Skip to main content

Uncovering Microbial Hydrocarbon Degradation Processes: The Promise of Stable Isotope Probing

  • Chapter
  • First Online:
Marine Hydrocarbon Seeps

Part of the book series: Springer Oceanography ((SPRINGEROCEAN))

Abstract

Traditional microbiological methods for the identification of microorganisms after they have been isolated in pure culture have revealed key players in the degradation of hydrocarbons. But have we identified them all? The conspicuous enrichment of an uncultured Oceanospirillales in a sub-surface hydrocarbon plume during the Deepwater Horizon oil spill is one of many examples highlighting that we are not there yet in this respect. Culture-dependent methods typically miss identifying 99% of microorganisms originating from environmental samples, and are on their own ineffective in resolving the diversity and function of natural microbial communities. Stable isotope probing (SIP) is a technique used to identify a target group of microorganisms which can actively metabolize a specific substrate in an environmental sample and, thus, under in situ-like conditions. The technique involves incubating an environmental sample with an isotopically-labeled (e.g., 13C, or 15N) substrate and allowing the label to become incorporated into the biomass (e.g. DNA, RNA, protein, PLFAs) of those microorganisms capable of metabolizing the substrate. The labeled biomolecules are then isolated and analyzed to identify the organisms that actively incorporated the isotope label. SIP based on DNA or RNA are quite similar methods by the nature of their execution, albeit with subtle differences. The technique has a high phylogenetic resolution, and has provided many new insights to this day concerning microbial biodegradation of specific compounds and putative interrelationships of microbial activities with biogeochemical processes. This chapter provides an overview on the methodology, its caveats, and gives examples of applications for exploring the diversity of microbial hydrocarbon degraders in seep and other benthic habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atlas RM, Hazen TC (2011) Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. Environ Sci Technol 45:6709–6715

    Article  Google Scholar 

  • Bazylinski DA, Farrington JW, Jannasch HW (1988) Hydrocarbons in surface sediments from a Guaymas Basin hydrothermal vent site. Org Geochem 12:547–558

    Article  Google Scholar 

  • Birnie GD, Rickwood D (1978) Centrifugal separations in molecular and cell biology. Butterworths, Boston

    Google Scholar 

  • Boschker HTS, Nold SC, Wellsbury P, Bos D, de Graaf W, Pel R, Parkes RJ, Cappenberg TE (1998) Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature 392:801–805

    Article  Google Scholar 

  • Buckley DH, Huangyutitham V, Hsu SF, Nelson TA (2007) Stable isotope probing with 15N achieved by disentangling the effects of genome G + C content and isotope enrichment on DNA density. Appl Environ Microbiol 73:3189–3195

    Article  Google Scholar 

  • Deutscher MP (2006) Degradation of RNA in bacteria: comparison of mRNA and stable RNA. Nucleic Acids Res 34:659–666

    Article  Google Scholar 

  • Dombrowski N, Donaho JA, Gutierrez T, Seitz KW, Teske AP, Baker BJ (2016) Reconstructing metabolic pathways of hydrocarbon-degrading bacteria from the Deepwater Horizon oil spill. Nat Microbiol 1:16057

    Article  Google Scholar 

  • Dumont MG, Pommerenke B, Casper P, Conrad R (2011) DNA-, rRNA- and mRNA-based stable isotope probing of aerobic methanotrophs in lake sediment. Environ Microbiol 13:1153–1167

    Article  Google Scholar 

  • Dumont MG, Pommerenke B, Casper P (2013) Using stable isotope probing to obtain a targeted metatranscriptome of aerobic methanotrophs in lake sediment. Environ Microbiol Rep 5:757–764

    Google Scholar 

  • Enge AJ, Nomaki H, Ogawa NO, Witte U, Moeseneder MM, Lavik G, Ohkouchi N, Kitazato H, Kučera M, Heinz P (2011) Response of the foraminiferal community to a simulated phytodetritus pulse in the abyssal North Pacific. Mar Ecol Prog Ser 438:129–142

    Article  Google Scholar 

  • Gilbert JA, Dupont CL (2011) Microbial Metagenomics: beyond the Genome. Ann Rev Mar Sci 3:347–371

    Article  Google Scholar 

  • Glöckner FO, Gasol JM, McDonough N, Calewaert J-B (2012) Marine microbial diversity and its role in ecosystem functioning and environmental change. In: Calewaert JB, McDonough N (eds) Marine board-ESF position paper 17. Marine Board-ESF, Ostend

    Google Scholar 

  • Grob C, Taubert M, Howat AM, Burns OJ, Chen Y, Neufeld JD, Murrell CJ (2015) Generating enriched metagenomes from active microorganisms with DNA stable isotope probing. In: McGenity T, Timmis K, Nogales B (eds) Hydrocarbon and lipid microbiology protocols. Springer Protocols Handbooks, Springer, Berlin, Heidelberg

    Google Scholar 

  • Gutierrez T (2018) Marine, aerobic hydrocarbon-degrading Gammaproteobacteria—overview. In: McGenity TJ, Prince R (eds) Handbook of hydrocarbon and lipid microbiology. Taxonomy, genomics and ecophysiology of hydrocarbon-degrading microbes. Springer International Publishing

    Google Scholar 

  • Gutierrez T, Singleton DR, Aitken MD, Semple KT (2011) Stable-isotope probing of an algal bloom identifies uncultivated members of the Rhodobacteraceae associated with low molecular-weight PAH degradation. Appl Environ Microbiol 77:7856–7860

    Article  Google Scholar 

  • Gutierrez T, Singleton DR, Berry D, Yang T, Aitken MD, Teske A (2013) Hydrocarbon-degrading bacteria enriched by the Deepwater Horizon oil spill identified by cultivation and DNA-SIP. ISME J 7:2091–2104

    Article  Google Scholar 

  • Gutierrez T, Biddle JF, Teske A, Aitken MD (2015) Cultivation-dependent and cultivation-independent characterization of hydrocarbon-degrading bacteria in Guaymas Basin sediments. Front Microbiol 6:695

    Google Scholar 

  • Gutierrez-Zamora M-L, Manefield M (2010) An appraisal of methods for linking environmental processes to specific microbial taxa. Rev Environ Sci Biotechnol 9:153–185

    Article  Google Scholar 

  • Head IM, Jones DM, Röling WFM (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182

    Article  Google Scholar 

  • Jansson JK, Neufeld JD, Moran MA, Gilbert JA (2012) Omics for understanding microbial functional dynamics. Environ Microbiol 14:1–3

    Article  Google Scholar 

  • Jeffreys RM, Burke C, Jamieson AJ, Narayanaswamy BE, Ruhl HA, Smith KLS, Witte U (2013) Feeding preferences of abyssal macrofauna inferred from in situ pulse chase experiments. PLoS ONE 8:e80510

    Article  Google Scholar 

  • Jehmlich N, Schmidt F, von Bergen M, Richnow HH, Vogt C (2008) Protein-based stable isotope probing (Protein-SIP) reveals active species within anoxic mixed cultures. ISME J 2:1122–1133

    Article  Google Scholar 

  • Jeon CO, Park W, Padmanabhan P, DeRito C, Snape JR, Madsen EL (2003) Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proc Natl Acad Sci USA 100:13591–13596

    Article  Google Scholar 

  • Kleindienst S, Ramette A, Amann R, Knittel K (2012) Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments. Environ Microbiol 14:2689–2710

    Article  Google Scholar 

  • Kleindienst S, Herbst F-A, Stagars M, von Netzer F, von Bergen M, Seifert J et al (2014) Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps. ISME J 8:2029–2044

    Article  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    Google Scholar 

  • Lueders T (2010) Stable isotope probing of hydrocarbon-degraders. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 4011–4026

    Chapter  Google Scholar 

  • Lueders T, Manefield M, Friedrich MW (2004) Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. Environ Microbiol 6:73–78

    Article  Google Scholar 

  • Lueders T, Dumont MG, Bradford L, Manefield M (2016) RNA-stable isotope probing: from carbon flow within key microbiota to targeted transcriptomes. Curr Opin Biotechnol 41:83–89

    Article  Google Scholar 

  • Manefield M, Whiteley AS, Griffiths RI, Bailey MJ (2002) RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol 68:5367–5373

    Article  Google Scholar 

  • Mishamandani S, Gutierrez T, Aitken MD (2014) DNA-based stable isotope probing coupled with cultivation methods implicates Methylophaga in hydrocarbon degradation. Front Microbiol 5:76

    Article  Google Scholar 

  • Molin S, Givskov M (1999) Application of molecular tools for in situ monitoring of bacterial growth activity. Environ Microbiol 1:383–391

    Article  Google Scholar 

  • Murphy D, Gemmell B, Vaccari L, Li C, Bacosa H, Evans M, Gemmell C, Harvey T, Jalali M, Neipa THR (2016) An in-depth survey of the oil spill literature since 1968: long term trends and changes since Deepwater Horizon. Mar Pollut Bull 113:371–379

    Article  Google Scholar 

  • Neufeld JD, Schafer H, Cox MJ, Boden R, McDonald IR, Murrell JC (2007a) Stable-isotope probing implicates Methylophaga spp. and novel Gammaproteobacteria in marine methanol and methylamine metabolism. ISME J 1:480–491

    Article  Google Scholar 

  • Neufeld JD, Vohra J, Dumont MG, Lueders T, Manefield M, Friedrich MW, Murrell JC (2007b) DNA stable-isotope probing. Nat Protoc 2:860–866

    Article  Google Scholar 

  • Neufeld JD, Chen Y, Dumont MG, Murrell JC (2008) Marine methylotrophs revealed by stable-isotope probing, multiple displacement amplification and metagenomics. Environ Microbiol 10:1526–1535

    Article  Google Scholar 

  • Orcutt BN, Joye SB, Kleindienst S, Knittel K, Ramette A, Reitz A et al (2010) Impact of natural oil and higher hydrocarbons on microbial diversity, distribution, and activity in Gulf of Mexico cold-seep sediments. Deep-Sea Res II 57:2008–2021

    Article  Google Scholar 

  • Pratscher J, Dumont MG, Conrad R (2011) Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil. Proc Natl Acad Sci USA 108:4170–4175

    Article  Google Scholar 

  • Prince RC (2010) Bioremediation of marine oil spills. In: McGenity T, Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Taxonomy, genomics and ecophysiology of hydrocarbon-degrading microbes. Springer, Berlin

    Google Scholar 

  • Prince RC, Grammain A, McGenity TJ (2010) The microbes. In: Timmis KN, McGenity T (eds) Handbook of hydrocarbon and lipid microbiology. Prokaryotic hydrocarbon degraders. Springer, Berlin

    Google Scholar 

  • Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649

    Article  Google Scholar 

  • Schwartz E (2007) Characterization of growing microorganisms in soil by stable-isotope probing with H182O. Appl Environ Microbiol 73:2541–2546

    Article  Google Scholar 

  • Schwarz S, Waschkowitz T, Daniel R (2006) Enhancement of gene detection frequencies by combining DNA-based stable-isotope probing with the construction of metagenomic DNA libraries. World J Microbiol Biotechnol 22:363–368

    Article  Google Scholar 

  • Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Ann Rev Microbiol 39:321–346

    Article  Google Scholar 

  • Stratmann T, Mevenkamp L, Sweetman AK, Vanreusel A, van Oevelen D (2018) Has phytodetritus processing by an abyssal soft-sediment community recovered 26 years after an experimental disturbance? Front Mar Sci 5:59

    Article  Google Scholar 

  • Sweetman AK, Witte U (2008) Response of an abyssal macrofaunal community to a phytodetrital pulse. Mar Ecol Prog Ser 355:73–84

    Article  Google Scholar 

  • Sweetman AK, Smith CR, Shulse CN, Maillot B, Lindh M, Church MJ, Meyer KS, van Oevelen D, Stratmann T, Gooday AJ (2019) Key role of bacteria in the short-term cycling of carbon at the abyssal seafloor in a low particulate organic carbon flux region of the eastern Pacific Ocean. Limnol Oceanogr 64:694–713

    Article  Google Scholar 

  • Teske A, Callaghan AV, LaRowe DE (2014) Biosphere frontiers of subsurface life in the sedimented hydrothermal system of Guaymas Basin. Frontiers Microbiol 5:362

    Article  Google Scholar 

  • Warnecke F, Hugenholtz P (2007) Building on basic metagenomics with complementary technologies. Genome Biol 8:231

    Article  Google Scholar 

  • Whiteley AS, Thomson B, Lueders T, Manefield M (2007) RNA stable-isotope probing. Nat Protoc 2:838–844

    Article  Google Scholar 

  • Widdel F, Knittel K, Galushko A (2010) Anaerobic hydrocarbon-degrading microorganisms: an overview. In: Timmis KN, McGenity T, van der Meer TJR, de Lorenzo V (eds) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin

    Google Scholar 

  • Wischer D, Kumaresan D, Johnston A, El Khawand M, Stephenson J, Hillebrand-Voiculescu AM, Chen Y, Murrell CJ (2014) Bacterial metabolism of methylated amines and identification of novel methylotrophs in Movile Cave. ISME J 9:195–206

    Article  Google Scholar 

  • Witte U, Wenzhöfer F, Sommer S, Boetius A, Heinz P, Aberle N, Sand M, Cremer A, Abraham W-R, Jørgensen BB, Pfannkuche O (2003) In situ experimental evidence of the fate of a phytodetritus pulse at the abyssal sea floor. Nature 424:763–766

    Article  Google Scholar 

  • Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18:257–266

    Article  Google Scholar 

  • Youngblut ND, Buckley DH (2014) Intra-genomic variation in G + C content and its implications for DNA stable isotope probing. Environ Microbiol Rep 6:767–775

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Gutierrez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gutierrez, T., Kleindienst, S. (2020). Uncovering Microbial Hydrocarbon Degradation Processes: The Promise of Stable Isotope Probing. In: Teske, A., Carvalho, V. (eds) Marine Hydrocarbon Seeps. Springer Oceanography. Springer, Cham. https://doi.org/10.1007/978-3-030-34827-4_10

Download citation

Publish with us

Policies and ethics