Skip to main content

Multiple Testing Procedures: Monotonicity and Some of Its Implications

  • Chapter
  • First Online:
Statistical Modeling for Biological Systems
  • 779 Accesses

Abstract

We review some results concerning the levels at which multiple testing procedures (MTPs) control certain type I error rates under a general and unknown dependence structure of the p-values on which the MTP is based. The type I error rates we deal with are (1) the classical family-wise error rate (FWER); (2) its immediate generalization: the probability of k or more false rejections (the generalized FWER); (3) the per-family error rate—the expected number of false rejections (PFER). The procedures considered are those satisfying the condition of monotonicity: reduction in some (or all) of the p-values used as input for the MTP can only increase the number of rejected hypotheses. It turns out that this natural condition, either by itself or combined with a property of being a step-down or step-up MTP (where the terms “step-down” and “step-up” are understood in their most general sense), has powerful consequences. Those include optimality results, inequalities, and identities involving different numerical characteristics of a procedure, and computational formulas.

Dedicated with deep gratitude and admiration to the memory of Andrei Yakovlev, who always inspired and encouraged those around him.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 57, 289–300.

    MathSciNet  MATH  Google Scholar 

  2. Benjamini, Y., & Liu, W. (1999). A distribution-free multiple test procedure that controls the false discovery rate. Technical Report. RP-SOR-99-3, Department of Statistics and Operations Research, Tel Aviv University.

    Google Scholar 

  3. Dudoit, S., Shaffer, J. P., & Boldrich, J. C. (2003). Multiple hypothesis testing in microarray experiments. Statistical Science, 18, 71–103.

    Article  MathSciNet  Google Scholar 

  4. Dudoit, S., & van der Laan, M. J. (2008). Multiple testing procedures with applications to genomics. New York, NY: Springer.

    Book  Google Scholar 

  5. Finner, H., & Roters, M. (2002). Multiple hypothesis testing and expected number of type I errors. The Annals of Statistics, 30, 220–238.

    Article  MathSciNet  Google Scholar 

  6. Gordon, A. Y. (2007a). Explicit formulas for generalized family-wise error rates and unimprovable step-down multiple testing procedures. Journal of Statistical Planning and Inference, 137, 3497–3512.

    Article  MathSciNet  Google Scholar 

  7. Gordon, A. Y. (2007b). Family-wise error rate of a step-down procedure. Random Operators and Stochastic Equations, 15, 399–408.

    Article  MathSciNet  Google Scholar 

  8. Gordon, A. Y. (2007c). Unimprovability of the Bonferroni procedure in the class of general step-up multiple testing procedures. Statistics & Probability Letters, 77, 117–122.

    Article  MathSciNet  Google Scholar 

  9. Gordon, A. Y. (2009). Inequalities between generalized familywise error rates of a multiple testing procedure. Statistics & Probability Letters, 79, 1996–2004.

    Article  MathSciNet  Google Scholar 

  10. Gordon, A. Y. (2011). A new optimality property of the Holm step-down procedure. Statistical Methodology, 8, 129–135.

    Article  MathSciNet  Google Scholar 

  11. Gordon, A. Y. (2012). A sharp upper bound for the expected number of false rejections. Statistics & Probability Letters, 82, 1507–1514.

    Article  MathSciNet  Google Scholar 

  12. Gordon, A. Y., & Salzman, P. (2008). Optimality of the Holm procedure among general step-down multiple testing procedures. Statistics & Probability Letters, 78, 1878–1884.

    Article  MathSciNet  Google Scholar 

  13. Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance. Biometrika, 75, 800–802.

    Article  MathSciNet  Google Scholar 

  14. Hochberg, Y., & Tamhane, A. C. (1987). Multiple comparison procedures. New York, NY: Wiley.

    Book  Google Scholar 

  15. Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65–70.

    MathSciNet  MATH  Google Scholar 

  16. Hommel, G., & Hoffman, T. (1988). Controlled uncertainty. In P. Bauer, G. Hommel, & E. Sonnemann (Eds.), Multiple hypothesis testing (pp. 154–161). Heidelberg: Springer.

    Chapter  Google Scholar 

  17. Korn, E. L., Troendle, J. F., McShane, L. M., & Simon, R. (2004). Controlling the number of false discoveries: application to high-dimensional genomic data. Journal of Statistical Planning and Inference, 124, 379–398.

    Article  MathSciNet  Google Scholar 

  18. Lehmann, E. L., & Romano, J. P. (2005a). Generalizations of the familywise error rate. The Annals of Statistics, 33, 1138–1154.

    Article  MathSciNet  Google Scholar 

  19. Lehmann, E. L., & Romano, J. P. (2005b). Testing statistical hypotheses (3rd ed.). New York, NY: Springer.

    MATH  Google Scholar 

  20. Liu, W. (1996). Multiple tests of a non-hierarchical family of hypotheses. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 58, 455–461.

    MathSciNet  MATH  Google Scholar 

  21. Sarkar, S. K. (2002). Some results on false discovery rate in stepwise multiple testing procedures. The Annals of Statistics, 30, 239–257.

    Article  MathSciNet  Google Scholar 

  22. Shaffer, J. (1995). Multiple hypothesis testing: A review. Annual Review of Psychology, 46, 561–584.

    Article  Google Scholar 

  23. Tamhane, A. C., & Liu, W. (1995). On weighted Hochberg procedures. Biometrika, 95, 279–294.

    Article  MathSciNet  Google Scholar 

  24. Tamhane, A. C., Liu, W., & Dunnett, C. W. (1998). A generalized step-up-down multiple test procedure. The Canadian Journal of Statistics, 26, 353–363.

    Article  MathSciNet  Google Scholar 

  25. Tukey, J. W. (1953). The problem of multiple comparison. Unpublished manuscript. In The collected works of John W. Tukey VIII. Multiple comparisons: 1948–1983 (pp. 1–300). New York, NY: Chapman and Hall.

    Google Scholar 

  26. van der Laan, M. J., Dudoit, S., & Pollard, K. S. (2004). Augmentation procedures for control of the generalized family-wise error rate and tail probabilities for the proportion of false positives. Statistical Applications in Genetics and Molecular Biology, 3, Article 15.

    Google Scholar 

  27. Victor, N., (1982). Exploratory data analysis and clinical research. Methods of Information in Medicine, 21, 53–54.

    Article  Google Scholar 

  28. Yang, H. Y., & Speed, T. (2003). Design and analysis of comparative microarray experiments. In T. Speed (ed.), Statistical analysis of gene expression microarray data (pp. 35–92). Boca Raton, FL: Chapman and Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gordon, A.Y. (2020). Multiple Testing Procedures: Monotonicity and Some of Its Implications. In: Almudevar, A., Oakes, D., Hall, J. (eds) Statistical Modeling for Biological Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-34675-1_5

Download citation

Publish with us

Policies and ethics