Skip to main content

Nonlinear Vibration Analysis of Metamaterial Honeycomb Sandwich Structures with Negative Poisson’s Ratio

  • Conference paper
  • First Online:
New Trends in Nonlinear Dynamics
  • 660 Accesses

Abstract

The research on existence, bifurcation, and number of periodic solutions is closely related to Hilbert’s 16th problem. The main goal of this chapter is to investigate the nonlinear dynamic response and periodic vibration characteristic of a simply supported concave hexagonal honeycomb sandwich plate with negative Poisson’s ratio. The plate is subjected to its in-plane and transverse excitation. The curvilinear coordinate frame, Poincaré map, and improved Melnikov function are proposed to detect the existence and number of the periodic solutions. The theoretical analyses indicate the existence of periodic orbits and can guaranteeat most four periodic orbits under certain conditions. Numerical simulations are performed to verify the theoretical results. The relative positons as well as the vibration characteristics can also be clearly found from the phase portraits. Theperiodic motion for the equation is closely related to the amplitude modulated periodic vibrations of the plate. The results will provide theoretical guidance to nonlinear vibration control for the metamaterial honeycomb sandwich structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans, K.E.: Auxetic polymers: a new range of materials. Endeavour. 15, 170–174 (1991)

    Article  Google Scholar 

  2. Yu, X.L., Zhou, J., Liang, H.Y., Jiang, Z.Y., Wu, L.L.: Mechanical metamaterials associated with stiffness, rigidity and compressibility: a brief review. Prog. Mater. Sci. 94, 114–173 (2018)

    Article  Google Scholar 

  3. Greaves, G.N., Greer, A.L., Lakes, R.S., Rouxel, T.: Poisson’s ratio and modern materials. Nat. Mater. 10, 823–837 (2011)

    Article  ADS  Google Scholar 

  4. Chen, X., Feng, Z.H.: Dynamic behaviour of a thin laminated plate embedded with auxetic layers subject to in-plane excitation. Mech. Res. Commun. 85, 45–52 (2017)

    Article  Google Scholar 

  5. Duc, N., Cong, P.H.: Nonlinear dynamic response and vibration of sandwich composite plates with negative Poisson’s ratio in auxetic honeycombs. J. Sandw. Struct. Mater. 20, 692–717 (2018)

    Article  Google Scholar 

  6. Li, C., Shen, H.S., Wang, H.: Nonlinear bending of sandwich beams with functionally graded negative Poisson’s ratio honeycomb core. Compos. Struct. 212, 317–325 (2019)

    Article  Google Scholar 

  7. Li, J., Quan, T.T., Zhang, W.: Bifurcation and number of subharmonic solutions of a 4d non-autonomous slow-fast system and its application. Nonlinear Dyn. 92, 721–739 (2018)

    Article  Google Scholar 

  8. Chen, J.E., Zhang, W., Guo, X.Y., Sun, M.: Theoretical and experimental studies on nonlinear oscillations of symmetric cross-ply composite laminated plates. Nonlinear Dyn. 73, 1697–1714 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research project is supported by National Natural Science Foundation of China (11772007, 11372014, 11802200, 11571026) and also supported by Beijing Natural Science Foundation (1172002, Z180005), the International Science and Technology Cooperation Program of China (2014DFR61080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Li .

Editor information

Editors and Affiliations

Appendix

Appendix

Assuming that H 1, j = F j, H 2, j = G j, c 1, k = a k, c 2, k = b k (j = 1, 2; k = 1, 2, ⋯, 17). Then F = (F 1, F 2)T and G = (G 1, G 2)T of Eq. (2) can be expressed as

$$ {\begin{array}{c}{H}_{i,1}={c}_{i,16}-{c}_{i,2}\left(\left(2-i\right){x}_2+\left(i-1\right){y}_2\right)+2{c}_{i,3}{y}_1{y}_2+{c}_{i,5}\left({x}_2{y}_1+{x}_1{y}_2\right)\\[2pt] {}+2{c}_{i,4}{x}_1{x}_2+\left({c}_{i,6}{y}_2+{c}_{i,7}{y}_1+{c}_{i,8}{x}_2+{c}_{i,9}{x}_1\right)\left({y}_1^2+{y}_2^2\right)\\[2pt] {}+\left({c}_{i,10}{y}_2+{c}_{i,11}{y}_1+{c}_{i,12}{x}_2+{c}_{i,13}{x}_1\right)\left({x}_1^2+{x}_2^2\right)\\[2pt] {}+\left({c}_{i,14}{y}_2+2{c}_{i,9}{y}_1+{c}_{i,15}{x}_2+2{c}_{i,11}{x}_1\right)\left({x}_1{y}_1+{x}_2{y}_2\right)\end{array}} $$
$$ {\begin{array}{c}{H}_{i,2}={c}_{i,17}-5{c}_{i,2}\left(\left(2-i\right){x}_1+\left(i-1\right){y}_1\right)+{c}_{i,3}\left({y}_1^2+3{y}_2^2\right)+{c}_{i,4}\left({x}_1^2+3{x}_2^2\right)\\[2pt] {}+{c}_{i,5}\left({x}_1{y}_1+3{x}_2{y}_2\right)+\left({c}_{i,7}{y}_2-{c}_{i,6}{y}_1+{c}_{i,9}{x}_2-{c}_{i,8}{x}_1\right)\left({y}_1^2+{y}_2^2\right)\\[2pt] {}+\left({c}_{i,11}{y}_2-{c}_{i,10}{y}_1+{c}_{i,13}{x}_2-{c}_{i,12}{x}_1\right)\left({x}_1^2+{x}_2^2\right)\\[2pt] {}+\left(2{c}_{i,9}{y}_2-{c}_{i,14}{y}_1+2{c}_{i,11}{x}_2-{c}_{i,15}{x}_1\right)\left({x}_1{y}_1+{x}_2{y}_2\right)\end{array}} $$

where the coefficients are respectively

\( {a}_2={\alpha}_2^2/24\vphantom{\frac{\int}{\int}} \)

a 3 = (α 5f 1 + 3α 4f 2)/16

a 4 = (3α 3f 1 + α 6f 2)/16

a 5 = (α 6f 1 + α 5f 2)/8

a 6 = 3α 4(σ 1 + σ 2)/8

a 7 = 3μα 4(3β 1 − α 1)/8

a 8 = α 5(2σ 1 − σ 2)/4

a 9 = μα 5β 1/4

a 10 = α 6(3σ 2 − σ 1)/8

a 11 = μα 6(α 1 + β 1)/8

a 12 = 3α 3σ 1/4

a 13 = 3μα 1α 3/4

a 14 = α 5σ 2/2

a 15 = α 6(3σ 1 − σ 2)/4

a 16 = μα 1f 1/16

a 17 = σ 1f 1/16

\( {b}_2={\beta}_2^2/24\vphantom{\frac{\int}{\int}} \)

b 3 = (β 6f 1 + 3β 3f 2)/16

b 4 = (3β 4f 1 + β 5f 2)/16

b 5 = (β 6f 2 + β 5f 1)/8

b 6 = 3β 3σ 2/4

b 7 = 3μβ 1β 3/4

b 8 = β 6(3σ 1 − σ 2)/8

b 9 = μβ 6(α 1 + β 1)/8

b 10 = β 5(−σ 1 + 2σ 2)/4

b 11 = μα 1β 5/4

b 12 = 3β 4(σ 1 + σ 2)/8

b 13 = 3μβ 4(3α 1 − β 1)/8

b 14 = β 6(−σ 1 + 3σ 2)/4

b 15 = β 5σ 1/2

b 16 = μβ 1f 2/16

b 17 = σ 2f 2/16

 

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, S., Li, J., Zhou, J., Quan, T. (2020). Nonlinear Vibration Analysis of Metamaterial Honeycomb Sandwich Structures with Negative Poisson’s Ratio. In: Lacarbonara, W., Balachandran, B., Ma, J., Tenreiro Machado, J., Stepan, G. (eds) New Trends in Nonlinear Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-34724-6_3

Download citation

Publish with us

Policies and ethics