Advertisement

Uncovering Microbial Hydrocarbon Degradation Processes: The Promise of Stable Isotope Probing

Chapter
Part of the Springer Oceanography book series (SPRINGEROCEAN)

Abstract

Traditional microbiological methods for the identification of microorganisms after they have been isolated in pure culture have revealed key players in the degradation of hydrocarbons. But have we identified them all? The conspicuous enrichment of an uncultured Oceanospirillales in a sub-surface hydrocarbon plume during the Deepwater Horizon oil spill is one of many examples highlighting that we are not there yet in this respect. Culture-dependent methods typically miss identifying 99% of microorganisms originating from environmental samples, and are on their own ineffective in resolving the diversity and function of natural microbial communities. Stable isotope probing (SIP) is a technique used to identify a target group of microorganisms which can actively metabolize a specific substrate in an environmental sample and, thus, under in situ-like conditions. The technique involves incubating an environmental sample with an isotopically-labeled (e.g., 13C, or 15N) substrate and allowing the label to become incorporated into the biomass (e.g. DNA, RNA, protein, PLFAs) of those microorganisms capable of metabolizing the substrate. The labeled biomolecules are then isolated and analyzed to identify the organisms that actively incorporated the isotope label. SIP based on DNA or RNA are quite similar methods by the nature of their execution, albeit with subtle differences. The technique has a high phylogenetic resolution, and has provided many new insights to this day concerning microbial biodegradation of specific compounds and putative interrelationships of microbial activities with biogeochemical processes. This chapter provides an overview on the methodology, its caveats, and gives examples of applications for exploring the diversity of microbial hydrocarbon degraders in seep and other benthic habitats.

References

  1. Atlas RM, Hazen TC (2011) Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. Environ Sci Technol 45:6709–6715CrossRefGoogle Scholar
  2. Bazylinski DA, Farrington JW, Jannasch HW (1988) Hydrocarbons in surface sediments from a Guaymas Basin hydrothermal vent site. Org Geochem 12:547–558CrossRefGoogle Scholar
  3. Birnie GD, Rickwood D (1978) Centrifugal separations in molecular and cell biology. Butterworths, BostonGoogle Scholar
  4. Boschker HTS, Nold SC, Wellsbury P, Bos D, de Graaf W, Pel R, Parkes RJ, Cappenberg TE (1998) Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature 392:801–805CrossRefGoogle Scholar
  5. Buckley DH, Huangyutitham V, Hsu SF, Nelson TA (2007) Stable isotope probing with 15N achieved by disentangling the effects of genome G + C content and isotope enrichment on DNA density. Appl Environ Microbiol 73:3189–3195CrossRefGoogle Scholar
  6. Deutscher MP (2006) Degradation of RNA in bacteria: comparison of mRNA and stable RNA. Nucleic Acids Res 34:659–666CrossRefGoogle Scholar
  7. Dombrowski N, Donaho JA, Gutierrez T, Seitz KW, Teske AP, Baker BJ (2016) Reconstructing metabolic pathways of hydrocarbon-degrading bacteria from the Deepwater Horizon oil spill. Nat Microbiol 1:16057CrossRefGoogle Scholar
  8. Dumont MG, Pommerenke B, Casper P, Conrad R (2011) DNA-, rRNA- and mRNA-based stable isotope probing of aerobic methanotrophs in lake sediment. Environ Microbiol 13:1153–1167CrossRefGoogle Scholar
  9. Dumont MG, Pommerenke B, Casper P (2013) Using stable isotope probing to obtain a targeted metatranscriptome of aerobic methanotrophs in lake sediment. Environ Microbiol Rep 5:757–764Google Scholar
  10. Enge AJ, Nomaki H, Ogawa NO, Witte U, Moeseneder MM, Lavik G, Ohkouchi N, Kitazato H, Kučera M, Heinz P (2011) Response of the foraminiferal community to a simulated phytodetritus pulse in the abyssal North Pacific. Mar Ecol Prog Ser 438:129–142CrossRefGoogle Scholar
  11. Gilbert JA, Dupont CL (2011) Microbial Metagenomics: beyond the Genome. Ann Rev Mar Sci 3:347–371CrossRefGoogle Scholar
  12. Glöckner FO, Gasol JM, McDonough N, Calewaert J-B (2012) Marine microbial diversity and its role in ecosystem functioning and environmental change. In: Calewaert JB, McDonough N (eds) Marine board-ESF position paper 17. Marine Board-ESF, OstendGoogle Scholar
  13. Grob C, Taubert M, Howat AM, Burns OJ, Chen Y, Neufeld JD, Murrell CJ (2015) Generating enriched metagenomes from active microorganisms with DNA stable isotope probing. In: McGenity T, Timmis K, Nogales B (eds) Hydrocarbon and lipid microbiology protocols. Springer Protocols Handbooks, Springer, Berlin, HeidelbergGoogle Scholar
  14. Gutierrez T (2018) Marine, aerobic hydrocarbon-degrading Gammaproteobacteria—overview. In: McGenity TJ, Prince R (eds) Handbook of hydrocarbon and lipid microbiology. Taxonomy, genomics and ecophysiology of hydrocarbon-degrading microbes. Springer International PublishingGoogle Scholar
  15. Gutierrez T, Singleton DR, Aitken MD, Semple KT (2011) Stable-isotope probing of an algal bloom identifies uncultivated members of the Rhodobacteraceae associated with low molecular-weight PAH degradation. Appl Environ Microbiol 77:7856–7860CrossRefGoogle Scholar
  16. Gutierrez T, Singleton DR, Berry D, Yang T, Aitken MD, Teske A (2013) Hydrocarbon-degrading bacteria enriched by the Deepwater Horizon oil spill identified by cultivation and DNA-SIP. ISME J 7:2091–2104CrossRefGoogle Scholar
  17. Gutierrez T, Biddle JF, Teske A, Aitken MD (2015) Cultivation-dependent and cultivation-independent characterization of hydrocarbon-degrading bacteria in Guaymas Basin sediments. Front Microbiol 6:695Google Scholar
  18. Gutierrez-Zamora M-L, Manefield M (2010) An appraisal of methods for linking environmental processes to specific microbial taxa. Rev Environ Sci Biotechnol 9:153–185CrossRefGoogle Scholar
  19. Head IM, Jones DM, Röling WFM (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182CrossRefGoogle Scholar
  20. Jansson JK, Neufeld JD, Moran MA, Gilbert JA (2012) Omics for understanding microbial functional dynamics. Environ Microbiol 14:1–3CrossRefGoogle Scholar
  21. Jeffreys RM, Burke C, Jamieson AJ, Narayanaswamy BE, Ruhl HA, Smith KLS, Witte U (2013) Feeding preferences of abyssal macrofauna inferred from in situ pulse chase experiments. PLoS ONE 8:e80510CrossRefGoogle Scholar
  22. Jehmlich N, Schmidt F, von Bergen M, Richnow HH, Vogt C (2008) Protein-based stable isotope probing (Protein-SIP) reveals active species within anoxic mixed cultures. ISME J 2:1122–1133CrossRefGoogle Scholar
  23. Jeon CO, Park W, Padmanabhan P, DeRito C, Snape JR, Madsen EL (2003) Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proc Natl Acad Sci USA 100:13591–13596CrossRefGoogle Scholar
  24. Kleindienst S, Ramette A, Amann R, Knittel K (2012) Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments. Environ Microbiol 14:2689–2710CrossRefGoogle Scholar
  25. Kleindienst S, Herbst F-A, Stagars M, von Netzer F, von Bergen M, Seifert J et al (2014) Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps. ISME J 8:2029–2044CrossRefGoogle Scholar
  26. Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315Google Scholar
  27. Lueders T (2010) Stable isotope probing of hydrocarbon-degraders. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 4011–4026CrossRefGoogle Scholar
  28. Lueders T, Manefield M, Friedrich MW (2004) Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. Environ Microbiol 6:73–78CrossRefGoogle Scholar
  29. Lueders T, Dumont MG, Bradford L, Manefield M (2016) RNA-stable isotope probing: from carbon flow within key microbiota to targeted transcriptomes. Curr Opin Biotechnol 41:83–89CrossRefGoogle Scholar
  30. Manefield M, Whiteley AS, Griffiths RI, Bailey MJ (2002) RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol 68:5367–5373CrossRefGoogle Scholar
  31. Mishamandani S, Gutierrez T, Aitken MD (2014) DNA-based stable isotope probing coupled with cultivation methods implicates Methylophaga in hydrocarbon degradation. Front Microbiol 5:76CrossRefGoogle Scholar
  32. Molin S, Givskov M (1999) Application of molecular tools for in situ monitoring of bacterial growth activity. Environ Microbiol 1:383–391CrossRefGoogle Scholar
  33. Murphy D, Gemmell B, Vaccari L, Li C, Bacosa H, Evans M, Gemmell C, Harvey T, Jalali M, Neipa THR (2016) An in-depth survey of the oil spill literature since 1968: long term trends and changes since Deepwater Horizon. Mar Pollut Bull 113:371–379CrossRefGoogle Scholar
  34. Neufeld JD, Schafer H, Cox MJ, Boden R, McDonald IR, Murrell JC (2007a) Stable-isotope probing implicates Methylophaga spp. and novel Gammaproteobacteria in marine methanol and methylamine metabolism. ISME J 1:480–491CrossRefGoogle Scholar
  35. Neufeld JD, Vohra J, Dumont MG, Lueders T, Manefield M, Friedrich MW, Murrell JC (2007b) DNA stable-isotope probing. Nat Protoc 2:860–866CrossRefGoogle Scholar
  36. Neufeld JD, Chen Y, Dumont MG, Murrell JC (2008) Marine methylotrophs revealed by stable-isotope probing, multiple displacement amplification and metagenomics. Environ Microbiol 10:1526–1535CrossRefGoogle Scholar
  37. Orcutt BN, Joye SB, Kleindienst S, Knittel K, Ramette A, Reitz A et al (2010) Impact of natural oil and higher hydrocarbons on microbial diversity, distribution, and activity in Gulf of Mexico cold-seep sediments. Deep-Sea Res II 57:2008–2021CrossRefGoogle Scholar
  38. Pratscher J, Dumont MG, Conrad R (2011) Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil. Proc Natl Acad Sci USA 108:4170–4175CrossRefGoogle Scholar
  39. Prince RC (2010) Bioremediation of marine oil spills. In: McGenity T, Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Taxonomy, genomics and ecophysiology of hydrocarbon-degrading microbes. Springer, BerlinGoogle Scholar
  40. Prince RC, Grammain A, McGenity TJ (2010) The microbes. In: Timmis KN, McGenity T (eds) Handbook of hydrocarbon and lipid microbiology. Prokaryotic hydrocarbon degraders. Springer, BerlinGoogle Scholar
  41. Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649CrossRefGoogle Scholar
  42. Schwartz E (2007) Characterization of growing microorganisms in soil by stable-isotope probing with H218O. Appl Environ Microbiol 73:2541–2546CrossRefGoogle Scholar
  43. Schwarz S, Waschkowitz T, Daniel R (2006) Enhancement of gene detection frequencies by combining DNA-based stable-isotope probing with the construction of metagenomic DNA libraries. World J Microbiol Biotechnol 22:363–368CrossRefGoogle Scholar
  44. Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Ann Rev Microbiol 39:321–346CrossRefGoogle Scholar
  45. Stratmann T, Mevenkamp L, Sweetman AK, Vanreusel A, van Oevelen D (2018) Has phytodetritus processing by an abyssal soft-sediment community recovered 26 years after an experimental disturbance? Front Mar Sci 5:59CrossRefGoogle Scholar
  46. Sweetman AK, Witte U (2008) Response of an abyssal macrofaunal community to a phytodetrital pulse. Mar Ecol Prog Ser 355:73–84CrossRefGoogle Scholar
  47. Sweetman AK, Smith CR, Shulse CN, Maillot B, Lindh M, Church MJ, Meyer KS, van Oevelen D, Stratmann T, Gooday AJ (2019) Key role of bacteria in the short-term cycling of carbon at the abyssal seafloor in a low particulate organic carbon flux region of the eastern Pacific Ocean. Limnol Oceanogr 64:694–713CrossRefGoogle Scholar
  48. Teske A, Callaghan AV, LaRowe DE (2014) Biosphere frontiers of subsurface life in the sedimented hydrothermal system of Guaymas Basin. Frontiers Microbiol 5:362CrossRefGoogle Scholar
  49. Warnecke F, Hugenholtz P (2007) Building on basic metagenomics with complementary technologies. Genome Biol 8:231CrossRefGoogle Scholar
  50. Whiteley AS, Thomson B, Lueders T, Manefield M (2007) RNA stable-isotope probing. Nat Protoc 2:838–844CrossRefGoogle Scholar
  51. Widdel F, Knittel K, Galushko A (2010) Anaerobic hydrocarbon-degrading microorganisms: an overview. In: Timmis KN, McGenity T, van der Meer TJR, de Lorenzo V (eds) Handbook of hydrocarbon and lipid microbiology. Springer, BerlinGoogle Scholar
  52. Wischer D, Kumaresan D, Johnston A, El Khawand M, Stephenson J, Hillebrand-Voiculescu AM, Chen Y, Murrell CJ (2014) Bacterial metabolism of methylated amines and identification of novel methylotrophs in Movile Cave. ISME J 9:195–206CrossRefGoogle Scholar
  53. Witte U, Wenzhöfer F, Sommer S, Boetius A, Heinz P, Aberle N, Sand M, Cremer A, Abraham W-R, Jørgensen BB, Pfannkuche O (2003) In situ experimental evidence of the fate of a phytodetritus pulse at the abyssal sea floor. Nature 424:763–766CrossRefGoogle Scholar
  54. Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18:257–266CrossRefGoogle Scholar
  55. Youngblut ND, Buckley DH (2014) Intra-genomic variation in G + C content and its implications for DNA stable isotope probing. Environ Microbiol Rep 6:767–775CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Heriot-Watt UniversityEdinburghUK
  2. 2.Eberhard Karls University of TübingenTübingenGermany

Personalised recommendations