Skip to main content

Collagen

  • Chapter
  • First Online:
Aquatic Biopolymers

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

  • 777 Accesses

Abstract

Collagen is obtained from the bones, skins and scales of aquatic animals. It is made up of three polypeptide chains linked together to form a tertiary structure. It serves a structural role within the tissue where it provides flexibility within the tissue matrix. Collagen can be processed into various forms, and it finds applications in high-value products such as scaffolds in tissue engineering. Aquatic-derived collagen serves as an alternative to porcine or bovine sourced collagen, thus eliminating associated health risk or ethical concerns associated with the collagen sourced from these land animals. Since collagen can be obtained from the parts of the aquatic animals that are generally not consumed as food, the production of collagen contributes toward management of waste resources as well as optimal utilization of aquatic resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamczak M, ÅšcisÅ‚owska-Czarnecka A, Genet MJ, Dupont-Gillain CC, Pamula E (2011) Surface characterization, collagen adsorption and cell behaviour on poly(L-lactide-co-glycolide). Acta Bioeng Biomech 13(3):63–75

    PubMed  Google Scholar 

  • Aerssens J, Dequeker J, Mbuyi-Muamba JM (1994) Bone tissue composition: biochemical anatomy of bone. Clin Rheumatol 1:54–62

    Google Scholar 

  • Ahmed R, Haq M, Chin BS (2019) Characterization of marine derived collagen extracted from the by-products of bigeye tuna (Thunnus obesus). Int J Biol Macromol 135:668–676

    Article  CAS  PubMed  Google Scholar 

  • Ahn MY, Hwang JS, Ham SA, Hur J, Jo Y, Lee SY, Choi M, Han SG, Seo HG (2017) Subcritical water-hydrolyzed fish collagen ameliorates survival of endotoxemic mice by inhibiting HMGB1 release in a HO-1-dependent manner. Biomed Pharmacother 93:923–930

    Article  CAS  PubMed  Google Scholar 

  • Alves AL, Marques APL, Martins E, Silva TH, Reis RL (2017) Cosmetic potential of marine fish skin collagen. Cosmetics 4(4):39

    Article  CAS  Google Scholar 

  • Armstrong DG, Jude EB (2002) The role of matrix metalloproteinases in wound healing. J Am Podiatr Med Assoc 92:12–18

    Article  PubMed  Google Scholar 

  • Bai X, Gao M, Syed S, Zhuang J, Xu X, Zhang X (2018) Bioactive hydrogels for bone regeneration. Bioact Mater 3:401–417

    Article  PubMed  PubMed Central  Google Scholar 

  • Benedetto CD, Barbaglio A, Martinello T et al (2014) Production, characterization and biocompatibility of marine collagen matrices from an alternative and sustainable source: the sea urchin Paracentrotus lividus. Mar Drugs 12:4912–4933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bradley E, Griffiths C, Sherrat M, Bell M, Watson R (2015) Over the counter anti aging topical agents and their ability to repair and protect photo aged skin. Maturitas. https://doi.org/10.1016/j.maturitas.2014.12.19

    Article  PubMed  Google Scholar 

  • Chang S, Shefelbine SJ, Buehler MJ (2012) Structural and mechanical differences between collagen homo- and heterotrimers: relevance for the molecular origin of brittle bone disease. Biophys J 102(3):640–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chattopadhyay S, Raines RT (2014) Review collagen-based biomaterials for wound healing. Biopolymers 101:821–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Gao K, Liu S, Wang S, Elango J, Bao B, Dong J, Liu N, Wu W (2019) Fish collagen surgical compress repairing characteristics on wound healing process in vivo. Mar Drugs 17(33):1–12

    Article  Google Scholar 

  • Cheng X, Shao Z, Li C et al (2017) Isolation, characterization and evaluation of collagen from jellyfish Rhopilema esculentum Kishinouye for use in hemostatic applications. PLoS One 12:e0169731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chi CF, Cao ZH, Wang B, Hu FY, Li ZR, Zhang B (2014) Antioxidant and functional properties of collagen hydrolysates from Spanish mackerel skin as influenced by average molecular weight. Molecules 19:11211–11230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dabrowska A, Rotaru GM, Spano F, Affolter C, Fortunato G, Lehmann S, Derler S, Spencer ND, Rossi RM (2017) A water-responsive, gelatine-based human skin model. Tribol Int 113:316–322

    Article  Google Scholar 

  • Dai M, Liu X, Wang N, Sun J (2018) Squid type II collagen as a novel biomaterial: isolation, characterization, immunogenicity and relieving effect on degenerative osteoarthritis via inhibiting STAT1 signaling in proinflammatory macrophages. Mater Sci Eng C 89:283–294

    Article  CAS  Google Scholar 

  • Delphi L, Sepehri H, Motevaseli E et al (2016) Collagen extracted from Persian Gulf squid exhibits anti-cytotoxic properties on apple pectic treated cells: assessment in an in vitro bioassay model. Iran J Public Health 45:1054–1063

    PubMed  PubMed Central  Google Scholar 

  • Devgan L, Singh P, Durairaj K (2019) Minimally invasive facial cosmetic procedures. Otolaryngol Clin North Am 52(3):443–459

    Article  PubMed  Google Scholar 

  • Dong Z (2019) Blooms of the moon jellyfish Aurelia: causes, consequences and control. In: World seas: an environmental evaluation, vol III, 2nd edn., pp 163–171

    Chapter  Google Scholar 

  • Elango J, Lee JW, Wang S, Henrotin Y, de Val J, Regenstein JM, Lim SY, Bao B, Wu W (2018) Evaluation of differentiated bone cells proliferation by blue shark skin collagen via biochemical for bone tissue engineering. Mar Drugs 16:350

    Article  CAS  PubMed Central  Google Scholar 

  • FAO (2018) The state of world fisheries and aquaculture 2018—meeting the sustainable development goals. Rome. Licence: CC BY-NC-SA 3.0 IGO. ISBN 978-92-5-130562-1

    Google Scholar 

  • Felician FF, Yu RH, Li MZ, Li CJ, Chen HQ, Jiang Y, Tang T, Qi WY, Xu HM (2019) The wound healing potential of collagen peptides derived from the jellyfish Rhopilema esculentum. Chin J Traumatol 22:12–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Fiorellini J, Engebretson SP, Donath K, Weber HP (1998) Guided bone regeneration utilizing expanded polytetrafluoroethylene membranes in combination with submerged and nonsubmerged dental implants in beagle dogs. J Periodont 69:528–535

    Article  CAS  PubMed  Google Scholar 

  • Gamarro EG, Orawattanamateekul W, Sentina J, Gopal TKS (2013) By-products of tuna processing. GlobeFish 112(48):1–18. FAO, Rome

    Google Scholar 

  • Govindharaj M, Roopavathi KU, Rath SK (2019) Valorization of discarded Marine Eel fish skin for collagen extraction as a 3D printable blue biomaterial for tissue engineering. J Clean Prod (in press)

    Google Scholar 

  • Hanani ZAN, Roos YH, Kerry JP (2014) Use and application of gelatin as potential biodegradable packaging materials for food products. Int J Biol Macromol 71:94–102

    Article  CAS  Google Scholar 

  • Hochstein AO, Bhatia A (2014) Collagen: its role in wound healing. Podiatry Manage 103(106):109–110

    Google Scholar 

  • Jeevithan E, Zhang JY, Wang NP, He L, Bao B, Wu WH (2015) Physico-chemical, antioxidant and intestinal absorption properties of whale shark type-II collagen based on its solubility with acid and pepsin. Process Biochem 50:463–472

    Article  CAS  Google Scholar 

  • Khong NM, Yusoff FM, Jamilah B et al (2016) Nutritional composition and total collagen content of three commercially important edible jellyfish. Food Chem 196:953–960

    Article  CAS  PubMed  Google Scholar 

  • Lin CC, Ritch R, Lin MS, Ni M, Chang Y, Lu YL, Lai HJ, Lin F (2010) A new fish scale-scaffold for corneal regeneration. Eur Cells Mater 19:50–57

    Article  Google Scholar 

  • Liu D, Nie W, Li D, Wang W, Zheng L, Zhang J, Zhang J, Peng C, Mo X, He C (2019) 3D printed PCL/SrHA scaffold for enhanced bone regeneration. Chem Eng J 362:269–279

    Article  CAS  Google Scholar 

  • Mahboob S (2015) Isolation and characterization of collagen from fish waste material—skin, scales and fins of Catla catla and Cirrhinus mrigala. J Food Sci Technol 52(7):4296–4305

    Article  CAS  PubMed  Google Scholar 

  • Matmaroh K, Benjakul S, Prodpran T, Encarnacion AB, Kishimura H (2011) Characteristics of acid soluble collagen and pepsin soluble collagen from scale of spotted golden goatfish (Parupeneus heptacanthus). Food Chem 129(3):1179–1186

    Article  CAS  PubMed  Google Scholar 

  • Moses O, Vitrial D, Aboodi G, Sculean A, Tal H, Kozlovsky A, Artzi Z, Weinreb M, Nemcovsky CE (2008) Biodegradation of three different collagen membranes in the rat calvarium: a comparative study. J Periodontol 79(5):905–911

    Article  PubMed  Google Scholar 

  • Moura LIF, Dias AMA, Suesca E, Casadiegos S, Leal EC, Fontanilla MR, Carvalho L, de Sousa HC, Carvalho E (2014) Neurotensin-loaded collagen dressings reduce inflammation and improve wound healing in diabetic mice. Biochem Biophys Acta 1842:32–43

    CAS  PubMed  Google Scholar 

  • Muthukumar T, Anbarasu K, Prakash D, Sastry TP (2014) Effect of growth factors and pro-inflammatory cytokines by the collagen biocomposite dressing material containing Macrotyloma uniflorum plant extract—in vivo wound healing. Colloids Surf B Biointerfaces 121:178–188

    Article  CAS  PubMed  Google Scholar 

  • Olatunji O, Denloye A (2017) Temperature-dependent extraction kinetics of hydrolyzed collagen from scales of croaker fish using thermal extraction. Food Sci Nutr 5:1015–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olatunji O, Denloye A (2019) Production of hydrogel microneedles from fish scale biopolymer. J Polym Environ 27(6):1252–1258

    Article  CAS  Google Scholar 

  • Olatunji O, Olsson RT (2015) Microneedles from fishscale-nanocellulose blends using low temperature mechanical press method. Pharmaceutics 7:363–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olatunji O, Igwe CC, Ahmed AS, Alhassan DOA, Asieba GO, Das DB (2014) Microneedles from fish scale biopolymer. J Appl Polym Sci 131:40377–40388

    Article  CAS  Google Scholar 

  • Pal P, Srivas PK, Dadhich P, Das B, Maity PP, Moulik D, Dhara S (2016) Accelerating full thickness wound healing using collagen sponge of mrigal fish (Cirrhinus cirrhosus) scale origin. Int J Biol Macromol 93:1507–1518

    Article  CAS  PubMed  Google Scholar 

  • Rayner M, Ostbring K, Purhagen J (2016) Application of natural polymers in food. In: Olatunji O (ed) Natural polymers: industry techniques and applications. Springer, Switzerland. https://doi.org/10.1007/978-3-319-26414-1_5

    Google Scholar 

  • Research and Markets (2019) Collagen market by product type—global forecast to 2023, Feb 2019. Report ID: 4756592

    Google Scholar 

  • Robinson RA (1979) Bone tissue: composition and function. Johns Hopkins Med J 145(1):10–24

    CAS  PubMed  Google Scholar 

  • Savary G, Grisel M, Picard C (2016) Cosmetics and personal care products. In: Olatunji O (ed) Natural polymers: industry techniques and applications. Springer, Switzerland, pp 219–261

    Chapter  Google Scholar 

  • Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sionkowska A, Kozlowska J (2014) Fish scales as a biocomposite of collagen and calcium salts. Eng Mater 587:185–190

    CAS  Google Scholar 

  • Subramaniam S (2018) Trimethylamine oxide (TMAO): a new toxic kid on the block. J Biomol Res Therapeut 7(1)

    Google Scholar 

  • Sullivan SP, Koutsonanos DG, del Pilar M et al (2010) Dissolving polymer microneedle patches for influenza vaccination. Nat Med 16(8):915–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun W, Inayathullah M, Manoukian MAC, Malkovsky AV, Manickam S, Marinkovich MP, Lane AT, Tayebi AM, Rajadas J (2014) Transdermal delivery of functional collagen via polyvinylpyrrolidone microneedle. Ann Biomed Eng 43(12):2978–2990

    Article  Google Scholar 

  • Tan CC, Karim AA, Latiff A et al (2013) Extraction and characterization of pepsin-solubilized collagen from the body wall of crown-of-thorns starfish (Acanthaster planci). Int Food Res J 20:3013–3020

    Google Scholar 

  • Xia Z, Yu X, Jiang X, Brody HD, Rowe DW, Wei M (2013) Fabrication and characterization of biomimetic collagen-apatite scaffolds with tunable structures for bone tissue engineering. Acta Biomater 9(7):7308–7319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yunoki S, Ikoma T, Monkawa A, Ohta K, Kikuchi M, Sotome S, Shinomiya K, Tanaka J (2006) Control of pore structure and mechanical property in hydroxyapatite/collagen composite using unidirectional ice growth. Mater Lett 60(8):999–1002

    Article  CAS  Google Scholar 

  • Yunoki S, Ikoma T, Monkawa A, Marukawa E, Sotome S, Shinomiya K, Tanaka J (2007) Three-dimensional porous hydroxyapatite/collagen composite with rubber-like elasticity. Mater Sci Eng C 18(4):393–409

    CAS  Google Scholar 

  • Zhang D, Wu X, Chen J, Lin K (2018) The development of collagen based composite scaffolds for bone regeneration. Bioact Mater 3:129–138

    Article  PubMed  Google Scholar 

  • Zhou T, Wang NP, Xue Y, Ding TT, Liu X, Mo XM, Sun J (2016) Electrospun tilapia collagen nanofibers accelerating wound healing via inducing keratinocytes proliferation and differentiation. Colloids Surf B 143:415–422

    Article  CAS  Google Scholar 

  • Zhuang YL, Zhao X, Li BF (2009) Optimization of antioxidant activity by response surface methodology in hydrolysates of jellyfish (Rhopilema esculentum) umbrella collagen. J Zhejiang Univ Sci B 10:572–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang Y, Sun L, Zhang Y et al (2012) Antihypertensive effect of long-term oral administration of jellyfish (Rhopilema esculentum) collagen peptides on renovascular hypertension. Mar Drugs 10:417–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ololade Olatunji .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer International Publishing

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Olatunji, O. (2020). Collagen. In: Aquatic Biopolymers. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-34709-3_12

Download citation

Publish with us

Policies and ethics