms at Hydrocarbon Seeps

Part of the Springer Oceanography book series (SPRINGEROCEAN)


Hydrocarbon seeps are common features of all oceans and are located mainly along the continental margins (Fig. 1). Seeps are locally restricted, yet highly productive hotspots of biodiversity that experience very different environmental conditions and energy regimes than the surrounding deep-sea sediments. Hydrocarbon seep ecosystems are mostly fueled by methane. Occasionally, seeps are found that emit the short-chain hydrocarbons ethane, propane or butane, and even oil and asphalt seeps have been described. Seep ecosystems therefore comprise ecological niches and microbial clades that are distinct from those found in deep-sea sediments, which are not fuelled by methane and other hydrocarbons. This chapter provides an overview of the communities thriving at marine hydrocarbon seeps and the microbial metabolisms that create these oases of life (with references to other chapters in this book). It highlights the current knowledge of the diversity and biogeography of seep microbial communities and presents possible mechanisms governing their community assembly.
Fig. 1

Map of seafloor regions with investigated marine hydrocarbon seepage (orange dots). The map shows a selection of well-known seep areas. The total number of seeps worldwide is unknown, but estimated to be at least several ten thousand. The map was created using GeoMapApp


  1. Adam PS, Borrel G, Brochier-Armanet C, Gribaldo S (2017) The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J 11:2407–2425CrossRefGoogle Scholar
  2. Adams M, Hoarfrost A, Bose A, Joye S, Girguis P (2013) Anaerobic oxidation of short-chain alkanes in hydrothermal sediments: potential influences on sulfur cycling and microbial diversity. Front Microbiol 4:110CrossRefGoogle Scholar
  3. Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325:184–187CrossRefGoogle Scholar
  4. Biddle JF, Cardman Z, Mendlovitz H, Albert DB, Lloyd KG, Boetius A, Teske A (2012) Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin hydrothermal sediments. ISME J 6:1018–1031CrossRefGoogle Scholar
  5. Blazejak A, Erséus C, Amann R, Dubilier N (2005) Coexistence of bacterial sulfide oxidizers, sulfate reducers, and spirochetes in a gutless worm (Oligochaeta) from the Peru Margin. Appl Environ Microbiol 71:1553–1561CrossRefGoogle Scholar
  6. Blumenberg M, Seifert R, Michaelis W (2007) Aerobic methanotrophy in the oxic-anoxic transition zone of the Black Sea water column. Org Geochem 38:84–91CrossRefGoogle Scholar
  7. Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A et al (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626CrossRefGoogle Scholar
  8. Boetius A, Wenzhöfer F (2013) Seafloor oxygen consumption fuelled by methane from cold seeps. Nat Geosci 6:725–734CrossRefGoogle Scholar
  9. Bose A, Rogers D, Adams M, Joye S, Girguis P (2013) Geomicrobiological linkages between short-chain alkane consumption and sulfate reduction rates in seep sediments. Front Microbiol 4:386CrossRefGoogle Scholar
  10. Campbell B, Engel AS, Porter ML, Takai K (2006) The versatile epsilon-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 4:458–468CrossRefGoogle Scholar
  11. Chevalier N, Bouloubassi I, Birgel D, Taphanel MH, López-García P (2013) Microbial methane turnover at Marmara Sea cold seeps: a combined 16S rRNA and lipid biomarker investigation. Geobiology 11:55–71CrossRefGoogle Scholar
  12. Cho H, Hyun J-H, You O-R, Kim M, Kim S-H, Choi D-L et al (2017) Microbial community structure associated with biogeochemical processes in the sulfate–methane transition zone (SMTZ) of gas-hydrate-bearing sediment of the Ulleung Basin, East Sea. Geomicrobiol J 34:207–219CrossRefGoogle Scholar
  13. Cordes EE, Arthur MA, Shea K, Arvidson RS, Fisher CR (2005) Modeling the mutualistic interactions between tubeworms and microbial consortia. PLoS Biol 3:e77CrossRefGoogle Scholar
  14. Costa RB, Okada DY, Martins TH, Foresti E (2017) Aerobic methanotrophs grew under anoxic conditions and supported a diverse heterotrophic bacterial community. Environ Eng Sci 35:804–814CrossRefGoogle Scholar
  15. Cui H, Su X, Chen F, Wei S, Chen S, Wang J (2016) Vertical distribution of archaeal communities in cold seep sediments from the Jiulong methane reef area in the South China Sea. Biosci J 32:4Google Scholar
  16. Decker C, Olu K, Cunha RL, Arnaud-Haond S (2013) Phylogeny and diversification patterns among vesicomyid bivalves. PLoS ONE 7:e33359CrossRefGoogle Scholar
  17. Dowell F, Cardman Z, Dasarathy S, Kellermann M, Lipp JS, Ruff SE, Biddle JF, McKay LJ, MacGregor BJ, Lloyd KG, Albert DB, Mendlovitz H, Hinrichs KU, Teske A (2016) Microbial communities in methane- and short chain alkane-rich hydrothermal sediments of Guaymas Basin. Front Microbiol 7:17CrossRefGoogle Scholar
  18. Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6:725–740CrossRefGoogle Scholar
  19. Dubinina G, Grabovich M, Leshcheva N, Rainey FA, Gavrish E (2011) Spirochaeta perfilievii sp. nov., an oxygen-tolerant, sulfide-oxidizing, sulfur- and thiosulfate-reducing spirochaete isolated from a saline spring. Int J Syst Evol Microbiol 61:110–117CrossRefGoogle Scholar
  20. Duperron S, Halary S, Lorion J, Sibuet M, Gaill F (2008) Unexpected co-occurrence of six bacterial symbionts in the gills of the cold seep mussel Idas sp. (Bivalvia: Mytilidae). Environ Microbiol 10:433–445CrossRefGoogle Scholar
  21. Duperron S, Guezi H, Gaudron SM, Pop Ristova P, Wenzhöfer F, Boetius A (2011) Relative abundances of methane- and sulphur-oxidising symbionts in the gills of a cold seep mussel and link to their potential energy sources. Geobiology 9:481–491CrossRefGoogle Scholar
  22. Egger M, Rasigraf O, Sapart CJ, Jilbert T, Jetten MSM, Röckmann T et al (2015) Iron-mediated anaerobic oxidation of methane in brackish coastal sediments. Environ Sci Technol 49:277–283CrossRefGoogle Scholar
  23. Elvert M, Hopmans EC, Treude T, Boetius A, Suess E (2005) Spatial variations of methanotrophic consortia at cold methane seeps: implications from a high-resolution molecular and isotopic approach. Geobiology 3:195–209CrossRefGoogle Scholar
  24. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM et al (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548CrossRefGoogle Scholar
  25. Ettwig KF, Zhu B, Speth D, Keltjens JT, Jetten MSM, Kartal B (2016) Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc Natl Acad Sci U S A 113:12792–12796CrossRefGoogle Scholar
  26. Felden J, Lichtschlag A, Wenzhöfer F, de Beer D, Feseker T, Pop Ristova P et al (2013) Limitations of microbial hydrocarbon degradation at the Amon mud volcano (Nile deep-sea fan). Biogeosciences 10:3269–3283CrossRefGoogle Scholar
  27. Felden J, Ruff SE, Ertefai T, Inagaki F, Hinrichs K-U, Wenzhöfer F (2014) Anaerobic methanotrophic community of a 5346-m-deep vesicomyid clam colony in the Japan Trench. Geobiology 12:183–199CrossRefGoogle Scholar
  28. Felden J, Wenzhöfer F, Feseker T, Boetius A (2010) Transport and consumption of oxygen and methane in different habitats of the Håkon Mosby Mud Volcano (HMMV). Limnol Oceanogr 55:2366–2380CrossRefGoogle Scholar
  29. Foucher J-P, Dupré S, Scalabrin C, Feseker T, Harmegnies F, Nouzé H (2010) Changes in seabed morphology, mud temperature and free gas venting at the Håkon Mosby mud volcano, offshore northern Norway, over the time period 2003–2006. Geo-Marine Lett 30:157–167CrossRefGoogle Scholar
  30. Girnth AC, Grünke S, Lichtschlag A, Felden J, Knittel K, Wenzhofer F et al (2011) A novel, mat-forming Thiomargarita population associated with a sulfidic fluid flow from a deep-sea mud volcano. Environ Microbiol 13:495–505CrossRefGoogle Scholar
  31. Gittel A, Kofoed MVW, Sørensen KB, Ingvorsen K, Schramm A (2012) Succession of Deferribacteres and Epsilonproteobacteria through a nitrate-treated high-temperature oil production facility. Syst Appl Microbiol 35:165–174CrossRefGoogle Scholar
  32. Grünke S, Felden J, Lichtschlag A, Girnth A-C, De Beer D, Wenzhöfer F, Boetius A (2011) Niche differentiation among mat-forming, sulfide-oxidizing bacteria at cold seeps of the Nile Deep Sea Fan (Eastern Mediterranean Sea). Geobiology 9:330–348CrossRefGoogle Scholar
  33. Grünke S, Lichtschlag A, de Beer D, Felden J, Salman V, Ramette A et al (2012) Mats of psychrophilic thiotrophic bacteria associated with cold seeps of the Barents Sea. Biogeosciences 9:2947–2960CrossRefGoogle Scholar
  34. Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P et al (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567–570CrossRefGoogle Scholar
  35. Harrison BK, Zhang H, Berelson W, Orphan VJ (2009) Variations in archaeal and bacterial diversity associated with the sulfate-methane transition zone in continental margin sediments (Santa Barbara Basin, California). Appl Environ Microbiol 75:1487–1499CrossRefGoogle Scholar
  36. Hayashi T, Obata H, Gamo T, Sano Y, Naganuma T (2007) Distribution and phylogenetic characteristics of the genes encoding enzymes relevant to methane oxidation in oxygen minimum zones of the Eastern Pacific Ocean. Res J Environ Sci 1:275–284CrossRefGoogle Scholar
  37. Hilário A, Capa M, Dahlgren TG, Halanych KM, Little CTS, Thornhill DJ et al (2011) New perspectives on the ecology and evolution of siboglinid tubeworms. PLoS ONE 6:e16309CrossRefGoogle Scholar
  38. Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805CrossRefGoogle Scholar
  39. Holler T, Widdel F, Knittel K, Amann R, Kellermann MY, Hinrichs K-U, Teske A, Boetius A (2011) Thermophilic anaerobic oxidation of methane by marine microbial consortia. ISME J 5:1946–1956CrossRefGoogle Scholar
  40. Hu B, Shen L, Lian X, Zhu Q, Liu S, Huang Q et al (2014) Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands. Proc Natl Acad Sci U S A 111:4495–4500CrossRefGoogle Scholar
  41. Inagaki F, Takai K, Nealson KH, Horikoshi K (2004a) Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the ε-Proteobacteria isolated from Okinawa Trough hydrothermal sediments. Int J Syst Evol Microbiol 54:1477–1482CrossRefGoogle Scholar
  42. Inagaki F, Tsunogai U, Suzuki M, Kosaka A, Machiyama H, Takai K et al (2004b) Characterization of C1-metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, Southern Ryukyu Arc, by analyzing pmoA, mmoX, mxaF, mcrA, and 16S rRNA genes. Appl Environ Microbiol 70:7445–7455CrossRefGoogle Scholar
  43. Jaekel U, Musat N, Adam B, Kuypers M, Grundmann O, Musat F (2013) Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps. ISME J 7:885–895CrossRefGoogle Scholar
  44. Janssen PH, Liesack W, Schink B (2002) Geovibrio thiophilus sp. nov., a novel sulfur-reducing bacterium belonging to the phylum Deferribacteres. Int J Syst Evol Microbiol 52:1341–1347Google Scholar
  45. Jones DS, Flood BE, Bailey JV (2015) Metatranscriptomic analysis of diminutive thiomargarita-like bacteria (“Candidatus Thiopilula” spp.) from abyssal cold seeps of the Barbados Accretionary Prism. Appl Environ Microbiol 81:3142–3156CrossRefGoogle Scholar
  46. Joye SB, Boetius A, Orcutt BN, Montoya JP, Schulz HN, Erickson MJ, Lugo SK (2004) The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chem Geol 205:219–238CrossRefGoogle Scholar
  47. Kato N, Yurimoto H, Thauer RK (2006) The physiological role of the ribulose monophosphate pathway in bacteria and Archaea. Biosci Biotechnol Biochem 70:10–21CrossRefGoogle Scholar
  48. Kirkegaard RH, Dueholm MS, McIlroy SJ, Nierychlo M, Karst SM, Albertsen M, Nielsen PH (2016) Genomic insights into members of the candidate phylum Hyd24-12 common in mesophilic anaerobic digesters. ISME J 10:2352–2364CrossRefGoogle Scholar
  49. Kleindienst S, Ramette A, Amann R, Knittel K (2012) Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments. Environ Microbiol 14:2689–2710CrossRefGoogle Scholar
  50. Kleindienst S, Herbst F-A, Stagars M, von Netzer F, von Bergen M, Seifert J et al (2014) Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps. ISME J 8:2029–2044CrossRefGoogle Scholar
  51. Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334CrossRefGoogle Scholar
  52. Knittel K, Boetius A, Lemke A, Eilers H, Lochte K, Pfannkuche O et al (2003) Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia Margin, Oregon). Geomicrobiol J 20:269–294CrossRefGoogle Scholar
  53. Knittel K, Lösekann T, Boetius A, Kort R, Amann R (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol 71:467–479CrossRefGoogle Scholar
  54. Krukenberg V, Harding K, Richter M, Glöckner FO, Gruber-Vodicka HR, Adam B et al (2016) Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane. Environ Microbiol 18:3073–3091CrossRefGoogle Scholar
  55. Laso-Pérez R, Wegener G, Knittel K, Widdel F, Harding KJ, Krukenberg V et al (2016) Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature 539:396–401CrossRefGoogle Scholar
  56. Lazar CS, L’Haridon S, Pignet P, Toffin L (2011) Archaeal populations in hypersaline sediments underlying orange microbial mats in the Napoli Mud Volcano. Appl Environ Microbiol 77:3120–3131CrossRefGoogle Scholar
  57. Levin LA (2005) Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes. In: Gibson RN, Atkinson RJA, Gordon JDM (eds) Oceanography and marine biology: an annual review. Taylor & Francis, Boca Raton, pp 1–46Google Scholar
  58. Li M, Jain S, Baker BJ, Taylor C, Dick GJ (2013) Novel hydrocarbon monooxygenase genes in the metatranscriptome of a natural deep-sea hydrocarbon plume. Environ Microbiol 16:60–71CrossRefGoogle Scholar
  59. Lloyd KG, Albert DB, Biddle JF, Chanton JP, Pizarro O, Teske A (2010) Spatial structure and activity of sedimentary microbial communities underlying a Beggiatoa spp. mat in a Gulf of Mexico hydrocarbon seep. PLoS One 5:e8738CrossRefGoogle Scholar
  60. Lloyd KG, Lapham L, Teske A (2006) An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline Gulf of Mexico sediments. Appl Environ Microbiol 72:7218–7230CrossRefGoogle Scholar
  61. Lösekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, Amann R (2007) Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl Environ Microbiol 73:3348–3362CrossRefGoogle Scholar
  62. Marlow JJ, Steele JA, Case DH, Connon SA, Levin LA, Orphan VJ (2014) Microbial abundance and diversity patterns associated with sediments and carbonates from the methane seep environments of Hydrate Ridge, OR. Front Mar Sci 1:44CrossRefGoogle Scholar
  63. Martinez-Cruz K, Leewis M-C, Herriott IC, Sepulveda-Jauregui A, Anthony KW, Thalasso F, Leigh MB (2017) Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments. Sci Total Environ 607–608:23–31CrossRefGoogle Scholar
  64. Mastalerz V, de Lange GJ, Dählmann A (2009) Differential aerobic and anaerobic oxidation of hydrocarbon gases discharged at mud volcanoes in the Nile deep-sea fan. Geochim Cosmochim Acta 73:3849–3863CrossRefGoogle Scholar
  65. Merkel AY, Huber JA, Chernyh NA, Bonch-Osmolovskaya EA, Lebedinsky AV (2012) Detection of putatively thermophilic anaerobic methanotrophs in diffuse hydrothermal Vent fluids. Appl Environ Microbiol 79:915–923CrossRefGoogle Scholar
  66. Meyer S, Wegener G, Lloyd KG, Teske A, Boetius A, Ramette A (2013) Microbial habitat connectivity across spatial scales and hydrothermal temperature gradients at Guaymas Basin. Front Microbiol 4:207Google Scholar
  67. Meyerdierks A, Kube M, Kostadinov I, Teeling H, Glöckner FO, Reinhardt R, Amann R (2010) Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. Environ Microbiol 12:422–439CrossRefGoogle Scholar
  68. Mills HJ, Martinez RJ, Story S, Sobecky PA (2005) Characterization of microbial community structure in Gulf of Mexico gas hydrates: comparative analysis of DNA- and RNA-derived clone libraries. Appl Environ Microbiol 71:3235–3247CrossRefGoogle Scholar
  69. Mills HJ, Martinez RJ, Story S, Sobecky PA (2004) Identification of members of the metabolically active microbial populations associated with Beggiatoa species mat communities from Gulf of Mexico cold-seep sediments. Appl Environ Microbiol 70:5447–5458CrossRefGoogle Scholar
  70. Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454CrossRefGoogle Scholar
  71. Niemann H, Elvert M, Hovland M, Orcutt B, Judd A, Suck I et al (2005) Methane emission and consumption at a North Sea gas seep (Tommeliten area). Biogeosciences 2:335–351CrossRefGoogle Scholar
  72. Niemann H, Lösekann T, de Beer D, Elvert M, Nadalig T, Knittel K et al (2006) Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443:854–858CrossRefGoogle Scholar
  73. Omoregie EO, Mastalerz V, de Lange G, Straub KL, Kappler A, Røy H et al (2008) Biogeochemistry and community composition of iron- and sulfur-precipitating microbial mats at the Chefren Mud Volcano (Nile Deep Sea Fan, Eastern Mediterranean). Appl Environ Microbiol 74:3198–3215CrossRefGoogle Scholar
  74. Oni OE, Friedrich MW (2017) Metal oxide reduction linked to anaerobic methane oxidation. Trends Microbiol 25:88–90CrossRefGoogle Scholar
  75. Orcutt B, Boetius A, Elvert M, Samarkin V, Joye SB (2005) Molecular biogeochemistry of sulfate reduction, methanogenesis and the anaerobic oxidation of methane at Gulf of Mexico cold seeps. Geochim Cosmochim Acta 69:4267–4281CrossRefGoogle Scholar
  76. Orphan VJ, Hinrichs KU, Ussler W, Paull CK, Taylor LT, Sylva SP et al (2001) Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol 67:1922–1934CrossRefGoogle Scholar
  77. Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF (2002) Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc Natl Acad Sci U S A 99:7663–7668CrossRefGoogle Scholar
  78. Oshkin IY, Wegner C-E, Lüke C, Glagolev MV, Filippov IV, Pimenov NV et al (2014) Gammaproteobacterial methanotrophs dominate cold methane seeps in floodplains of West Siberian Rivers. Appl Environ Microbiol 80:5944–5954CrossRefGoogle Scholar
  79. Pachiadaki MG, Lykousis V, Stefanou EG, Kormas KA (2010) Prokaryotic community structure and diversity in the sediments of an active submarine mud volcano (Kazan mud volcano, East Mediterranean Sea). FEMS Microbiol Ecol 72:429–444CrossRefGoogle Scholar
  80. Paul BG, Ding H, Bagby SC, Kellermann MY, Redmond MC, Andersen GL, Valentine DL (2017) Methane-oxidizing bacteria shunt carbon to microbial mats at a marine hydrocarbon seep. Front Microbiol 8:186CrossRefGoogle Scholar
  81. Pernthaler A, Dekas AE, Brown CT, Goffredi SK, Embaye T, Orphan VJ (2008) Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc Natl Acad Sci U S A 105:7052–7057CrossRefGoogle Scholar
  82. Petersen JM, Dubilier N (2009) Methanotrophic symbioses in marine invertebrates. Environ Microbiol Rep 1:319–335CrossRefGoogle Scholar
  83. Portillo MC, Leff JW, Lauber CL, Fierer N (2013) Cell size distributions of soil bacterial and archaeal taxa. Appl Environ Microbiol 79:7610–7617CrossRefGoogle Scholar
  84. Preisler A, de Beer D, Lichtschlag A, Lavik G, Boetius A, Jørgensen BB (2007) Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment. ISME J 1:341–353CrossRefGoogle Scholar
  85. Ravenschlag K, Sahm K, Amann R (2001) Quantitative molecular analysis of the microbial community in marine arctic sediments (Svalbard). Appl Environ Microbiol 67:387–395CrossRefGoogle Scholar
  86. Redmond MC, Valentine DL, Sessions AL (2010) Identification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing. Appl Environ Microbiol 76:6412–6422CrossRefGoogle Scholar
  87. Roalkvam I, Jørgensen SL, Chen Y, Stokke R, Dahle H, Hocking WP et al (2011) New insight into stratification of anaerobic methanotrophs in cold seep sediments. FEMS Microbiol Ecol 78:233–243CrossRefGoogle Scholar
  88. Roslev P, King GM (1995) Aerobic and anaerobic starvation metabolism in methanotrophic bacteria. Appl Environ Microbiol 61:1563–1570CrossRefGoogle Scholar
  89. Roslev P, King GM (1994) Survival and recovery of methanotrophic bacteria starved under oxic and anoxic conditions. Appl Environ Microbiol 60:2602–2608CrossRefGoogle Scholar
  90. Rossel PE, Elvert M, Ramette A, Boetius A, Hinrichs K-U (2011) Factors controlling the distribution of anaerobic methanotrophic communities in marine environments: evidence from intact polar membrane lipids. Geochim Cosmochim Acta 75:164–184CrossRefGoogle Scholar
  91. Rubin-Blum M, Antony CP, Borowski C, Sayavedra L, Pape T, Sahling H et al (2017) Short-chain alkanes fuel mussel and sponge Cycloclasticus symbionts from deep-sea gas and oil seeps. Nat Microbiol 2:17093CrossRefGoogle Scholar
  92. Ruff SE, Arnds J, Knittel K, Amann R, Wegener G, Ramette A, Boetius A (2013) Microbial communities of deep-sea methane seeps at Hikurangi Continental Margin (New Zealand). PLoS ONE 8:e72627CrossRefGoogle Scholar
  93. Ruff SE, Biddle JF, Teske AP, Knittel K, Boetius A, Ramette A (2015) Global dispersion and local diversification of the methane seep microbiome. Proc Natl Acad Sci U S A 112:4015–4020CrossRefGoogle Scholar
  94. Ruff SE, Felden J, Gruber-Vodicka HR, Marcon Y, Knittel K, Ramette A, Boetius A (2019) In situ development of a methanotrophic microbiome in deep-sea sediments. ISME J 13:197–213CrossRefGoogle Scholar
  95. Saad S, Bhatnagar S, Tegetmeyer HE, Geelhoed JS, Strous M, Ruff SE (2017) Transient exposure to oxygen or nitrate reveals ecophysiology of fermentative and sulfate-reducing benthic microbial populations. Environ Microbiol 19:4866–4881CrossRefGoogle Scholar
  96. Schreiber L, Holler T, Knittel K, Meyerdierks A, Amann R (2010) Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade. Environ Microbiol 12:2327–2340Google Scholar
  97. Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14:e1002533CrossRefGoogle Scholar
  98. Sivan O, Antler G, Turchyn AV, Marlow JJ, Orphan VJ (2014) Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps. Proc Natl Acad Sci U S A 111:E4139–E4147CrossRefGoogle Scholar
  99. Sommer S, Linke P, Pfannkuche O, Schleicher T, Schneider von Deimling J, Reitz A et al (2009) Seabed methane emissions and the habitat of frenulate tubeworms on the Captain Arutyunov mud volcano (Gulf of Cadiz). Mar Ecol Prog Ser 382:69–86CrossRefGoogle Scholar
  100. Sommer S, Linke P, Pfannkuche O, Niemann H, Treude T (2010) Benthic respiration in a seep habitat dominated by dense beds of ampharetid polychaetes at the Hikurangi Margin (New Zealand). Mar Geol 272:223–232CrossRefGoogle Scholar
  101. Stagars MH, Ruff SE, Amann R, Knittel K (2016) High diversity of anaerobic alkane-degrading microbial communities in marine seep sediments based on (1-methylalkyl) succinate synthase genes. Front Microbiol 6:1511CrossRefGoogle Scholar
  102. Tavormina PL, Ussler W, Orphan VJ (2008) Planktonic and sediment-associated aerobic methanotrophs in two seep systems along the North American Margin. Appl Environ Microbiol 74:3985–3995CrossRefGoogle Scholar
  103. Teske A, Hinrichs K-U, Edgcomb V, de Vera Gomez A, Kysela D, Sylva SP, Sogin ML, Jannasch HW (2002) Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68:1994–2007CrossRefGoogle Scholar
  104. Thurber AR, Levin LA, Rowden AA, Sommer S, Linke P, Kröger K (2013) Microbes, macrofauna, and methane: a novel seep community fueled by aerobic methanotrophy. Limnol Oceanogr 58:1640–1656CrossRefGoogle Scholar
  105. Trembath-Reichert E, Case DH, Orphan VJ (2016) Characterization of microbial associations with methanotrophic archaea and sulfate-reducing bacteria through statistical comparison of nested Magneto-FISH enrichments. PeerJ 4:e1913CrossRefGoogle Scholar
  106. Vigneron A, Cruaud P, Pignet P, Caprais J-C, Cambon-Bonavita M-A, Godfroy A, Toffin L (2013) Archaeal and anaerobic methane oxidizer communities in the Sonora Margin cold seeps, Guaymas Basin (Gulf of California). ISME J 7:1595–1608CrossRefGoogle Scholar
  107. Vigneron A, Cruaud P, Roussel EG, Pignet P, Caprais J-C, Callac N et al (2014) Phylogenetic and functional diversity of microbial communities associated with subsurface sediments of the Sonora Margin, Guaymas Basin. PLoS One 9:e104427CrossRefGoogle Scholar
  108. Vigneron A, Bishop A, Alsop EB, Hull K, Rhodes I, Hendricks R et al (2017) Microbial and isotopic evidence for methane cycling in hydrocarbon-containing groundwater from the Pennsylvania Region. Front Microbiol 8:593CrossRefGoogle Scholar
  109. Wankel SD, Adams MM, Johnston DT, Hansel CM, Joye SB, Girguis PR (2012) Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction. Environ Microbiol 14:2726–2740CrossRefGoogle Scholar
  110. Wasmund K, Kurtböke DI, Burns KA, Bourne DG (2009) Microbial diversity in sediments associated with a shallow methane seep in the tropical Timor Sea of Australia reveals a novel aerobic methanotroph diversity. FEMS Microbiol Ecol 68:142–151CrossRefGoogle Scholar
  111. Weber HS, Habicht KS, Thamdrup B (2017) Anaerobic methanotrophic archaea of the ANME-2d cluster are active in a low-sulfate, iron-rich freshwater sediment. Front Microbiol 8:619Google Scholar
  112. Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A (2015) Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526:587–590CrossRefGoogle Scholar
  113. Wegener G, Shovitri M, Knittel K, Niemann H, Hovland M, Boetius A (2008) Biogeochemical processes and microbial diversity of the Gullfaks and Tommeliten methane seeps (Northern North Sea). Biogeosciences 5:1127–1144CrossRefGoogle Scholar
  114. Wegener G, Krukenberg V, Ruff SE, Kellermann MY, Knittel K (2016) Metabolic capabilities of microorganisms involved in and associated with the anaerobic oxidation of methane. Front Microbiol 7:46CrossRefGoogle Scholar
  115. Winkel M, Mitzscherling J, Overduin PP, Horn F, Winterfeld M, Rijkers R et al (2018) Anaerobic methanotrophic communities thrive in deep submarine permafrost. Sci Rep 8:1291CrossRefGoogle Scholar
  116. Yan T, Ye Q, Zhou J, Zhang CL (2006) Diversity of functional genes for methanotrophs in sediments associated with gas hydrates and hydrocarbon seeps in the Gulf of Mexico. FEMS Microbiol Ecol 57:251–259CrossRefGoogle Scholar
  117. Yanagawa K, Sunamura M, Lever MA, Morono Y, Hiruta A, Ishizaki O et al (2011) Niche separation of methanotrophic archaea (ANME-1 and -2) in methane-seep sediments of the Eastern Japan Sea Offshore Joetsu. Geomicrobiol J 28:118–129CrossRefGoogle Scholar
  118. Yoshinaga MY, Lazar CS, Elvert M, Lin Y-S, Zhu C, Heuer VB et al (2015) Possible roles of uncultured archaea in carbon cycling in methane-seep sediments. Geochim Cosmochim Acta 164:35–52CrossRefGoogle Scholar
  119. Zhang Y, Su X, Chen F, Jiao L, Jiang H, Dong H, Ding G (2012) Abundance and diversity of candidate division JS1- and Chloroflexi-related bacteria in cold seep sediments of the northern South China Sea. Front Earth Sci 6:373–382CrossRefGoogle Scholar
  120. Zhou Z, Liu Y, Lloyd KG, Pan J, Yang Y, Gu J-D, Li M (2019) Genomic and transcriptomic insights into the ecology and metabolism of benthic archaeal cosmopolitan Thermoprofundales (MBG-D archaea). ISME J 13:885–901CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Marine Biological LaboratoryWoods HoleUSA

Personalised recommendations