Skip to main content

Nonlinear Dynamic Response of Nanocomposite Cantilever Beams

  • Conference paper
  • First Online:
New Trends in Nonlinear Dynamics

Abstract

The nonlinear dynamic response of carbon nanotube (CNT) nanocomposite cantilevers is experimentally and theoretically investigated. Nanocomposite cantilevers made of a thermoplastic polymer and high aspect ratio CNTs are subject to a primary resonance base excitation. The experimentally obtained frequency-response curves highlight the effects of the CNT/polymer stick-slip energy dissipation on the nonlinear macroscopic dynamic response of the nanocomposite beams. The hysteresis arising from the nanostructural stick-slip gives rise to a change of nonlinearity dominated by the flexural curvature hardening effect towards a softening behavior at low amplitudes. The CNT/polymer frictional sliding hysteresis is here described by a hysteretic restoring force in the context of the nonlinear Euler–Bernoulli beam theory. An initial parametric analysis shows the capability of the model to capture qualitatively the softening–hardening frequency response trend.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, X., Song, M., Yang, J., Kitipornchai, S.: Primary and secondary resonances of functionally graded graphene platelet-reinforced nanocomposite beams. Nonlinear Dyn. 95(3), 1807–1826 (2019)

    Article  Google Scholar 

  2. Cetraro, M., Lacarbonara, W., Formica, G.: Nonlinear dynamic response of carbon nanotube nanocomposite microbeams. J. Comput. Nonlinear Dyn. 12(3), 031007 (2017)

    Article  Google Scholar 

  3. Rokni, H., Milani, A.S., Seethaler, R.J.: Size-dependent vibration behavior of functionally graded CNT-reinforced polymer microcantilevers: modeling and optimization. Eur. J. Mech. A. Solids 49, 26–34 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  4. Yas, M.H., Heshmati, M.: Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load. Appl. Math. Model. 36(4), 1371–1394 (2012)

    Article  MathSciNet  Google Scholar 

  5. Koratkar, N.A., Suhr, J., Joshi, A., Kane, R.S., Schadler, L.S., Ajayan, P.M., Bartolucci, S.: Characterizing energy dissipation in single-walled carbon nanotube polycarbonate composites. Appl. Phys. Lett. 87(6), 063102 (2005)

    Article  ADS  Google Scholar 

  6. Suhr, J., Koratkar, N.A.: Energy dissipation in carbon nanotube composites: a review. J. Mater. Sci. 43(13), 4370–4382 (2008)

    Article  ADS  Google Scholar 

  7. Taló, M., Lacarbonara, W., Formica, G., Lanzara, G.: Hysteresis identification of carbon nanotube composite beams. In: ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, p. V004T08A021. American Society of Mechanical Engineers, New York (2018)

    Google Scholar 

  8. Lacarbonara, W., Taló, M., Carboni, B., Lanzara, G.: Tailoring of hysteresis across different material scales. In: Recent Trends in Applied Nonlinear Mechanics and Physics, pp. 227–250. Springer, Cham (2018)

    Google Scholar 

  9. Carboni, B., Lacarbonara, W., Brewick, P.T., Masri, S.F.: Dynamical response identification of a class of nonlinear hysteretic systems. J. Intell. Mater. Syst. Struct. 29(13), 2795–2810 (2018). https://doi.org/10.1177/1045389X18778792

    Article  Google Scholar 

  10. Lacarbonara, W.: Nonlinear Structural Mechanics: Theory, Dynamical Phenomena and Modeling. Springer, New York (2013)

    Book  Google Scholar 

  11. Taló, M., Krause, B., Pionteck, J., Lanzara, G., Lacarbonara, W.: An updated micromechanical model based on morphological characterization of carbon nanotube nanocomposites. Compos. Part B 115(Supplement C), 70–78 (2017)

    Google Scholar 

  12. Formica, G., Taló, M., Lanzara, G., Lacarbonara, W.: Parametric identification of carbon nanotube nanocomposites constitutive response. J. Appl. Mech. 86(4), 041007 (2019). https://doi.org/10.1115/1.4042137

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research leading to these results was supported by the European Research Council under the EU Seventh Framework Program (FP/2007-2013)/ERC Grant Agreement n. 308261 and by the European Office of Aerospace Research and Development/Air Force Office of Scientific Research Grant (Grant N. FA9550-141-0082 DEF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Talò .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Talò, M., Carboni, B., Formica, G., Lanzara, G., Snyder, M., Lacarbonara, W. (2020). Nonlinear Dynamic Response of Nanocomposite Cantilever Beams. In: Lacarbonara, W., Balachandran, B., Ma, J., Tenreiro Machado, J., Stepan, G. (eds) New Trends in Nonlinear Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-34724-6_6

Download citation

Publish with us

Policies and ethics