Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). Software available from tensorflow.org
Andrikos, C., Rassias, G., Lerman, L., Papagiannopoulos, K., Batina, L.: Location-based leakages: new directions in modeling and exploiting. In: 2017 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS), pp. 246–252, July 2017
Google Scholar
Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 1–14. Springer, Heidelberg (2006). https://doi.org/10.1007/11894063_1
CrossRef
Google Scholar
Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On the cost of lazy engineering for masked software implementations. In: Joye, M., Moradi, A. (eds.) CARDIS 2014. LNCS, vol. 8968, pp. 64–81. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16763-3_5
CrossRef
Google Scholar
Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_3
CrossRef
Google Scholar
Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_3
CrossRef
Google Scholar
Chollet, F., et al.: Keras (2015). https://keras.io
Chollet, F.: Xception: deep learning with depthwise separable convolutions. CoRR, abs/1610.02357 (2016)
Google Scholar
Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_17
CrossRef
Google Scholar
De Cnudde, T., Bilgin, B., Gierlichs, B., Nikov, V., Nikova, S., Rijmen, V.: Does coupling affect the security of masked implementations? In: Guilley, S. (ed.) COSADE 2017. LNCS, vol. 10348, pp. 1–18. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64647-3_1
CrossRef
Google Scholar
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR 2009 (2009)
Google Scholar
Doget, J., Prouff, E., Rivain, M., Standaert, F.-X.: Univariate side channel attacks and leakage modeling. J. Cryptogr. Eng. 1(2), 123–144 (2011)
CrossRef
Google Scholar
Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1_21
CrossRef
Google Scholar
Glorot, X., Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In: JMLR W&CP: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2010), vol. 9, pp. 249–256, May 2010
Google Scholar
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Google Scholar
He, W., de la Torre, E., Riesgo, T.: An interleaved EPE-immune PA-DPL structure for resisting concentrated EM side channel attacks on FPGA implementation. In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 39–53. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29912-4_4
CrossRef
MATH
Google Scholar
Heyszl, J.: Impact of Localized Electromagnetic Field Measurements on Implementations of Asymmetric Cryptography. https://mediatum.ub.tum.de/doc/1129375/1129375.pdf
Heyszl, J., Mangard, S., Heinz, B., Stumpf, F., Sigl, G.: Localized electromagnetic analysis of cryptographic implementations. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 231–244. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27954-6_15
CrossRef
Google Scholar
Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks. CoRR, abs/1608.06993 (2016)
Google Scholar
Immler, V., Specht, R., Unterstein, F.: Your rails cannot hide from localized EM: how dual-rail logic fails on FPGAs. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 403–424. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_20
CrossRef
Google Scholar
Itoh, K., Izu, T., Takenaka, M.: Address-bit differential power analysis of cryptographic schemes OK-ECDH and OK-ECDSA. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 129–143. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_11
CrossRef
Google Scholar
Kamel, D., Standaert, F.X., Flandre, D.: Scaling trends of the AES S-box low power consumption in 130 and 65 nm CMOS technology nodes. In: International Symposium on Circuits and Systems (ISCAS 2009), 24–17 May 2009, Taipei, Taiwan, pp. 1385–1388 (2009)
Google Scholar
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR, abs/1412.6980 (2014)
Google Scholar
Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25
CrossRef
Google Scholar
Kumar, A., Scarborough, C., Yilmaz, A., Orshansky, M.: Efficient simulation of EM side-channel attack resilience. In 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 123–130, November 2017
Google Scholar
Lerman, L., Poussier, R., Markowitch, O., Standaert, F.-X.: Template attacks versus machine learning revisited and the curse of dimensionality in side-channel analysis: extended version. J. Cryptogr. Eng. 8(4), 301–313 (2018)
CrossRef
Google Scholar
Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49445-6_1
CrossRef
Google Scholar
Martinasek, Z., Hajny, J., Malina, L.: Optimization of power analysis using neural network. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 94–107. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_7
CrossRef
Google Scholar
Martinasek, Z., Zeman, V.: Innovative method of the power analysis. Radioengineering 22(2), 586–594 (2013)
Google Scholar
Maurine, P.: Securing SoCs in advanced technologies. https://cosade.telecom-paristech.fr/presentations/invited2.pdf
Nassar, M., Souissi, Y., Guilley, S., Danger, J.L.: RSM: a small and fast countermeasure for AES, secure against 1st and 2nd-order zero-offset SCAs. In: 2012 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1173–1178, March 2012
Google Scholar
Nawaz, K., Kamel, D., Standaert, F.-X., Flandre, D.: Scaling trends for dual-rail logic styles against side-channel attacks: a case-study. In: Guilley, S. (ed.) COSADE 2017. LNCS, vol. 10348, pp. 19–33. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64647-3_2
CrossRef
Google Scholar
Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). https://doi.org/10.1007/11935308_38
CrossRef
MATH
Google Scholar
Pan, S.J., Yang, Q., et al.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)
CrossRef
Google Scholar
Papagiannopoulos, K., Veshchikov, N.: Mind the gap: towards secure 1st-order masking in software. In: Guilley, S. (ed.) COSADE 2017. LNCS, vol. 10348, pp. 282–297. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64647-3_17
CrossRef
Google Scholar
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
MathSciNet
MATH
Google Scholar
Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Dumas, C.: Study of deep learning techniques for side-channel analysis and introduction to ASCAD database. IACR Cryptology ePrint Archive 2018, 53 (2018)
Google Scholar
Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A formal study of power variability issues and side-channel attacks for nanoscale devices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 109–128. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_8
CrossRef
Google Scholar
Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9_28
CrossRef
Google Scholar
Schlösser, A., Nedospasov, D., Krämer, J., Orlic, S., Seifert, J.-P.: Simple photonic emission analysis of AES. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 41–57. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8_3
CrossRef
Google Scholar
Sijacic, D., Balasch, J., Yang, B., Ghosh, S., Verbauwhede, I.: Towards efficient and automated side channel evaluations at design time. In: Batina, L., Kühne, U., Mentens, N., (eds.) PROOFS 2018. 7th International Workshop on Security Proofs for Embedded Systems. Kalpa Publications in Computing, vol. 7, pp. 16–31. EasyChair (2018)
Google Scholar
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Specht, R., Immler, V., Unterstein, F., Heyszl, J., Sig, G.: Dividing the threshold: Multi-probe localized EM analysis on threshold implementations. In: 2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 33–40, April 2018
Google Scholar
Specht, R., Heyszl, J., Kleinsteuber, M., Sigl, G.: Improving non-profiled attacks on exponentiations based on clustering and extracting leakage from multi-channel high-resolution EM measurements. In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014. LNCS, vol. 9064, pp. 3–19. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21476-4_1
CrossRef
Google Scholar
Specht, R., Heyszl, J., Sigl, G.: Investigating measurement methods for high-resolution electromagnetic field side-channel analysis. In: 2014 International Symposium on Integrated Circuits (ISIC), Singapore, 10–12 December 2014, pp. 21–24 (2014)
Google Scholar
Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_26
CrossRef
Google Scholar
Standaert, F.-X., Peeters, E., Archambeau, C., Quisquater, J.-J.: Towards security limits in side-channel attacks. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 30–45. Springer, Heidelberg (2006). https://doi.org/10.1007/11894063_3
CrossRef
Google Scholar
Sugawara, T., Suzuki, D., Saeki, M., Shiozaki, M., Fujino, T.: On measurable side-channel leaks inside ASIC design primitives. J. Cryptogr. Eng. 4(1), 59–73 (2014)
CrossRef
Google Scholar
Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-ResNet and the impact of residual connections on learning. In: AAAI, vol. 4, p. 12 (2017)
Google Scholar
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)
Google Scholar
Unterstein, F., Heyszl, J., De Santis, F., Specht, R.: Dissecting leakage resilient PRFs with multivariate localized EM attacks - a practical security evaluation on FPGA. COSADE 2017/272 (2017)
Google Scholar
Unterstein, F., Heyszl, J., De Santis, F., Specht, R., Sigl, G.: High-resolution EM attacks against leakage-resilient PRFs explained - and an improved construction. Cryptology ePrint Archive, Report 2018/055 (2018). https://eprint.iacr.org/2018/055
Van Trees, H.L.: Detection, Estimation, and Modulation Theory: Part IV: Optimum Array Processing. Wiley, Hoboken (2002)
Google Scholar
Weste, N., Harris, D.: CMOS VLSI Design: A Circuits and Systems Perspective, 4th edn. Addison-Wesley Publishing Company, USA (2010)
Google Scholar
Yang, S., Zhou, Y., Liu, J., Chen, D.: Back propagation neural network based leakage characterization for practical security analysis of cryptographic implementations. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 169–185. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31912-9_12
CrossRef
Google Scholar