Abstract
The LLL algorithm takes as input a basis of a Euclidean lattice, and, within a polynomial number of operations, it outputs another basis of the same lattice but consisting of rather short vectors. We provide a generalization to R-modules contained in \(K^n\) for arbitrary number fields K and dimension n, with R denoting the ring of integers of K. Concretely, we introduce an algorithm that efficiently finds short vectors in rank-n modules when given access to an oracle that finds short vectors in rank-2 modules, and an algorithm that efficiently finds short vectors in rank-2 modules given access to a Closest Vector Problem oracle for a lattice that depends only on K. The second algorithm relies on quantum computations and its analysis is heuristic.
This is a preview of subscription content, access via your institution.
Buying options
Notes
- 1.
- 2.
Observe that even if complex conjugation might not be well defined over K (i.e., the element \(\bar{x}\) might not be in K even if x is), it is however always defined over \(K_\mathbb {R}\). In this article, complex conjugation will only be used on elements of \(K_\mathbb {R}\), and we make no assumption that K should be stable by conjugation.
- 3.
The vectors \(\mathbf {b}_j\)’s are said to be \(K_\mathbb {R}\)-linearly independent if and only if there is no non-trivial ways to write the zero vector as a \(K_\mathbb {R}\)-linear combination of the \(\mathbf {b}_j\)’s. Because \(K_\mathbb {R}\) is a ring and not a field, this definition is stronger than requiring that none of the \(\mathbf {b}_j\)’s is in the span of the others.
- 4.
Note that ideal scaling and size-reduction have been suggested in [FS10, Se. 4.1], but without a complexity analysis (polynomial complexity was claimed but not proved).
References
Albrecht, M.R., Deo, A.: Large modulus Ring-LWE \(\ge \) Module-LWE. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 267–296. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_10
Ajtai, M.: Generating hard instances of lattice problems. In: STOC (1996)
Ajtai, M.: The shortest vector problem in \(l_2\) is NP-hard for randomized reductions. In: STOC (1998)
Biasse, J.-F., Espitau, T., Fouque, P.-A., Gélin, A., Kirchner, P.: Computing generator in cyclotomic integer rings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 60–88. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_3
Biasse, J.-F., Fieker, C.: Subexponential class group and unit group computation in large degree number fields. LMS J. Comput. Math. 17, 385–403 (2014)
Biasse, J.-F., Fieker, C., Hofmann, T.: On the computation of the HNF of a module over the ring of integers of a number field. J. Symb. Comput. 80, 581–615 (2017)
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. ToCT 6, 13 (2014)
Bosma, W., Pohst, M.: Computations with finitely generated modules over Dedekind domains. In: ISSAC (1991)
Bach, E., Shallit, J.O.: Algorithmic Number Theory: Efficient Algorithms. MIT Press, Cambridge (1996)
Biasse, J.-F., Song, F.: Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields. In: SODA (2016)
Cramer, R., Ducas, L., Wesolowski, B.: Short stickelberger class relations and application to ideal-SVP. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 324–348. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_12
Cerri, J.-P.: Spectres euclidiens et inhomogènes des corps de nombres. Ph.D. thesis, Université Henri Poincaré, Nancy (2005)
Cohen, H.: Hermite and Smith normal form algorithms over Dedekind domains. Math. Comput. 65, 1681–1699 (1996)
Fieker, C.: Über relative Normgleichungen in älgebraischen Zahlkörpern. Ph.D. thesis, TU Berlin (1997)
Fieker, C., Pohst, M.E.: On lattices over number fields. In: Cohen, H. (ed.) ANTS 1996. LNCS, vol. 1122, pp. 133–139. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61581-4_48
Fieker, C., Pohst, M.E.: Dependency of units in number fields. Math. Comput. 75, 1507–1518 (2006)
Fieker, C., Stehlé, D.: Short bases of lattices over number fields. In: Hanrot, G., Morain, F., Thomé, E. (eds.) ANTS 2010. LNCS, vol. 6197, pp. 157–173. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14518-6_15
Gan, Y.H., Ling, C., Mow, W.H.: Complex lattice reduction algorithm for low-complexity full-diversity MIMO detection. IEEE Trans. Signal Process. 57, 2701–2710 (2009)
Hoppe, A.: Normal forms over Dedekind domains, efficient implementation in the computer algebra system KANT. Ph.D. thesis, TU Berlin (1998)
Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868
Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12, 415–440 (1987)
Kim, Taechan, Lee, Changmin: Lattice reductions over Euclidean rings with applications to cryptanalysis. In: O’Neill, Máire (ed.) IMACC 2017. LNCS, vol. 10655, pp. 371–391. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71045-7_19
Laarhoven, T.: Sieving for closest lattice vectors (with preprocessing). In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 523–542. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5_28
Lezowski, P.: Computation of the euclidean minimum of algebraic number fields. Math. Comput. 83(287), 1397–1426 (2014)
Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982)
Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_13
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1
Lee, C., Pellet-Mary, A., Stehlé, D., Wallet, A.: An LLL algorithm for module lattices (full version). Cryptology ePrint Archive (2019)
Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices. Des. Codes Cryptogr. 75, 565–599 (2015)
Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: A Cryptographic Perspective. Kluwer Academic Press, Dordrecht (2002)
Micciancio, D.: The hardness of the closest vector problem with preprocessing. Trans. Inf. Theory 47, 1212–1215 (2001)
Napias, H.: A generalization of the LLL-algorithm over Euclidean rings or orders. J. théorie des nombres de Bordeaux 8, 387–396 (1996)
Neukirch, J.: Algebraic number theory. In: Grundlehren der Mathematischen Wissenschaften, vol. 322. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-662-03983-0
O’Meara, O.T.: Introduction to Quadratic Forms. Springer, Heidelberg (1963). https://doi.org/10.1007/978-3-642-62031-7
Pellet-Mary, A., Hanrot, G., Stehlé, D.: Approx-SVP in ideal lattices with pre-processing. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 685–716. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_24
Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assumptions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 145–166. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_8
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56, 34 (2009)
Rosca, M., Stehlé, D., Wallet, A.: On the Ring-LWE and Polynomial-LWE problems. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 146–173. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_6
Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Program. 66, 181–199 (1994)
Morel, I., Stehlé, D., Villard, G.: LLL Reducing with the most significant bits. In: ISSAC (2014)
Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_36
Acknowledgments
We thank Léo Ducas for helpful discussions. This work was supported in part by BPI-France in the context of the national project RISQ (P141580), by the European Union PROMETHEUS project (Horizon 2020 Research and Innovation Program, grant 780701) and by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 International Association for Cryptologic Research
About this paper
Cite this paper
Lee, C., Pellet-Mary, A., Stehlé, D., Wallet, A. (2019). An LLL Algorithm for Module Lattices. In: Galbraith, S., Moriai, S. (eds) Advances in Cryptology – ASIACRYPT 2019. ASIACRYPT 2019. Lecture Notes in Computer Science(), vol 11922. Springer, Cham. https://doi.org/10.1007/978-3-030-34621-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-34621-8_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34620-1
Online ISBN: 978-3-030-34621-8
eBook Packages: Computer ScienceComputer Science (R0)
-
Published in cooperation with
https://iacr.org/