Skip to main content

Bio-Based Nano-Lubricants for Sustainable Manufacturing

  • Chapter
  • First Online:
Book cover Nanomaterials and Environmental Biotechnology

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

In this chapter the different types of cutting fluids along with the different methods of application have been elaborated with a focus on minimum Quantity lubrication. The chapter also includes a detailed discussion on the various vegetable oils used in the cutting processes under MQL conditions. Moreover, the different mechanisms by which nanoparticles improve the various rheological properties of cutting fluids are also discussed. Furthermore, a detailed summary of various studies carried out on nano-enriched bio-based cutting fluids in conventional machining operations has also been provided. It came to the fore that nano-enriched bio-based cutting fluids improve the cutting process economically as well as mitigate the environmental hazards caused by conventional machining. Further there is a tremendous scope to study the optimum combinations and concentrations of different nanoparticles in various vegetable oils and understand the underlying mechanisms involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler DP, Hii W-S, Michalek DJ, Sutherland JW (2006) Examining the role of cutting fluids in machining and efforts to address associated environmental/health concerns. Mach Sci Technol 10(1):23–58

    Article  Google Scholar 

  • Akoh H, Tsukasaki Y, Yatsuya S, Tasaki A (1978) Magnetic properties of ferromagnetic ultrafine particles prepared by vacuum evaporation on running oil substrate. J Cryst Growth 45:495–500

    Article  CAS  Google Scholar 

  • Alberts M, Kalaitzidou K, Melkote S (2009) An investigation of graphite nanoplatelets as lubricant in grinding. Int J Mach Tools Manuf 49(12–13):966–970

    Article  Google Scholar 

  • Ali MAM, Azmi AI, Khalil ANM, Leong KW (2017) Experimental study on minimal nanolubrication with surfactant in the turning of titanium alloys. Int J Adv Manuf Technol 92(1–4):117–127

    Google Scholar 

  • Altan E, Kiyak M, Cakir O (2002) The effect of oxygen gas application into cutting zone on machining. In: Proceedings of sixth biennial conference on engineering system design and analysis (ESDA2002), Istanbul, pp 1–5

    Google Scholar 

  • Amrita M, Srikant RR, Sitaramaraju AV, Prasad MMS, Krishna PV (2013) Experimental investigations on influence of mist cooling using nanofluids on machining parameters in turning AISI 1040 steel. Proc Inst Mech Eng J J Eng Tribol 227(12):1334–1346. https://doi.org/10.1177/1350650113491934

    Article  CAS  Google Scholar 

  • Amrita M, Shariq SA, Manoj M, Gopal C (2014a) Experimental investigation on application of emulsifier oil based nano cutting fluids in metal cutting process. Procedia Eng 97:115–124

    Article  CAS  Google Scholar 

  • Amrita M, Srikant RR, Sitaramaraju AV (2014b) Performance evaluation of nanographite-based cutting fluid in machining process. Mater Manuf Process 29(5):600–605

    Article  CAS  Google Scholar 

  • Arumugam S, Sriram G (2013) Preliminary study of nano-and microscale TiO2 additives on tribological behavior of chemically modified rapeseed oil. Tribol Trans 56(5):797–805

    Article  CAS  Google Scholar 

  • Arumugam S, Baskar S, Sankaranarayanan S, Athreya SH, Narayanan NL, Prasad SSD (2018) Influence of morphology of anti-wear nano additives on Tribological behavior of Chemically Modified Rapeseed Oil. IOP Conf Ser Mater Sci Eng 390:12017

    Article  Google Scholar 

  • Asadauskas S, Erhan SZ (1999) Depression of pour points of vegetable oils by blending with diluents used for biodegradable lubricants. J Am Oil Chem Soc 76(3):313–316

    Article  CAS  Google Scholar 

  • Asadauskas S, Perez JM, Duda JL (1996) Oxidative stability and antiwear properties of high oleic vegetable oils. Lubr Eng 52(12):877–882

    CAS  Google Scholar 

  • Atabani AE, Silitonga AS, Ong HC, Mahlia TMI, Masjuki HH, Badruddin IA, Fayaz H (2013) Non-edible vegetable oils: a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew Sust Energ Rev 18:211–245

    Article  CAS  Google Scholar 

  • Barnwal BK, Sharma MP (2005) Prospects of biodiesel production from vegetable oils in India. Renew Sust Energ Rev 9(4):363–378

    Article  Google Scholar 

  • Battez AH, González R, Viesca JL, Fernández JE, Fernández JMD, Machado A et al (2008) CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear 265(3–4):422–428

    Article  CAS  Google Scholar 

  • Behera BC, Chetan, Setti D, Ghosh S, Rao PV (2017) Spreadability studies of metal working fluids on tool surface and its impact on minimum amount cooling and lubrication turning. J Mater Process Technol 244:1–16

    Article  CAS  Google Scholar 

  • Benchaita MT, Lockwood FE (1993) Reliable model of lubricant-related friction in internal combustion engines. Lubr Sci 5(4):259–281

    Article  Google Scholar 

  • Bobade S, Khyade V (2012) Detail study on the properties of Pongamia Pinnata (Karanja) for the production of biofuel. Res J Chem Sci 2(7):16–20

    CAS  Google Scholar 

  • Bruni C, Forcellese A, Gabrielli F, Simoncini M (2006) Effect of the lubrication-cooling technique, insert technology and machine bed material on the workpart surface finish and tool wear in finish turning of AISI 420B. Int J Mach Tools Manuf 46(12–13):1547–1554

    Article  Google Scholar 

  • Çakıra O, Kıyak M, Altan E (2004) Comparison of gases applications to wet and dry cuttings in turning. J Mater Process Technol 153:35–41

    Article  CAS  Google Scholar 

  • Chai YH, Yusup S, Chok VS, Arpin MT, Irawan S (2016) Investigation of thermal conductivity of multi walled carbon nanotube dispersed in hydrogenated oil based drilling fluids. Appl Therm Eng 107:1019–1025

    Article  CAS  Google Scholar 

  • Chan CY, Lee WB, Wang H (2013) Enhancement of surface finish using water-miscible nano-cutting fluid in ultra-precision turning. Int J Mach Tools Manuf 73:62–70

    Article  Google Scholar 

  • Chang L, Friedrich K (2010) Enhancement effect of nanoparticles on the sliding wear of short fiber-reinforced polymer composites: a critical discussion of wear mechanisms. Tribol Int 43(12):2355–2364

    Article  CAS  Google Scholar 

  • Chang H, Kao M-J (2007) An innovative nanofluid manufacturing system. J Chin Soc Mech Eng 28(2):187–194

    Google Scholar 

  • Chatha SS, Pal A, Singh T (2016) Performance evaluation of aluminium 6063 drilling under the influence of nanofluid minimum quantity lubrication. J Clean Prod 137:537–545

    Article  CAS  Google Scholar 

  • Choi SUS, Yu W, Hull JR, Zhang ZG, Lockwood FE (2002) Nanofluids for vehicle thermal management. SAE Trans 111:38–43

    Google Scholar 

  • Chol SUS, Estman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME 231:99–106

    Google Scholar 

  • Chon CH, Kihm KD, Lee SP, Choi SUS (2005) Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett 87(15):153107

    Article  CAS  Google Scholar 

  • da Silva MB, Wallbank J (1999) Cutting temperature: prediction and measurement methods—a review. J Mater Process Technol 88(1–3):195–202

    Article  Google Scholar 

  • Davim JP, Gaitonde VN, Karnik SR (2008) Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models. J Mater Process Technol 205(1–3):16–23

    Article  CAS  Google Scholar 

  • De Lacalle LNL, Pérez-Bilbatua J, Sánchez JA, Llorente JI, Gutierrez A, Albóniga J (2000) Using high pressure coolant in the drilling and turning of low machinability alloys. Int J Adv Manuf Technol 16(2):85–91

    Article  Google Scholar 

  • Debnath S, Reddy MM, Yi QS (2014) Environmental friendly cutting fluids and cooling techniques in machining: a review. J Clean Prod 83:33–47

    Article  CAS  Google Scholar 

  • Dhar NR, Paul S, Chattopadhyay AB (2002) Role of cryogenic cooling on cutting temperature in turning steel. J Manuf Sci Eng 124(1):146–154

    Article  Google Scholar 

  • Dilbag S, Rao PV (2008) Performance improvement of hard turning with solid lubricants. Int J Adv Manuf Technol 38(5–6):529–535

    Article  Google Scholar 

  • Diniz AE, Micaroni R (2002) Cutting conditions for finish turning process aiming: the use of dry cutting. Int J Mach Tools Manuf 42(8):899–904

    Article  Google Scholar 

  • Diniz AE, Micaroni R (2007) Influence of the direction and flow rate of the cutting fluid on tool life in turning process of AISI 1045 steel. Int J Mach Tools Manuf 47(2):247–254

    Article  Google Scholar 

  • Drzazga Michałand Dzido G, Lemanowicz M, Gierczycki A (2012) Influence of nonionic surfactant on nanofluid properties. In: Proceedings of the 14th European conference on mixing, Warszawa, Poland, pp 10–13

    Google Scholar 

  • Duangthongsuk W, Wongwises S (2009) Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids. Exp Thermal Fluid Sci 33(4):706–714

    Article  CAS  Google Scholar 

  • Duchosal A, Leroy R, Vecellio L, Louste C, Ranganathan N (2013) An experimental investigation on oil mist characterization used in MQL milling process. Int J Adv Manuf Technol 66(5–8):1003–1014

    Article  Google Scholar 

  • Dudzinski D, Devillez A, Moufki A, Larrouquere D, Zerrouki V, Vigneau J (2004) A review of developments towards dry and high speed machining of Inconel 718 alloy. Int J Mach Tools Manuf 44(4):439–456

    Article  Google Scholar 

  • Eastman JA, Choi US, Li S, Thompson LJ, Lee S (1996) Enhanced thermal conductivity through the development of nanofluids. MRS Online Proc Libr Arch 457:3

    Article  Google Scholar 

  • El Baradie MA (1996) Cutting fluids: Part I. Characterisation. J Mater Process Technol 56(1–4):786–797

    Article  Google Scholar 

  • Erhan SZ, Sharma BK, Perez JM (2006) Oxidation and low temperature stability of vegetable oil-based lubricants. Ind Crop Prod 24(3):292–299

    Article  CAS  Google Scholar 

  • Evans C, Bryan JB (1991) Cryogenic diamond turning of stainless steel. CIRP Ann Manuf Technol 40(1):571–575

    Article  Google Scholar 

  • Ezugwu EO, Bonney J (2005) Finish machining of nickel-base Inconel 718 alloy with coated carbide tool under conventional and high-pressure coolant supplies. Tribol Trans 48(1):76–81

    Article  CAS  Google Scholar 

  • Ezugwu EO, Bonney J, Fadare DA, Sales WF (2005) Machining of nickel-base, Inconel 718, alloy with ceramic tools under finishing conditions with various coolant supply pressures. J Mater Process Technol 162:609–614

    Article  CAS  Google Scholar 

  • Fox NJ, Stachowiak GW (2007) Vegetable oil-based lubricants—a review of oxidation. Tribol Int 40(7):1035–1046. https://doi.org/10.1016/j.triboint.2006.10.001

    Article  CAS  Google Scholar 

  • Fratila D (2009) Evaluation of near-dry machining effects on gear milling process efficiency. J Clean Prod 17(9):839–845

    Article  Google Scholar 

  • Garg A, Sarma S, Panda BN, Zhang J, Gao L (2016) Study of effect of nanofluid concentration on response characteristics of machining process for cleaner production. J Clean Prod 135:476–489

    Article  CAS  Google Scholar 

  • Ghadimi A, Saidur R, Metselaar HSC (2011) A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf 54(17–18):4051–4068

    Article  CAS  Google Scholar 

  • Gnanasekaran D, Chavidi VP (2018) Properties of vegetable fluids: a green insulator for power sector. In: Vegetable oil based bio-lubricants and transformer fluids: applications in power plants. Springer Singapore, Singapore, pp 125–155. https://doi.org/10.1007/978-981-10-4870-8_7

    Chapter  Google Scholar 

  • Godlevski VA, Volkov AV, Latysher VN, Maurin LN (1998) Water steam lubrication during machining. Tribologia 162(6):890–901

    Google Scholar 

  • Gryglewicz S, Piechocki W, Gryglewicz G (2003) Preparation of polyol esters based on vegetable and animal fats. Bioresour Technol 87(1):35–39

    Article  CAS  PubMed  Google Scholar 

  • Gupta RN, Harsha AP (2018) Tribological study of castor oil with surface modified CuO nanoparticles in boundary lubrication. Ind Lubr Tribol 70(4). https://doi.org/10.1108/ilt-02-2017-0030

  • Gupta MK, Sood PK, Sharma VS (2016) Optimization of machining parameters and cutting fluids during nano-fluid based minimum quantity lubrication turning of titanium alloy by using evolutionary techniques. J Clean Prod 135:1276–1288. https://doi.org/10.1016/j.jclepro.2016.06.184

    Article  Google Scholar 

  • Habibullah M, Masjuki HH, Kalam MA, Gulzar M, Arslan A, Zahid R (2015) Tribological characteristics of Calophyllum inophyllum–based TMP (trimethylolpropane) ester as energy-saving and biodegradable lubricant. Tribol Trans 58(6):1002–1011

    Article  CAS  Google Scholar 

  • Haghighi EB, Nikkam N, Saleemi M, Behi M, Mirmohammadi SA, Poth H et al (2013) Shelf stability of nanofluids and its effect on thermal conductivity and viscosity. Meas Sci Technol 24(10):105301

    Article  CAS  Google Scholar 

  • Hegab H, Umer U, Deiab I, Kishawy H (2018a) Performance evaluation of Ti-6Al-4V machining using nano-cutting fluids under minimum quantity lubrication. Int J Adv Manuf Technol 95(9–12):4229–4241

    Article  Google Scholar 

  • Hegab H, Umer U, Soliman M, Kishawy HA (2018b) Effects of nano-cutting fluids on tool performance and chip morphology during machining Inconel 718. Int J Adv Manuf Technol 96(9–12):3449–3458

    Article  Google Scholar 

  • Honary LAT (1996) An investigation of the use of soybean oil in hydraulic systems. Bioresour Technol 56(1):41–47

    Article  CAS  Google Scholar 

  • Hu ZS, Lai R, Lou F, Wang L, Chen Z, Chen G, Dong JX (2002) Preparation and tribological properties of nanometer magnesium borate as lubricating oil additive. Wear 252(5–6):370–374

    Article  CAS  Google Scholar 

  • Huang W-T, Wu D-H, Chen J-T (2016) Robust design of using nanofluid/MQL in micro-drilling. Int J Adv Manuf Technol 85(9–12):2155–2161

    Article  Google Scholar 

  • Hwang Y, Lee JK, Lee CH, Jung YM, Cheong SI, Lee CG et al (2007) Stability and thermal conductivity characteristics of nanofluids. Thermochim Acta 455(1–2):70–74

    Article  CAS  Google Scholar 

  • Jia D, Li C, Zhang D, Zhang Y, Zhang X (2014) Experimental verification of nanoparticle jet minimum quantity lubrication effectiveness in grinding. J Nanopart Res 16(12):2758

    Article  Google Scholar 

  • Kalita P, Malshe AP, Jiang W, Shih AJ (2010) Tribological study of nano lubricant integrated soybean oil for minimum quantity lubrication (MQL) grinding. Trans NAMRI/SME 38:137–144

    Google Scholar 

  • Kalita P, Malshe AP, Kumar SA, Yoganath VG, Gurumurthy T (2012a) Study of specific energy and friction coefficient in minimum quantity lubrication grinding using oil-based nanolubricants. J Manuf Process 14(2):160–166

    Article  Google Scholar 

  • Kalita P, Malshe AP, Rajurkar KP (2012b) Study of tribo-chemical lubricant film formation during application of nanolubricants in minimum quantity lubrication (MQL) grinding. CIRP Ann Manuf Technol 61(1):327–330

    Article  Google Scholar 

  • Kamata Y, Obikawa T (2007) High speed MQL finish-turning of Inconel 718 with different coated tools. J Mater Process Technol 192:281–286

    Article  CAS  Google Scholar 

  • Khairul MA, Saidur R, Hossain A, Alim MA, Mahbubul IM (2014) Heat transfer performance of different nanofluids flows in a helically coiled heat exchanger. Adv Mater Res 832:160–165

    Article  CAS  Google Scholar 

  • Khan AA, Ahmed MI (2008) Improving tool life using cryogenic cooling. J Mater Process Technol 196(1–3):149–154

    Article  CAS  Google Scholar 

  • Khan MMA, Mithu MAH, Dhar NR (2009) Effects of minimum quantity lubrication on turning AISI 9310 alloy steel using vegetable oil-based cutting fluid. J Mater Process Technol 209(15–16):5573–5583

    Article  CAS  Google Scholar 

  • Khandekar S, Sankar MR, Agnihotri V, Ramkumar J (2012) Nano-cutting fluid for enhancement of metal cutting performance. Mater Manuf Process 27(9):963–967

    Article  CAS  Google Scholar 

  • Kim JS, Kim JW, Kim YC, Lee SW (2016) Experimental study on environmentally-friendly micro end-milling process of Ti-6Al-4V using nanofluid minimum quantity lubrication with chilly gas. In: ASME 2016 11th international manufacturing science and engineering conference, p V002T05A006

    Google Scholar 

  • Kishawy HA, Dumitrescu M, Ng E-G, Elbestawi MA (2005) Effect of coolant strategy on tool performance, chip morphology and surface quality during high-speed machining of A356 aluminum alloy. Int J Mach Tools Manuf 45(2):219–227

    Article  Google Scholar 

  • Klocke F, Eisenblätter G (1997) Dry cutting. CIRP Ann Manuf Technol 46(2):519–526

    Article  Google Scholar 

  • Knothe G, Steidley KR (2005) Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel 84(9):1059–1065

    Article  CAS  Google Scholar 

  • Ko TJ, Kim HS, Chung BG (1999) Air–oil cooling method for turning of hardened material. Int J Adv Manuf Technol 15(7):470–477

    Article  Google Scholar 

  • Kodali DR, Nivens S (2001) Biodegradable high performance lubricants derived from natural oils. In: 2nd World Tribology Congress, abstract of papers, Vienna, p 235

    Google Scholar 

  • Krishna PV, Srikant RR, Rao DN (2010) Experimental investigation on the performance of nanoboric acid suspensions in SAE-40 and coconut oil during turning of AISI 1040 steel. Int J Mach Tools Manuf 50(10):911–916

    Article  Google Scholar 

  • Kumar TA, Pradyumna G, Jahar S (2012) Investigation of thermal conductivity and viscosity of nano fluids. J Environ Res Dev 7(2):768–777

    Google Scholar 

  • Lal K, Carrick V (1994) Performance testing of lubricants based on high oleic vegetable oils. J Synth Lubr 11(3):189–206

    Article  CAS  Google Scholar 

  • Lathkar GS, Bas USK (2000) Clean metal cutting process using solid lubricants. In: Proceeding of the 19th AIMTDR conference, Narosa, Madras, pp 15–31

    Google Scholar 

  • Lawal SA, Choudhury IA, Nukman Y (2013) A critical assessment of lubrication techniques in machining processes: a case for minimum quantity lubrication using vegetable oil-based lubricant. J Clean Prod 41:210–221

    Article  Google Scholar 

  • Lee C-G, Hwang Y-J, Choi Y-M, Lee J-K, Choi C, Oh J-M (2009a) A study on the tribological characteristics of graphite nano lubricants. Int J Precis Eng Manuf 10(1):85–90

    Article  Google Scholar 

  • Lee K, Hwang Y, Cheong S, Choi Y, Kwon L, Lee J, Kim SH (2009b) Understanding the role of nanoparticles in nano-oil lubrication. Tribol Lett 35(2):127–131

    Article  CAS  Google Scholar 

  • Lee P-H, Nam JS, Li C, Lee SW (2012) An experimental study on micro-grinding process with nanofluid minimum quantity lubrication (MQL). Int J Precis Eng Manuf 13(3):331–338

    Article  CAS  Google Scholar 

  • Li K-M, Liang SY (2007) Performance profiling of minimum quantity lubrication in machining. Int J Adv Manuf Technol 35(3–4):226–233

    Article  Google Scholar 

  • Li XF, Zhu DS, Wang XJ, Wang N, Gao JW, Li H (2008) Thermal conductivity enhancement dependent pH and chemical surfactant for Cu–H2O nanofluids. Thermochim Acta 469(1–2):98–103

    Article  CAS  Google Scholar 

  • Li Y, Zhou J, Tung S, Schneider E, Xi S (2009) A review on development of nanofluid preparation and characterization. Powder Technol 196(2):89–101

    Article  CAS  Google Scholar 

  • Li CH, Li JY, Wang S, Zhang Q (2013) Modeling and numerical simulation of the grinding temperature field with nanoparticle jet of MQL. Adv Mech Eng 5:986984

    Article  Google Scholar 

  • Li B, Li C, Zhang Y, Wang Y, Yang M, Jia D et al (2017) Effect of the physical properties of different vegetable oil-based nanofluids on MQLC grinding temperature of Ni-based alloy. Int J Adv Manuf Technol 89(9–12):3459–3474

    Article  Google Scholar 

  • Liu G, Li X, Qin B, Xing D, Guo Y, Fan R (2004) Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface. Tribol Lett 17(4):961–966

    Article  CAS  Google Scholar 

  • Liu J, Han R, Zhang L, Guo H (2007) Study on lubricating characteristic and tool wear with water vapor as coolant and lubricant in green cutting. Wear 262(3–4):442–452

    Article  CAS  Google Scholar 

  • Lo C-H, Tsung T-T, Chen L-C, Su C-H, Lin H-M (2005) Fabrication of copper oxide nanofluid using submerged arc nanoparticle synthesis system (SANSS). J Nanopart Res 7(2–3):313–320

    Article  CAS  Google Scholar 

  • Lv T, Huang S, Hu X, Ma Y, Xu X (2018) Tribological and machining characteristics of a minimum quantity lubrication (MQL) technology using GO/SiO2 hybrid nanoparticle water-based lubricants as cutting fluids. Int J Adv Manuf Technol 96(5–8):2931–2942

    Article  Google Scholar 

  • Manimaran R, Palaniradja K, Alagumurthi N, Sendhilnathan S, Hussain J (2014) Preparation and characterization of copper oxide nanofluid for heat transfer applications. Appl Nanosci 4(2):163–167

    Article  CAS  Google Scholar 

  • Manna I (2012) Synthesis, characterization and application of nanofluid—an overview. J Indian Inst Sci 89(1):21–33

    Google Scholar 

  • ManojKumar K, Ghosh A (2015) Synthesis of MWCNT nanofluid and evaluation of its potential besides soluble oil as micro cooling-lubrication medium in SQL grinding. Int J Adv Manuf Technol 77(9–12):1955–1964

    Article  Google Scholar 

  • Mao C, Tang X, Zou H, Huang X, Zhou Z (2012) Investigation of grinding characteristic using nanofluid minimum quantity lubrication. Int J Precis Eng Manuf 13(10):1745–1752

    Article  Google Scholar 

  • Mao C, Zhang J, Huang Y, Zou H, Huang X, Zhou Z (2013a) Investigation on the effect of nanofluid parameters on MQL grinding. Mater Manuf Process 28(4):436–442

    Article  CAS  Google Scholar 

  • Mao C, Zou H, Huang X, Zhang J, Zhou Z (2013b) The influence of spraying parameters on grinding performance for nanofluid minimum quantity lubrication. Int J Adv Manuf Technol 64(9–12):1791–1799

    Article  Google Scholar 

  • Mao C, Huang Y, Zhou X, Gan H, Zhang J, Zhou Z (2014a) The tribological properties of nanofluid used in minimum quantity lubrication grinding. Int J Adv Manuf Technol 71(5–8):1221–1228

    Article  Google Scholar 

  • Mao C, Zou H, Zhou X, Huang Y, Gan H, Zhou Z (2014b) Analysis of suspension stability for nanofluid applied in minimum quantity lubricant grinding. Int J Adv Manuf Technol 71(9–12):2073–2081

    Article  Google Scholar 

  • Masjuki HH, Maleque MA, Kubo A, Nonaka T (1999) Palm oil and mineral oil based lubricants—their tribological and emission performance. Tribol Int 32(6):305–314

    Article  CAS  Google Scholar 

  • Mathew NT, Vijayaraghavan L (2017) Environmentally friendly drilling of intermetallic titanium aluminide at different aspect ratio. J Clean Prod 141:439–452. https://doi.org/10.1016/j.jclepro.2016.09.125

    Article  CAS  Google Scholar 

  • Mazurkiewicz M, Kubala Z, Chow J (1989) Metal machining with high-pressure water-jet cooling assistance—a new possibility. J Eng Ind 111(1):7–12

    Article  Google Scholar 

  • Missana T, Adell A (2000) On the applicability of DLVO theory to the prediction of clay colloids stability. J Colloid Interface Sci 230(1):150–156

    Article  CAS  PubMed  Google Scholar 

  • Mobarak HM, Mohamad EN, Masjuki HH, Kalam MA, Al Mahmud KAH, Habibullah M, Ashraful AM (2014) The prospects of biolubricants as alternatives in automotive applications. Renew Sust Energ Rev 33:34–43

    Article  CAS  Google Scholar 

  • Mofijur M, Masjuki HH, Kalam MA, Hazrat MA, Liaquat AM, Shahabuddin M, Varman M (2012) Prospects of biodiesel from Jatropha in Malaysia. Renew Sust Energ Rev 16(7):5007–5020

    Article  Google Scholar 

  • Mohammed HA, Al-Aswadi AA, Shuaib NH, Saidur R (2011) Convective heat transfer and fluid flow study over a step using nanofluids: a review. Renew Sust Energ Rev 15(6):2921–2939

    Article  CAS  Google Scholar 

  • Mosleh M, Ghaderi M, Shirvani KA, Belk J, Grzina DJ (2017) Performance of cutting nanofluids in tribological testing and conventional drilling. J Manuf Process 25:70–76

    Article  Google Scholar 

  • Mukherjee S, Paria S (2013) Preparation and stability of nanofluids-a review. IOSR J Mech Civ Eng 9(2):63–69

    Article  Google Scholar 

  • Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2—water based nanofluids. Int J Therm Sci 44(4):367–373

    Article  CAS  Google Scholar 

  • Muthusamy Y, Kadirgama K, Rahman MM, Ramasamy D, Sharma KV (2016) Wear analysis when machining AISI 304 with ethylene glycol/TiO2 nanoparticle-based coolant. Int J Adv Manuf Technol 82(1):327–340. https://doi.org/10.1007/s00170-015-7360-3

    Article  Google Scholar 

  • Najiha MS, Rahman MM (2016) Experimental investigation of flank wear in end milling of aluminum alloy with water-based TiO2 nanofluid lubricant in minimum quantity lubrication technique. Int J Adv Manuf Technol 86(9–12):2527–2537

    Article  Google Scholar 

  • Najiha MS, Rahman MM, Yusoff AR (2015) Flank wear characterization in aluminum alloy (6061 T6) with nanofluid minimum quantity lubrication environment using an uncoated carbide tool. J Manuf Sci Eng 137(6):61004

    Article  Google Scholar 

  • Najiha MS, Rahman MM, Kadirgama K (2016) Performance of water-based TiO2 nanofluid during the minimum quantity lubrication machining of aluminium alloy, AA6061-T6. J Clean Prod 135:1623–1636

    Article  CAS  Google Scholar 

  • Nakpong P, Wootthikanokkhan S (2010) High free fatty acid coconut oil as a potential feedstock for biodiesel production in Thailand. Renew Energy 35(8):1682–1687

    Article  CAS  Google Scholar 

  • Nam J, Lee SW (2018) Machinability of titanium alloy (Ti-6Al-4V) in environmentally-friendly micro-drilling process with nanofluid minimum quantity lubrication using nanodiamond particles. Int J Precis Eng Manuf Green Technol 5(1):29–35

    Article  Google Scholar 

  • Nam JS, Lee P-H, Lee SW (2011) Experimental characterization of micro-drilling process using nanofluid minimum quantity lubrication. Int J Mach Tools Manuf 51(7–8):649–652

    Article  Google Scholar 

  • Nam JS, Kim DH, Chung H, Lee SW (2015) Optimization of environmentally benign micro-drilling process with nanofluid minimum quantity lubrication using response surface methodology and genetic algorithm. J Clean Prod 102:428–436

    Article  CAS  Google Scholar 

  • Padmini R, Krishna PV, Mohana Rao GK (2015) Performance assessment of micro and nano solid lubricant suspensions in vegetable oils during machining. Proc Inst Mech Eng B J Eng Manuf 229(12):2196–2204

    Article  Google Scholar 

  • Padmini R, Krishna PV, Rao GKM (2016) Effectiveness of vegetable oil based nanofluids as potential cutting fluids in turning AISI 1040 steel. Tribol Int 94:490–501

    Article  CAS  Google Scholar 

  • Park K-H, Ewald B, Kwon PY (2011) Effect of nano-enhanced lubricant in minimum quantity lubrication balling milling. J Tribol 133(3):31803–31808. https://doi.org/10.1115/1.4004339

    Article  CAS  Google Scholar 

  • Park K-H, Suhaimi MA, Yang G-D, Lee D-Y, Lee S-W, Kwon P (2017) Milling of titanium alloy with cryogenic cooling and minimum quantity lubrication (MQL). Int J Precis Eng Manuf 18(1):5–14

    Article  Google Scholar 

  • Pashmforoush F, Bagherinia RD (2018) Influence of water-based copper nanofluid on wheel loading and surface roughness during grinding of Inconel 738 superalloy. J Clean Prod 178:363–372

    Article  CAS  Google Scholar 

  • Philip PK, Varadarajan AS, Ramamoorthy B (2001) Influence of cutting fluid composition and delivery variables on performance in hard turning using minimal fluid in pulsed jet form. J Inst Eng PR Prod Eng Div 82(1):12–19

    Google Scholar 

  • Pop L, Puşcaş C, Bandur G, Vlase G, Nuţiu R (2008) Basestock oils for lubricants from mixtures of corn oil and synthetic diesters. J Am Oil Chem Soc 85(1):71–76

    Article  CAS  Google Scholar 

  • Popa I, Gillies G, Papastavrou G, Borkovec M (2010) Attractive and repulsive electrostatic forces between positively charged latex particles in the presence of anionic linear polyelectrolytes. J Phys Chem B 114(9):3170–3177

    Article  CAS  PubMed  Google Scholar 

  • Prabhu S, Vinayagam BK (2010) Nano surface generation of grinding process using carbon nano tubes. Sadhana 35(6):747–760

    Article  CAS  Google Scholar 

  • Prabhu S, Vinayagam BK (2012) AFM investigation in grinding process with nanofluids using Taguchi analysis. Int J Adv Manuf Technol 60(1–4):149–160

    Article  Google Scholar 

  • Prabhu S, Vinayagam BK (2013) Analysis of surface characteristics by electrolytic in-process dressing (ELID) technique for grinding process using single wall carbon nano tube-based nanofluids. Arab J Sci Eng 38(5):1169–1178

    Article  CAS  Google Scholar 

  • Prabhu S, Uma M, Vinayagam BK (2015) Surface roughness prediction using Taguchi-fuzzy logic-neural network analysis for CNT nanofluids based grinding process. Neural Comput & Applic 26(1):41–55

    Article  Google Scholar 

  • Quinchia LA, Delgado MA, Franco JM, Spikes HA, Gallegos C (2012) Low-temperature flow behaviour of vegetable oil-based lubricants. Ind Crop Prod 37(1):383–388

    Article  CAS  Google Scholar 

  • Rac A, Vencl A (2009) Performance investigation of chain saw lubricants based on new sunflower oil (NSO). Tribol Schmier 56(3):51

    CAS  Google Scholar 

  • Rahmati B, Sarhan AAD, Sayuti M (2014) Morphology of surface generated by end milling AL6061-T6 using molybdenum disulfide (MoS2) nanolubrication in end milling machining. J Clean Prod 66:685–691

    Article  CAS  Google Scholar 

  • Rajendhran N, Palanisamy S, Periyasamy P, Venkatachalam R (2018) Enhancing of the tribological characteristics of the lubricant oils using Ni-promoted MoS2 nanosheets as nano-additives. Tribol Int 118:314–328

    Article  CAS  Google Scholar 

  • Raju RA, Andhare A, Sahu NK (2017) Performance of multi-walled carbon nanotube-based nanofluid in turning operation. Mater Manuf Process 32(13):1490–1496

    Article  CAS  Google Scholar 

  • Rapoport L, Leshchinsky V, Lvovsky M, Nepomnyashchy O, Volovik Y, Tenne R (2002) Mechanism of friction of fullerenes. Ind Lubr Tribol 54(4):171–176

    Article  Google Scholar 

  • Rhee I-S, Velez C, Von Bernewitz K (1995) Evaluation of environmentally acceptable hydraulic fluids. Defense Technical Information Center, Fort Belvoir

    Google Scholar 

  • Rodrigues JA, Cardoso FP, Lachter ER, Estevão LRM, Lima E, Nascimento RSV (2006) Correlating chemical structure and physical properties of vegetable oil esters. J Am Oil Chem Soc 83(4):353–357

    Article  CAS  Google Scholar 

  • Rudnick LR (2005) Synthetics, mineral oils, and bio-based lubricants: chemistry and technology. CRC Press, Boca Raton

    Book  Google Scholar 

  • Salimi-Yasar H, Heris SZ, Shanbedi M (2017) Influence of soluble oil-based TiO2 nanofluid on heat transfer performance of cutting fluid. Tribol Int 112:147–154

    Article  CAS  Google Scholar 

  • Salimon J, Salih N, Yousif E (2010) Biolubricants: raw materials, chemical modifications and environmental benefits. Eur J Lipid Sci Technol 112(5):519–530

    CAS  Google Scholar 

  • Saravanakumar N, Prabu L, Karthik M, Rajamanickam A (2014) Experimental analysis on cutting fluid dispersed with silver nano particles. J Mech Sci Technol 28(2):645–651. https://doi.org/10.1007/s12206-013-1192-6

    Article  Google Scholar 

  • Sarhan AAD, Sayuti M, Hamdi M (2012) Reduction of power and lubricant oil consumption in milling process using a new SiO2 nanolubrication system. Int J Adv Manuf Technol 63(5–8):505–512

    Article  Google Scholar 

  • Sartori S, Ghiotti A, Bruschi S (2018) Solid lubricant-assisted minimum quantity lubrication and cooling strategies to improve Ti6Al4V machinability in finishing turning. Tribol Int 118:287–294

    Article  CAS  Google Scholar 

  • Sayuti M, Sarhan AAD, Hamdi M (2013a) An investigation of optimum SiO2 nanolubrication parameters in end milling of aerospace Al6061-T6 alloy. Int J Adv Manuf Technol 67(1–4):833–849

    Article  Google Scholar 

  • Sayuti M, Sarhan AAD, Tanaka T, Hamdi M, Saito Y (2013b) Cutting force reduction and surface quality improvement in machining of aerospace duralumin AL-2017-T4 using carbon onion nanolubrication system. Int J Adv Manuf Technol 65(9–12):1493–1500

    Article  Google Scholar 

  • Sayuti M, Erh OM, Sarhan AAD, Hamdi M (2014a) Investigation on the morphology of the machined surface in end milling of aerospace AL6061-T6 for novel uses of SiO2 nanolubrication system. J Clean Prod 66:655–663

    Article  CAS  Google Scholar 

  • Sayuti M, Sarhan AAD, Salem F (2014b) Novel uses of SiO2 nano-lubrication system in hard turning process of hardened steel AISI4140 for less tool wear, surface roughness and oil consumption. J Clean Prod 67:265–276

    Article  CAS  Google Scholar 

  • Setti D, Sinha MK, Ghosh S, Rao PV (2015) Performance evaluation of Ti-6Al-4V grinding using chip formation and coefficient of friction under the influence of nanofluids. Int J Mach Tools Manuf 88:237–248

    Article  Google Scholar 

  • Shaji S, Radhakrishnan V (2003) Analysis of process parameters in surface grinding with graphite as lubricant based on the Taguchi method. J Mater Process Technol 141(1):51–59

    Article  CAS  Google Scholar 

  • Sharma VS, Dogra M, Suri NM (2009) Cooling techniques for improved productivity in turning. Int J Mach Tools Manuf 49(6):435–453

    Article  Google Scholar 

  • Sharma AK, Tiwari AK, Dixit AR (2015a) Improved machining performance with nanoparticle enriched cutting fluids under minimum quantity lubrication (MQL) technique: a review. Mater Today Proc 2(4–5):3545–3551

    Article  Google Scholar 

  • Sharma AK, Tiwari AK, Dixit AR (2015b) Progress of nanofluid application in machining: a review. Mater Manuf Process 30(7):813–828

    Article  CAS  Google Scholar 

  • Sharma AK, Tiwari AK, Dixit AR (2016) Effects of minimum quantity lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: a comprehensive review. J Clean Prod 127:1–18

    Article  CAS  Google Scholar 

  • Sharma AK, Tiwari AK, Dixit AR, Singh RK, Singh M (2018) Novel uses of alumina/graphene hybrid nanoparticle additives for improved tribological properties of lubricant in turning operation. Tribol Int 119:99–111

    Article  CAS  Google Scholar 

  • Sharma AK, Katiyar JK, Bhaumik S, Roy S (2019) Influence of alumina/MWCNT hybrid nanoparticle additives on tribological properties of lubricants in turning operations. Friction 7(2):153–168

    Article  CAS  Google Scholar 

  • Shashidhara YM, Jayaram SR (2010) Vegetable oils as a potential cutting fluid—an evolution. Tribol Int 43(5–6):1073–1081

    Article  CAS  Google Scholar 

  • Shen B, Malshe AP, Kalita P, Shih AJ (2008a) Performance of novel MoS2 nanoparticles based grinding fluids in minimum quantity lubrication grinding. Trans NAMRI/SME 36(357):e364

    Google Scholar 

  • Shen B, Shih AJ, Tung SC (2008b) Application of nanofluids in minimum quantity lubrication grinding. Tribol Trans 51(6):730–737

    Article  CAS  Google Scholar 

  • Shokrani A, Dhokia V, Newman ST (2012) Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. Int J Mach Tools Manuf 57:83–101

    Article  Google Scholar 

  • Singh SP, Singh D (2010) Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review. Renew Sust Energ Rev 14(1):200–216

    Article  CAS  Google Scholar 

  • Sinha MK, Madarkar R, Ghosh S, Rao PV (2017) Application of eco-friendly nanofluids during grinding of Inconel 718 through small quantity lubrication. J Clean Prod 141:1359–1375

    Article  CAS  Google Scholar 

  • Soković M, Mijanović K (2001) Ecological aspects of the cutting fluids and its influence on quantifiable parameters of the cutting processes. J Mater Process Technol 109(1–2):181–189

    Article  Google Scholar 

  • Sreejith PS, Ngoi BKA (2000) Dry machining: machining of the future. J Mater Process Technol 101(1–3):287–291

    Article  Google Scholar 

  • Srikiran S, Ramji K, Satyanarayana B, Ramana SV (2014) Investigation on turning of AISI 1040 steel with the application of nano-crystalline graphite powder as lubricant. Proc Inst Mech Eng C J Mech Eng Sci 228(9):1570–1580

    Article  CAS  Google Scholar 

  • Sripada PK, Sharma RV, Dalai AK (2013) Comparative study of tribological properties of trimethylolpropane-based biolubricants derived from methyl oleate and canola biodiesel. Ind Crop Prod 50:95–103

    Article  CAS  Google Scholar 

  • Stanford M, Lister PM, Morgan C, Kibble KA (2009) Investigation into the use of gaseous and liquid nitrogen as a cutting fluid when turning BS 970-80A15 (En32b) plain carbon steel using WC–Co uncoated tooling. J Mater Process Technol 209(2):961–972

    Article  CAS  Google Scholar 

  • Su Y, Gong L, Li B, Liu Z, Chen D (2016) Performance evaluation of nanofluid MQL with vegetable-based oil and ester oil as base fluids in turning. Int J Adv Manuf Technol 83(9–12):2083–2089

    Article  Google Scholar 

  • Suda S, Yokota H, Inasaki I, Wakabayashi T (2002) A synthetic ester as an optimal cutting fluid for minimal quantity lubrication machining. CIRP Ann Manuf Technol 51(1):95–98

    Article  Google Scholar 

  • Tan XC, Liu F, Cao HJ, Zhang H (2002) A decision-making framework model of cutting fluid selection for green manufacturing and a case study. J Mater Process Technol 129(1–3):467–470

    Article  Google Scholar 

  • Tao X, Jiazheng Z, Kang X (1996) The ball-bearing effect of diamond nanoparticles as an oil additive. J Phys D Appl Phys 29(11):2932

    Article  CAS  Google Scholar 

  • Ting C-C, Chen C-C (2011) Viscosity and working efficiency analysis of soybean oil based bio-lubricants. Measurement 44(8):1337–1341

    Article  Google Scholar 

  • Tsao CC (2007) An experiment study of hard coating and cutting fluid effect in milling aluminum alloy. Int J Adv Manuf Technol 32(9–10):885–891

    Article  Google Scholar 

  • Tschätsch H, Reichelt A (2009) Cutting fluids (coolants and lubricants). In: Applied machining technology. Springer, Dordrecht/New York, pp 349–352

    Chapter  Google Scholar 

  • Varadarajan AS, Philip PK, Ramamoorthy B (2002) Investigations on hard turning with minimal cutting fluid application (HTMF) and its comparison with dry and wet turning. Int J Mach Tools Manuf 42(2):193–200

    Article  Google Scholar 

  • Vasu V, Kumar KM (2011) Analysis of nanofluids as cutting fluid in grinding EN-31 steel. Nanomicro Lett 3(4):209–214

    Google Scholar 

  • Vieira JM, Machado AR, Ezugwu EO (2001) Performance of cutting fluids during face milling of steels. J Mater Process Technol 116(2–3):244–251

    Article  CAS  Google Scholar 

  • Wagner H, Luther R, Mang T (2001) Lubricant base fluids based on renewable raw materials: their catalytic manufacture and modification. Appl Catal A Gen 221(1–2):429–442

    Article  CAS  Google Scholar 

  • Wang X-Q, Mujumdar AS (2007) Heat transfer characteristics of nanofluids: a review. Int J Therm Sci 46(1):1–19

    Article  Google Scholar 

  • Wang X, Li X, Yang S (2009) Influence of pH and SDBS on the stability and thermal conductivity of nanofluids. Energy Fuel 23(5):2684–2689

    Article  CAS  Google Scholar 

  • Wang S, Li C, Zhang D, Jia D, Zhang Y (2014) Modeling the operation of a common grinding wheel with nanoparticle jet flow minimal quantity lubrication. Int J Adv Manuf Technol 74(5–8):835–850

    Article  Google Scholar 

  • Wang Y, Li C, Zhang Y, Li B, Yang M, Zhang X et al (2017a) Comparative evaluation of the lubricating properties of vegetable-oil-based nanofluids between frictional test and grinding experiment. J Manuf Process 26:94–104

    Article  CAS  Google Scholar 

  • Wang Y, Li C, Zhang Y, Yang M, Zhang X, Zhang N, Dai J (2017b) Experimental evaluation on tribological performance of the wheel/workpiece interface in minimum quantity lubrication grinding with different concentrations of Al2O3 nanofluids. J Clean Prod 142:3571–3583

    Article  CAS  Google Scholar 

  • Wertheim R, Rotberg J, Ber A (1992) Influence of high-pressure flushing through the rake face of the cutting tool. CIRP Ann Manuf Technol 41(1):101–106

    Article  Google Scholar 

  • Wu X, Zhang X, Yang S, Chen H, Wang D (2000) The study of epoxidized rapeseed oil used as a potential biodegradable lubricant. J Am Oil Chem Soc 77(5):561–563

    Article  CAS  Google Scholar 

  • Wu YY, Tsui WC, Liu TC (2007) Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear 262(7–8):819–825

    Article  CAS  Google Scholar 

  • Yan J, Zhang Z, Kuriyagawa T (2011) Effect of nanoparticle lubrication in diamond turning of reaction-bonded SiC. IJAT 5(3):307–312

    Article  Google Scholar 

  • Yu H, Hermann S, Schulz SE, Gessner T, Dong Z, Li WJ (2012) Optimizing sonication parameters for dispersion of single-walled carbon nanotubes. Chem Phys 408:11–16

    Article  CAS  Google Scholar 

  • Zeilmann RP, Weingaertner WL (2006) Analysis of temperature during drilling of Ti6Al4V with minimal quantity of lubricant. J Mater Process Technol 179(1–3):124–127

    Article  CAS  Google Scholar 

  • Zhang D, Li C, Jia D, Zhang Y, Zhang X (2015a) Specific grinding energy and surface roughness of nanoparticle jet minimum quantity lubrication in grinding. Chin J Aeronaut 28(2):570–581

    Article  Google Scholar 

  • Zhang D, Li C, Zhang Y, Jia D, Zhang X (2015b) Experimental research on the energy ratio coefficient and specific grinding energy in nanoparticle jet MQL grinding. Int J Adv Manuf Technol 78(5–8):1275–1288

    Article  Google Scholar 

  • Zhang Y, Li C, Jia D, Zhang D, Zhang X (2015c) Experimental evaluation of MoS2 nanoparticles in jet MQL grinding with different types of vegetable oil as base oil. J Clean Prod 87:930–940

    Article  CAS  Google Scholar 

  • Zhang Y, Li C, Jia D, Li B, Wang Y, Yang M et al (2016) Experimental study on the effect of nanoparticle concentration on the lubricating property of nanofluids for MQL grinding of Ni-based alloy. J Mater Process Technol 232:100–115

    Article  CAS  Google Scholar 

  • Zhu H, Zhang C, Tang Y, Wang J, Ren B, Yin Y (2007) Preparation and thermal conductivity of suspensions of graphite nanoparticles. Carbon 45(1):226–228

    Article  CAS  Google Scholar 

  • Zulkifli NWM, Masjuki HH, Kalam MA, Yunus R, Azman SSN (2014) Lubricity of bio-based lubricant derived from chemically modified jatropha methyl ester. J Tribol 1:18–39

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anand, R., Haq, M.I.U., Raina, A. (2020). Bio-Based Nano-Lubricants for Sustainable Manufacturing. In: Bhushan, I., Singh, V., Tripathi, D. (eds) Nanomaterials and Environmental Biotechnology. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-34544-0_18

Download citation

Publish with us

Policies and ethics