Skip to main content

Approaches for Inserting Neurodynamics into the Training of Healthcare Teams

  • Chapter
  • First Online:

Part of the book series: Cognitive Science and Technology ((CSAT))

Abstract

Team neurodynamics is the study of the changing rhythms and organizations of teams from the perspective of neurophysiology. As a discipline, team neurodynamics is located at the intersection of collaborative learning, psychometrics, complexity theory, and neurobiology with the resulting principles and applications both drawing from and contributing to these specialties. This article describes the tools for studying team neurodynamics and illustrates the potential and the challenges these methods and models have for better understanding healthcare team training and performance. The fundamental metric is neurodynamic organization, which is the tendency of teams and its members to enter into prolonged metastable relationships when they experience and resolve uncertainty. The patterns of these relationships are resolved by symbolic modeling of electroencephalographic (EEG) power levels of the team members, and the information in these patterns are calculated using information theory tools. The topics discussed in this chapter anticipate the time when dynamic biometric data can contribute to our understanding of how to rapidly determine a team’s functional status, and how to use this information to optimize outcomes and training. The rapid, dynamic, and task neutral measures make the lessons learned in healthcare applicable to other complex group and team environments, and provide a foundation for incorporating these models into machines to support the training and performance of teams.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abersold, M., (2018). Simulation-based learning: No longer a novelty in undergraduate education. OJIN: The Online Journal of Issues in Nursing 23(2). https://doi.org/10.3912/ojin.vol23no02ppt39.

  • Ancona, D., & Chong, C. L. (1999). Cycles and synchrony: The temporal role of context in team behavior. Research on Managing Groups and Teams, 2, 33–48.

    Google Scholar 

  • Anders, S., Heinzle, J., Weiskopf, N., Ethofer, T., & Haynes, J. (2011). Flow of affective information between communicating brains. Neuroimage, 54, 439–446.

    Article  Google Scholar 

  • Baker, D. P., Amodeo, A. M., Krokos, K. J., Slonim, A., & Herrera, H. (2010). Assessing teamwork attitudes in healthcare: Development of the TeamSTEPPS® teamwork attitudes questionnaire. Quality and Safety Health Care, 19, e49.

    Google Scholar 

  • Bond, W. F., Deitrick, L. M., Eberhardt, M., et al. (2006). Cognitive versus technical debriefing after simulation training. Academy of Emergency Medicine, 13, 276–283.

    Article  Google Scholar 

  • Bonnefond, M., & Jensen, O. (2015). Gamma activity coupled to alpha phase as a mechanism for top-down controlled gating. PLoS ONE, 10, e012866.

    Article  Google Scholar 

  • Bowe, S., Johnson, K., & Puscas, L. (2017). Facilitation and debriefing in simulation education. Otolaryngologic Clinics of North America, 50(5), 989–1001.

    Article  Google Scholar 

  • Buzaki, G. (2006). Rhythms of the brain. New York, NY: Oxford University Press.

    Book  Google Scholar 

  • Cheng, A., Morse, K. J., Rudolph, J., Arab, A., Runnacles, J., & Eppich, W. (2016). Learner-centered debriefing for health care simulation education: Lessons for faculty development. Simulation in Healthcare, 11, 32–40.

    Article  Google Scholar 

  • Clapper, T. C. (2016). Proposing a new debrief checklist for team STEPPS to improve documentation and clinical debriefing. Simulation and Gaming, 47, 710–719.

    Article  Google Scholar 

  • Cooke, N. J., Gorman, J. C., & Kiekel, P. (2008). Communication as team-level cognitive processing. In M. P. Letsky, N. W. Warner, S. M. Fiore & C. A. P. Smith (Eds.), Macrocognition in teams. Ashgate: Burlington, VT, USA.

    Google Scholar 

  • Cooke, N. J., Salas, E., Cannon-Bowers, J., & Stout, R. (2000). Measuring team knowledge. Human Factors, 42, 151–173.

    Article  Google Scholar 

  • Daw, C. S., Finney, C. E. A., & Tracy, E. R. (2003). A review of symbolic analysis of experimental data. Review of Scientific Instruments, 74, 915. https://doi.org/10.1063/1.1531823.

    Article  Google Scholar 

  • Delorme, A., Palmer, J., Onton, J., Oostenveld, R., & Makeig, S. (2012). Independent EEG sources are dipolar. PLoS ONE, 7(2), e30135.

    Article  Google Scholar 

  • Draschkow, D., Heikel, E., Võ, M., Fiebach, C. J., & Sassenhagen, J., (2018). No evidence from MVPA for different processes underlying the N300 and N400 incongruity effects in object-scene processing. Neuropsychologia, 120, 9–17. ISSN 0028-3932. https://doi.org/10.1016/j.neuropsychologia.

  • Entin, E. E., & Serfaty, D. (1999). Adaptive team coordination. Human Factors: The Journal of the Human Factors and Ergonomics Society, 41(2), 312–325.

    Article  Google Scholar 

  • Fanning, R., & Gaba, D. (2007). The role of debriefing in simulation-based learning. Simulation in Healthcare, 2, 115–125.

    Article  Google Scholar 

  • Farooqui, A. A., & Manly, T. (2018). Hierarchical cognition caused task related deactivations but not just in default mode regions. eNeuro, 5(6), ENEURO.0008-18.2018.

    Google Scholar 

  • Fiore, S. M., Smith-Jentsch, K. A., Salas, E., Warner, N., & Letsky, M. (2010). Towards an understanding of macro cognition in teams: Developing and defining complex collaborative process and product. Theoretical Issues in Ergonomics Science, 11(4), 250–271.

    Article  Google Scholar 

  • Flack, J. (2017). Life’s information hierarchy. In S. I. Walker, P. C. W. Davies & G. F. R. Ellis (Eds.), From matter to life: Information and causality. Cambridge: Cambridge University Press.

    Google Scholar 

  • Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11, 127–138. https://doi.org/10.1007/s11229-007-9237-y.

    Article  Google Scholar 

  • Gardezi, F., Lingard, L., Espin, S. L., Whyte, S., Orser, B., & Baker, G. R. (2009). Silence, power and communication in the operating room. Journal of Advanced Nursing, 65, 1390–1399.

    Article  Google Scholar 

  • Garner, A. J. P., Thompson, J., Vedral, V., & Gu, M. (2017, April 16). Thermodynamics of complexity and pattern manipulation. arXiv:1510:00010v3[quant.ph].

  • Giere, R. N., & Moffatt, B. (2003). Distributed cognition: Where the cognitive and social merge. Social Studies of Science, 33, 301–310.

    Article  Google Scholar 

  • Gorman, J. C. (2014). Team coordination and dynamics: Two central issues. Current Directions in Physiological Science, 23, 355–360.

    Article  Google Scholar 

  • Grimm, D., Gorman, J. C., Stevens, R. H., Galloway, T., Willemsen-Dunlap, A. M., & Halpin, D. J. (2017). Demonstration of a method for real-time detection of anomalies in team communication. In Proceedings of the Human Factors and Ergonomics Society 59th Annual Meeting (pp. 282–286). Santa Monica, CA: Human Factors and Ergonomics Society.

    Google Scholar 

  • Guastello, S. J., & Peressini, A. F. (2018). Development of a synchronization coefficient for biosocial interactions in groups and teams. Nonlinear Dynamics, Psychology, Life Sciences, 48, 3–33.

    Google Scholar 

  • Hari, R. (2006). Action perception connection and the cortical mu-rhythm. Progress in Brain Research, 159, 253–260.

    Article  Google Scholar 

  • Hsu, M., Bhatt, M., Adolphs, R., Tranel, D., & Camerer, C. F. (2005). Neural systems responding to degrees of uncertainty in human decision making. Science, 310, 1680–1683.

    Article  Google Scholar 

  • Husebo, S. E., Dieckmann, P., Rystedt, H., Soreide, E., & Friberg, F. (2013). The relationship between facilitators’ questions and the level of reflection in postsimulation debriefing. Simulation in Healthcare, 8, 135–141.

    Article  Google Scholar 

  • James, R. G., Ellison, C. J., & Crutchfield, J. P. (2011). Anatomy of a bit: Information in a time series observation (Santa Fe Institute Working Paper 11–05). arXiv:1105.2988v1[cs.IT].

  • Kihlgren, P., Spanger, L., & Dieckmann, P. (2014). Investigating novice doctors’ reflections in debriefings after simulation scenarios. Journal of Medical Teacher, 37, 437–443.

    Article  Google Scholar 

  • Kolchinsky, A., & Wolpert, D. H. (2018). Semantic information, autonomous agency and non-equilibrium statistical physics. Interface Focus, 8, 20180041.

    Article  Google Scholar 

  • Lachaux, J. P., Jung, J., Dreher, J. C., Bertrand, O., Minotti, L., Hoffman, D., et al. (2008). Silence is golden: Transient neural deactivation in the prefrontal cortex during attentive reading. Cerebral Cortex, 18, 443–450.

    Article  Google Scholar 

  • Lederman, L. (1992). Debriefing: toward a systemic assessment of theory and practice. Simulation and Gaming, 23, 145–160.

    Article  Google Scholar 

  • Marks, M., Mathieu, J. E., & Zaccaro, S. J. (2001). A temporally-based framework and taxonomy of teamwork. The Academy of Management Review, 26, 356–376.

    Article  Google Scholar 

  • Menoret, M., Varnet, L., Fargier, R., Cheylus, A., Curie, A., des Portes, V., et al. (2014). Neural correlates of non-verbal social interactions: A dual-EEG study. Neurophyschologia, 55, 85–91.

    Article  Google Scholar 

  • Mosier, K. H., & Chidester, T. R. (1991). Situation assessment and situation awareness in a team setting. In Y. Queinnec & F. Daniellou (Eds.), Designing for everyone (pp. 798–800). London: Taylor & Francis.

    Google Scholar 

  • Mullen, T. (2012). NITRC: CleanLine: Tool/Resource Info. Retrieved from http://www.nitrc.org/projects/cleanline.

  • Murray, E. A., & Rudebeck, P. H. (2017). Specializations for reward-guided decision-making in the primate ventral prefrontal cortex. Nature Reviews Neuroscience, 19, 404–417.

    Article  Google Scholar 

  • Oostenveld, R., Fries, P., Maris, E., & Schoffelen, M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, Article ID 156869, 9 pp. https://doi.org/10.1155/2011/156869.

    Article  Google Scholar 

  • Ossandon, T., Jerbi, K., Vidal, J. R., Bayle, D. J., Henaff, M.-A., Jung, J., et al. (2011). Transient suppression of broadband gamma power in the default mode network is correlated with task complexity and subject performance. Journal of Neuroscience, 31, 14521–14530.

    Article  Google Scholar 

  • O’Neil, H. F., Jr., Chung, G. K., & Brown, R. (1997). Use of networked simulations as a context to measure team competencies. In H. F. O’Neil Jr. (Ed.), Workforce readiness: Competencies and assessment (pp. 411–452). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Petranek, C. (1994). Maturation in experiential learning: Principles of simulation and gaming. Simulation in Gaming, 25, 513–522.

    Article  Google Scholar 

  • Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of National Academy of Science of USA, 98, 676–682.

    Google Scholar 

  • Salas, E., Stagl, K.C., & Burke, C. S. (2004). 25 Years of team effectiveness in organizations: Research themes and emerging needs. In C. L. Cooper & I. T. Robertson (Eds.), International review of industrial and organizational psychology (Vol. 19, pp. 56–101). New York: Wiley.

    Google Scholar 

  • Salas, E., Stevens, R., Gorman, J., Cooke, N. J., Guastello, S., & von Davier, A. (2015, September). What will quantitative measures of teamwork look like in 10 years? In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 59 (1), 235–239 (Sage Publications).

    Google Scholar 

  • Sanger, J., Muller, V., & Lindenberger, U. (2012, November). Intra-and interbrain synchronization and network properties when playing guitar in duets. Frontiers in Human Neuroscience, Article 312. https://doi.org/10.3389/fnhum.201200312.

  • Sato, N., & Mizuhara, H. (2018). Successful encoding during natural reading is associated with fixation related potential and large-scale network activation. eNeuro. https://doi.org/10.1523/eneuro.0122-18.2018.

    Article  Google Scholar 

  • Sawyer, T., & Deering, S. (2013). Adaptation of the US Army’s after-action review for simulation debriefing in healthcare. Simulation in Healthcare, 8, 388–397.

    Article  Google Scholar 

  • Schippers, M., Roebroeck, A., Renken, R., Nanetti, L., & Keysers, C. (2010). Mapping the information flows from one brain to another during gestural communication. Proceedings of National Academy of Science of USA, 107, 9388–9393.

    Google Scholar 

  • Schmidt, E., Goldhaber-Fiebert, S. M., Ho, L. A., & McDonald, D. (2013). Simulation exercises as a patient safety strategy: A systematic review. Annals of Internal Medicine, 158, 426–432.

    Article  Google Scholar 

  • Sedley, W., & Cunningham, M. O. (2013). Do cortical gamma oscillations promote or suppress perception? An under-asked question with an over-assumed answer. Frontiers in Human Neuroscience. 7, Article 595.

    Google Scholar 

  • Shockley, K., Santana, M.-V., & Fowler, C. A. (2003). Mutual interpersonal postural constraints are involved in cooperative conversation. Journal of Experimental Psychology: Human Perception and Performance, 29, 326–332.

    Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 379–423.

    Article  MathSciNet  MATH  Google Scholar 

  • Shannon, C. E. (1951). Prediction and entropy of printed English. The Bell System Technical Journal, 30, 50–64.

    Article  MATH  Google Scholar 

  • Staropoli, P. C., Gregori, N. Z., Junk, A. K., Galor, A., Goldhardt, R., Goldhagen, B. E., et al. (2018). Surgical simulation training reduces intraoperative cataract surgery complications among residents. Simulation in Healthcare, 13, 11–15. https://doi.org/10.1097/SIH.0000000000000255.

    Article  Google Scholar 

  • Stephens, G., Silbert, L., & Hasson, U. (2010). Speaker-listener neural coupling underlies successful communication. Proceedings of the National academy of Sciences of the United States of America. Retrieved from www.pnas.org/cgi/doi/10.1073/pnas.1008662107.

  • Stevens, R. H., & Galloway, T. (2014). Toward a quantitative description of the neurodynamic organizations of teams. Social Neuroscience, 9(2), 160–173.

    Article  Google Scholar 

  • Stevens, R. H., & Galloway, T. (2015). Modeling the neurodynamic organizations and interactions of teams. Social Neuroscience, 11, 123–139. https://doi.org/10.1080/17470919.2015.1056883.

    Article  Google Scholar 

  • Stevens, R. H., & Galloway, T. (2017, May). Are neurodynamic organizations a fundamental property of teamwork? Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2017.00644.

  • Stevens, R., & Galloway, T. L. (2019). Teaching machines to recognize neurodynamic correlates of team and team member uncertainty. Journal of Cognitive Engineering and Decision Making, 13, 310–327. https://doi.org/10.1177/1555343419874569

    Article  Google Scholar 

  • Stevens, R. H., Galloway, T., Halpin, D., & Willemsen-Dunlap, A. (2016). Healthcare teams neurodyamically reorganize when resolving uncertainty. Entropy, 18, 427. https://doi.org/10.3390/e18120427.

    Article  Google Scholar 

  • Stevens R. H., Galloway T., Lamb J., Steed R., & Lamb C. (2017). Linking team neurodynamic organizations with observational ratings of team performance. In A. von Davier, M. Zhu & P. Kyllonen (Eds.), Innovative assessment of collaboration. New York, NY: Springer.

    Google Scholar 

  • Stevens, R.H., Galloway, T., & Willemsen-Dunlap, A., (2016). Intermediate neurodynamic representations: A pathway towards quantitative measurements of teamwork? Human Factors & Ergonomics National Meeting, 60(1), 1996–2000.

    Google Scholar 

  • Stevens, R. H., Galloway, T. & Willemsen-Dunlap, A. (2017). Low level predictors of team dynamics: A neurodynamic approach. In E. Salas, B. Vessey & L. B. Landon (Eds.), Research in managing groups and teams. Research series: Team dynamics over time, Vol. 18, pp. 71–92. Emerald Insight.

    Google Scholar 

  • Stevens, R.H., Galloway, T., & Willemsen-Dunlap. (2018). Quantitative modeling of individual, shared and team neurodynamic information. Human Factors, 60, 1022–1034.

    Google Scholar 

  • Stevens, R.H., Galloway, T., Gorman, J., Willemsen-Dunlap, A., Halpin, D., & Grimm, D. (2018, October). Making sense of team information. Paper presented at 2018 Human Factors & Ergonomics National Meeting, Philadelphia, PA.

    Google Scholar 

  • Stevens, R., Galloway, T. L., & Willemsen-Dunlap, A. (2019). Advancing our understandings of healthcare team dynamics from the simulation room to the operating room: A neurodynamic perspective. Frontiers in Psychology, 10, 1660. https://doi.org/10.3389/fpsyg.2019.01660

  • Tognoli, E., & Kelso, J. A. (2015). The coordination dynamics of social neuromarkers. Frontiers of Human Neuroscience, 9, 563. https://doi.org/10.3389/fnhum.2015.00563.

    Article  Google Scholar 

  • Tononi, G., Boly, M., Massimini, M., & Koch, C. (2016). Integrated information theory: From consciousness to its physical substrate. Nature Reviews in Neuroscience, 17, 450–461.

    Article  Google Scholar 

  • Vaskinn, A., Sergi, M. J., & Green, M. F. (2009). The challenges of ecological validity in the measurement of social perception in schizophrenia. The Journal of Nervous and Mental Disease, 197, 700–702.

    Article  Google Scholar 

  • Vergauwe, E., & Cowan, N. (2014, March). A common short-term memory retrieval rate may describe many cognitive procedures. Frontiers of Human Neuroscience, Article 126. https://doi.org/10.3389/fnhum.2014.00126.

  • von Davier, A. A., & Halpin, P. F. (2013). Collaborative problem solving and the assessment of cognitive skills: Psychometric considerations. ETS Research Report Series, 2013(2), 1–36. https://doi.org/10.1002/j.2333-8504.2013.tb02348.x.

    Article  Google Scholar 

  • Zenati, M. A., Leissner, K. B., Zorca, S., Kennedy-Metz, L., Yule, S., & Dias, R. (2019). First reported use of team cognitive workload for root cause analysis in cardiac surgery. Seminar Thoracic Surgery.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix 1: Processing EEG Data Streams

Appendix 1: Processing EEG Data Streams

The data acquisitions began shortly after the EEG sensors were adjusted for good contact (<10 Ω). The EEG data streams were aligned for the three team members using electronic markers inserted into the EEG data streams as well as the events observed in videos. Signals from outside the brain can be a confounder when interpreting models built from EEG signals, especially signals obtained in complex environments. Commonly found artifacts are generated from speech, eyeblinks, heartbeats, breathing rhythms and other electromyography sources. As neurodynamic organizations regularly occur during silence, speech is an unlikely source for most organizations (Stevens & Galloway, 2014). EEG processing included separate high and low bandpass filters, the rejection of bad channels and regular rhythms associated with eyeblinks and heartbeats were identified and removed during data preprocessing (Delorme & Makeig, 2004; Delorme et al., 2012) by the interactive Matlab® toolboxes EEGLAB and FieldTrip (oostenveld, Fries, Maris, & Schoffelen, 2011).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stevens, R., Galloway, T., Willemsen-Dunlap, A. (2020). Approaches for Inserting Neurodynamics into the Training of Healthcare Teams. In: Nam, C. (eds) Neuroergonomics. Cognitive Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-34784-0_13

Download citation

Publish with us

Policies and ethics