Skip to main content

Ulvans

  • Chapter
  • First Online:
Aquatic Biopolymers

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

  • 717 Accesses

Abstract

Ulvans are sulphated polysaccharides present in the cell walls of green algae alongside other cell wall polysaccharides. Their polymer structure is characterized by repeating units of disaccharide of sulfated rhamnose linked to other units of either uronic acid, guluronic acids or xylose. They are soluble polysaccharides; therefore, their extraction process is relatively milder compared to other insoluble polysaccharides. Ulvans are extracted from the Ulva species of green algae. These species of green algae as raw materials for biopolymer production have the advantage of growing in more diverse habitats and having a rapid growth rate. Extraction of ulvans is one way of utilizing the excess green algae resource which often results in algae blooms, to produce high-value bioactive polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrien A, Bonnet A, Dufour D, Baudouin S, Maugard T, Bridiau N (2017) Pilot production of ulvans from Ulva sp. and their effects on hyaluronan and collagen production in cultured dermal fibroblasts. Carbohyd Polym 157:1306–1314

    Article  CAS  Google Scholar 

  • Aguilar-Briseno JA, Cruz-Suarez LE, Sassi JF, Ricque-Marie D, Zapata-Benavides P, Gamboa EM, Rodriguez-Padilla C, Trejo-Avila LM (2015) Sulphated polysaccharides from ulva clathrata and cladosiphon okamuranus Seaweeds both inhibit viral attachment/entry and cell-cell fusion, in NDV Infection. Marine Drugs 13(2):697–712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ali MM, Agha FG (2009) Amelioration of streptozotocin-induced diabetes mellitus, oxidative stress and dyslipidemia in rats by tomato extract lycopene. Scand J Clin Lab Inv 69:371–379

    Article  CAS  Google Scholar 

  • Berri M, Slugocki C, Olivier M, Helloin E, Jacques I, Salmon H, Demais H, Le Goff M, Nyvall P, Collen (2016) Marine-sulfated polysaccharides extract of Ulva armoricana green algae exhibits an antimicrobial activity and stimulates cytokine expression by intestinal epithelial cells. J Appl Phycol 28:2999–3008

    Article  Google Scholar 

  • Berri M, Olivier M, Holbert S, Dupont J, Demais H, Le Goff M, Nyvall Collen P (2017) Ulvan from Ulva armoricana (Chlorophyta) activates the P13K/Akt signalling pathway via TLR4 to induce intestinal cytokine production. Algal Res 28:39–47

    Article  Google Scholar 

  • Bird RB, Stewart WE, Lightfoot EN (2005) Transport phenomena, 2nd edn. Wiley-India, New Delhi, pp 270

    Google Scholar 

  • Castro R, Piazzon MC, Zarra I, Leiro J, Noya M, Lamas J (2006) Stimulation of turbot phagocytes by ulva rigida C. agardh polysaccharides. Aquaculture 254:9–20

    Article  CAS  Google Scholar 

  • Chen D, Wu XZ, Wen ZY (2008) Sulphated polysaccharides and immune response: promoters or inhibitors. Panminerva Med 50:177–183

    CAS  PubMed  Google Scholar 

  • Cho M, Yang C, Kim SM, You S (2010) Molecular characterization and biological activities of water-soluble sulfated polysaccharides from Enteromorpha prolifera. Food Sci Biotechnol 19:525–533

    Article  CAS  Google Scholar 

  • Fernández-Díaz C, Coste O, Malta EJ (2017) Polymer chitosan nanoparticles functionalized with Ulva ohnoi extracts boost in vitro ulvan immunostimulant effect in Solea senegalensis macrophages. Algal Res 26:135–142

    Article  Google Scholar 

  • Glasson CRK, Sims IM, Carnachan SM, de Nys R, Magnusson M (2017) A cascading biorefinery process targeting sulfated polysaccharides (ulvan) from Ulva ohnoi. Algal Res 27:383–391

    Article  Google Scholar 

  • Hussein UK, Mahmoud HM, Farrag AG, Bishayee A (2015) Chemoprevention of diethylnitrosamine-initiated and phenobarbital-promoted hepatocarcinogenesis in rats by sulfated polysaccharides and aqueous extract of Ulva lactuca. Integr Cancer Ther 14:525–545

    Article  CAS  PubMed  Google Scholar 

  • Jaswir I, Monsur HA (2011) Anti-inflammatory compounds of macro algae origin: a review. J Med Plant Res 5:7146–7154

    CAS  Google Scholar 

  • Jiao LL, Li X, Li TB, Jiang P, Zhang LX, Wu MJ, Zhang LP (2009) Characterization and anti-tumor activity of alkali-extracted polysaccharide from Enteromorpha intestinalis. Int Immunopharmacol 9(3):324–329

    Article  CAS  PubMed  Google Scholar 

  • Karnjanaprakorn S, Tabarsa M, Chou M, You SG (2012) Characterization and immunomodulatory activities of sulfated polysaccharides from Capsosiphon fulvescens. Int J Biol Macromol 51:720–729

    Article  CAS  Google Scholar 

  • Kidgell JT, Magnusson M, de Nys R, Glasson CRK (2019) Ulvan: a systematic review of extraction, composition and function 39(101422):1–20

    Google Scholar 

  • Kim JK, Cho MI, Karnjanaprakorn S, Shin IS, You SG (2011a) In vitro and in vivo immunomodulatory activity of sulfated polysaccharides from Enteromorpha prolifera. Int J Biol Macromol 49:1051–1058

    Article  CAS  PubMed  Google Scholar 

  • Kim S-K, Thomas NV, Li X (2011b) Anticancer compounds from marine macroalgae and their application as medicinal foods. Adv Food Nutr Res 64:213–224

    Article  CAS  PubMed  Google Scholar 

  • Lahaye M (1998) NMR spectroscopic characterisation of oligosaccharides from two Ulva rigida ulvan samples (Ulvales, Chlorophyta) degraded by a lyase. Carbohydr Res 314:1–12

    Article  CAS  PubMed  Google Scholar 

  • Lahaye M, Robic A (2007) Structure and functional properties of Ulvan, a polysaccharide from green seaweeds. Biomacromol 8:1765–1774

    Article  CAS  Google Scholar 

  • Leiro JM, Castro R, Arranz JA, Lamas J (2007) Immunomodulating activities of acidic sulphated polysaccharides obtained from the seaweed Ulva rigida C. agardh. Int Immunopharmacol 7:879–888

    Article  CAS  PubMed  Google Scholar 

  • Li J, Jiang F, Chi Z, Han D, Yu L, Liu C (2018a) Development of Enteromorpha prolifera polysaccharide-based nanoparticles for delivery of curcumin to cancer cells. Int J Biol Macromol 112:413–421

    Article  CAS  PubMed  Google Scholar 

  • Li W, Wang K, Jiang N, Liu X, Wan M, Chang X, Liu D, Qi H, Liu S (2018b) Antioxidant and antihyperlipidemic activities of purified polysaccharides from Ulva pertusa. J Appl Phycol 30(4):2619–2627

    Article  CAS  Google Scholar 

  • Lopes N, Ray S, Espada SF, Bomfim WA, Ray B, Faccin-Galhardi LC, Linhares REC, Nozawa C (2017) Green seaweed Enteromorpha compressa (Chlorophyta, Ulvaceae) derived sulphated polysaccharides inhibit herpes simplex virus. Int J Biol Macromol 102:605–612

    Article  CAS  PubMed  Google Scholar 

  • Michel G, Czjzek C (2014) Polysaccharide-degrading enzymes from marine bacteria. Marine enzymes for biocatalysis: Sources, biocatalytic characteristics and bioprocesses of marine enzymes. Woodhead Publishing Ser Biomed 5:429–464

    Google Scholar 

  • Misurcova L, Skrivankova S, Samek D, Ambrozova J, Machu L (2012) Health benefits of algal polysaccharides in human nutrition. Adv Food Nutr Res 66:75–145

    Article  CAS  PubMed  Google Scholar 

  • Peasura N, Laohakunjit N, Kerdchoechuen O, Vongsawasdi P, Chao LK (2016) Assessment of biochemical and immunomodulatory activity of sulphated polysaccharides from Ulva intestinalis. Int J Biol Macromol 91:269–277

    Article  CAS  PubMed  Google Scholar 

  • Pengzhan Y, Quanbin Z, Hong Z, Xizhen N, Zhien L (2004) Preparation of polysaccharides in different molecular weights from Ulva pertusa Kjellman (Chlorophyta). Chin J Oceanol Limnol 22:381–385

    Article  Google Scholar 

  • Qi H, Sheng J (2015) The antihyperlipidemic mechanism of high sulfate content ulvan in rats. Mar Drugs 13:3407–3421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi H, Zhao T, Zhang Q, Li Z, Zhao Z, Xing R (2005) Antioxidant activity of different molecular weight sulfated polysaccharides from Ulva pertusa Kjellman (Chlorophyta). J Appl Phycol 17(6):527–534

    Article  CAS  Google Scholar 

  • Qi H, Huang L, Liu X, Liu D, Zhang Q, Liu S (2012) Antihyperlipidemic activity of high sulfate content derivative of polysaccharide extracted from Ulva pertusa (Chlorophyta). Carbohydr Polym 87:1637–1640

    Article  CAS  Google Scholar 

  • Qi XH, Mao WJ, Chen Y, Chen YL, Zhao CQ, Li N, Wang CY (2013) Chemical characteristics and anticoagulant activities of two sulfated polysaccharides from Enteromorpha linza (Chlorophyta). J Oceanogr Univ China 12:175–182

    Article  CAS  Google Scholar 

  • Reisky L, Stanetty C, Mihovilovic MD, Schweder T, Hehemann JH, Bornscheuer UT (2018) Biochemical characterization of an ulvan lyase from the marine flavobacterium Formosa agariphila KMM 3901T. Appl Microbiol Biotechnol 102(16):6987–6996

    Article  CAS  PubMed  Google Scholar 

  • Rioux L, Turgeon SL (2015) Seaweed carbohydrates. In: Tiwari BK, Troy DJ (eds) Seaweed sustainability: food and non-food application. Academic press, pp 141–192

    Google Scholar 

  • Robic A, Rondeau-Mouro C, Sassi JF, Lerat Y, Lahaye M (2009) Structure and interactions of ulvan in the cell wall of the marine green algae Ulva rotundata (Ulvales, Chlorophyceae). Carbohyd Polym 77:206–216

    Article  CAS  Google Scholar 

  • Rybak A, Messyasz B, Laska R (2012) Freshwater Ulva (Chlorophyta) as a bioaccumulator of selected heavy metals (Cd, Ni and Pb) and alkaline earth metals (Ca and Mg). Chemosphere 89(9):1066–1076

    Article  CAS  PubMed  Google Scholar 

  • Scharnweber D, Hubner L, Rother S, Hempel U, Anderegg U, Samsonov SA, Pisabarro MT, Hofbauer L, Schnabelrauch M, Franz S, Simon J, Hintze V (2015) Glycosaminoglycan derivatives: promising candidates for the design of functional biomaterials. J Mater Sci Mater Med 26(9):232–249

    Article  PubMed  CAS  Google Scholar 

  • Shao Q, He Y, Jiang, S (2011) Molecular dynamics simulation study of ion interactions with zwitterions. J Phys Chem B 115:8358–8363

    Article  CAS  PubMed  Google Scholar 

  • Song J, Chen X, Liu X, Zhang F, Hu L, Yue Y, Li K, Li P (2016) Characterization and comparison of the structural features, immune-modulatory and anti-avian influenza virus activities conferred by three algal sulfated polysaccharides. Mar Drugs 14(1):4

    Article  CAS  Google Scholar 

  • Tabarsa M, Han JH, Kim CY, You SG (2012) Molecular characteristics and immunomodulatory activities of water-soluble sulfated polysaccharides from Ulva pertusa. J Med Food 15:135–144

    Article  CAS  PubMed  Google Scholar 

  • Tabarsa M, You s, Dabaghian EH, Surayot U (2018) Water-soluble polysaccharides from Ulva intestinalis: molecular properties, structural elucidation and immunomodulatory activities. J Food Drug Anal 26:599–608

    Article  CAS  PubMed  Google Scholar 

  • Varnier AL, Sanchez L, Vatsa P, Boudesocque L, Garcia-Brugger A, Rabenoelina F, Sorokin A, Renault JH, Kauffmann S, Pugin A, Clement C, Baillieul F, Dorey S (2009) Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine. Plant Cell Environ 32:178–193

    Article  CAS  PubMed  Google Scholar 

  • Wang XX, Chen Y, Wang JJ, Liu ZX, Zhao SG (2014) Antitumor activity of sulfated polysaccharide from Enteromorpha intestinalis targeted against hepatoma through mitochondrial pathway. Tumor Biol 35:1641–1647

    Article  PubMed  CAS  Google Scholar 

  • Yabe T, Ishii Y, Amano Y, Koga T, Hayashi S, Nohara S, Tatsumoto H (2009) Green tide formed by free-floating Ulva spp. at Yatsu tidal flat, Japan. Limnology 10:239–245

    Article  Google Scholar 

  • Yang F, Fang X, Jiang W, Chen T (2017) Bioresponsive cancer-targeted polysaccharide nanosystem to inhibit angiogenesis. Int J Nanomed 12:7419–7431

    Article  CAS  Google Scholar 

  • Young CS, Gobler CJ (2016) Ocean acidification accelerates the growth of two bloom-forming, estuarine macroalgae. PLoS ONE 11(5):e0155152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, He P, Li H, Li G, Liu J, Jiao F, Zhang J, Huo Y, Shi X, Su R, Ye N, Liu D, Yu R, Wang Z, Zhou M, Jiao N (2019) Ulva prolifera green-tide outbreaks and their environmental impact in the Yellow Sea, China. Nat Sci Rev 0(0):1–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ololade Olatunji .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer International Publishing

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Olatunji, O. (2020). Ulvans. In: Aquatic Biopolymers. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-34709-3_8

Download citation

Publish with us

Policies and ethics