Skip to main content

Solid Lipid Nanoparticles

  • Chapter
  • First Online:
Nanomaterials and Environmental Biotechnology

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Recent advances in the development of nanocarriers have started a new era in Formulation Science. Among various nanoparticles, solid lipid nanoparticles (SLNs) offer an attractive carrier system to conventional colloidal carriers, such as emulsions, microemulsions, self micro-emulsifying drug delivery system, micellar systems, liposomes, polymeric microparticles and nanoparticles. SLNs mingle rewards of the conventional carriers along with circumventing some of their major disadvantages. SLNs are effortlessly made nanoparticles composed of biodegradable polymers of high stability devoid of significant toxicity as well as commercially economic and could incorporate wide variety of drugs for effective targeting. In a nutshell, they propose an extremely versatile platform for second- and third-order targeting of drugs. SLNs are novel lipid-based formulations constituted exclusively of biodegradable lipids such as highly purified triglycerides, monoglycerides, complex glyceride mixtures, hard fats or even waxes, which turn solid at room temperature. Large-scale production of SLNs could be achieved in a cost-effective and relatively simple manner using high-pressure homogenization technique. Another approach for the production of SLNs is microemulsions or simply suspending the melted lipid in a solution containing surfactant with stirring and sonication. SLNs provide an excellent opportunity as an advanced drug carrier for oral delivery, topical administration, pulmonary administration, parenteral administration, gene delivery and potential adjuvant for vaccines. The chapter covers the current state of the art related to formulation approaches for SLNs, drug encapsulation, loading efficiency, drug release and characterization of SLNs. Important aspects related to the commercial use of SLNs, such as status of additives, safety profile, acceptability and stability aspects, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboud HM, El Komy MH, Ali AA, El Menshawe SF, Elbary AA (2016) Development optimization, and evaluation of carvedilol-loaded solid lipid nanoparticles for intranasal drug. AAPS PharmSciTech 2016(17):1353–1365

    Article  CAS  Google Scholar 

  • Almeida AJ, Souto E (2007) Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev 59:478–490

    Article  CAS  PubMed  Google Scholar 

  • Amsteel S, Domb AJ, Laving CR (1992) Lipospheres as a vaccine carrier system: effects of size, charge, and phospholipids composition. Vaccin Res 1:383–395

    Google Scholar 

  • Attama AA, Reichl S, Muller-Goymann CC (2008) Diclofenac sodium delivery to the eye: in vitro evaluation of novel solid lipid nanoparticle formulation using human cornea construct. Int J Pharm 355:307–313

    Article  CAS  PubMed  Google Scholar 

  • Attama AA, Reichl S, Muller-Goymann CC (2009) Sustained release and permeation of timolol from surface-modified solid lipid nanoparticles through bioengineered human cornea. Curr Eye Res 34:698–705

    Article  CAS  PubMed  Google Scholar 

  • Aungst BJ (2000) Intestinal permeation enhancers. J Pharm Sci 89:429–442

    Article  CAS  PubMed  Google Scholar 

  • Basu B, Garala K, Bhalodia R, Joshi B, Mehta K (2010) Solid lipid nanoparticles :a promising tool for drug delivery system. J Pharm Res 3(1):84–92

    CAS  Google Scholar 

  • Blasi P, Schoubben A, Romano G, Giovagnoli S, Di Michele A, Ricci M (2013) Lipid nanoparticles for brain targeting II. Technological characterization. Colloid Surf B 110:130–137

    Article  CAS  Google Scholar 

  • Byrappa K, Ohara S, Adschiri T (2008) Nanoparticles synthesis using supercritical fluid technology - towards biomedical applications. Adv Drug Deliv Rev 60:299–327

    Article  CAS  PubMed  Google Scholar 

  • Carli F (1999) Physical chemistry and oral absorption of the nanoparticulate systems. Rencentre Pharmapeptides 5:158–160

    Google Scholar 

  • Carrillo C, Hernandez N, Garcia-Montoya E, Perez-Lozano P, Sune-Negre JM, Tico JR, Sune C, Minarro M (2013) DNA delivery via cationic solid lipid nanoparticles (SLNs). Eur J Pharm Sci 49:157–165

    Article  CAS  PubMed  Google Scholar 

  • Cavalli R, Caputo O, Carlotti ME, Trotta M, Scarnecchia C, Gasco MR (1997) Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles. Int J Pharm 148:47–54

    Article  CAS  Google Scholar 

  • Cavalli R, Gasco MR, Chetoni P, Burgalassi S, Saettone MF (2002) Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int J Pharm 238:241–245

    Article  CAS  PubMed  Google Scholar 

  • Charcosset C, El-Harati AA, Fessi H (2005) Preparation of solid lipid nanoparticles using a membrane contactor. J Control Release 108(1):112–120

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay P, Shekunov BY, Yim D, Cipolla D, Boyd B, Farr S (2007) Production of solid lipid nanoparticle suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system. Adv Drug Deliv Rev 59:444–453

    Article  CAS  PubMed  Google Scholar 

  • Chavan SS, Ingle SG, Vavia PR (2013) Preparation and characterization of solid lipid nanoparticle-based nasal spray of budesonide. Drug Deliv Transl Res 3:402–408

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Chang X, Du D, Liu W, Liu J, Weng T, Yang Y, Xu H, Yang X (2006) Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting. J Control Release 110:296–306

    Article  CAS  PubMed  Google Scholar 

  • Choi KO, Aditya NP, Ko S (2014) Effect of aqueous pH and electrolyte concentration on structure, stability and flow behavior of non-ionic surfactant based solid lipid nanoparticles. Food Chem 147:239–244

    Article  CAS  PubMed  Google Scholar 

  • Cirri M, Bragagni M, Mennini N, Mura P (2012) Development of a new delivery system consisting in drug–in cyclodextrin–in nanostructured lipid carriers for ketoprofen topical delivery. Eur J Pharm Biopharm 80:46–53

    Article  CAS  PubMed  Google Scholar 

  • Copland MJ, Rades T, Davies NM, Baird MA (2005) Lipid based particulate formulations for the delivery of antigen. Immunol Cell Biol 83:97–105

    Article  CAS  PubMed  Google Scholar 

  • Del Pozo-Rodriguez A, Solinis MA, Gascon AR, Pedraz JL (2009) Short- and long-term stability study of lyophilized solid lipid nanoparticles for gene therapy. Eur J Pharm Biopharm 71:181–189

    Article  PubMed  CAS  Google Scholar 

  • Del Pozo-Rodriguez A, Delgado D, Solinis MA, Pedraz JL, Echevarria E, Rodriguez JM, Gascon AR (2010) Solid lipid nanoparticles as potential tools for gene therapy: in vivo protein expression after intravenous administration. Int J Pharm 385:157–162

    Article  PubMed  CAS  Google Scholar 

  • Dingler A, Blum RP, Niehus H, Muller RH, Gohla S (1999) Solid lipid nanoparticles (SLN/Lipopearls)--a pharmaceutical and cosmetic carrier for the application of vitamin E in dermal products. J Microencapsul 16:751–767

    Article  CAS  PubMed  Google Scholar 

  • Ekambaram P, Hasansathali AA, Priyanka K (2012) Solid lipid nanoparticles: a review. Sci Rev Chem Commun 2(1):80–102

    CAS  Google Scholar 

  • El-Harati AA, Charcosset C, Fessi H (2006) Influence of the formulation for solid lipid nanoparticles prepared with a membrane contactor. Pharm Dev Technol 11(2):153–157

    Article  CAS  PubMed  Google Scholar 

  • Eyles JE, Carpenter ZC, Alpar HO, Williamson ED (2003) Immunological aspects of polymer microsphere vaccine delivery systems. J Drug Target 11:509–514

    Article  CAS  PubMed  Google Scholar 

  • Fan T, Chen C, Guo H, Xu J, Zhang J, Zhu X, Yang Y, Zhou Z, Li L, Huang Y (2014) Design and evaluation of solid lipid nanoparticles modified with peptide ligand for oral delivery of protein drugs. Eur J Pharm Biopharm 88:518–528

    Article  CAS  PubMed  Google Scholar 

  • Farboud ES, Nasrollahi SA, Tabbakhi Z (2011) Novel formulation and evaluation of a Q10-loaded solid lipid nanoparticle cream: in vitro and in vivo studies. Int J Nanomedicine 6:611–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freitas C, Muller RH (1998) Spray-drying of solid lipid nanoparticles (SLN TM). Eur J Pharm Biopharm 46:145–151

    Article  CAS  PubMed  Google Scholar 

  • Freitas C, Muller RH (1999) Correlation between long-term stability of solid lipid nanoparticles (SLN) and crystallinity of the lipid phase. Eur J Pharm Biopharm 47:125–132

    Article  CAS  PubMed  Google Scholar 

  • Friedrich H, Frederik P, de With G, Sommerdijk N (2010) Imaging of self-assembled structures: interpretation of TEM and Cryo-TEM images. Angew Chem Int Ed 49:7850–7858

    Article  CAS  Google Scholar 

  • Gasco MR (1993) Method for producing solid lipid microspheres having a narrow size distribution. US Patent 5 250 236

    Google Scholar 

  • Gohla SH, Dingler A (2001) Scaling up feasibility of the production of solid lipid nanoparticles (SLN). Pharmazie 56:61–63

    CAS  PubMed  Google Scholar 

  • Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    Article  CAS  PubMed  Google Scholar 

  • He J, Hou SX, Feng JF, Cai BQ (2005) Effect of particle size on oral absorption of silymarin-loaded solid lipid nanoparticles. China J Chin Mater Med 30:1651–1653

    Google Scholar 

  • Hu FQ, Hong Y, Yuan H (2004) Preparation and characterization of solid lipid nanoparticles containing peptide. Int J Pharm 273:29–35

    Article  CAS  PubMed  Google Scholar 

  • Huang G, Zhang N, Bi X, Dou M (2008) Solid lipid nanoparticles of temozolomide: potential reduction of cardial and nephric toxicity. Int J Pharm 355:314–320

    Article  CAS  PubMed  Google Scholar 

  • Jaafar-Maalej C, Andrieu V, Elaissari A, Fessi H (2011) Beclomethasone-loaded lipidic nanocarriers for pulmonary drug delivery: preparation, characterization and in vitro drug release. J Nanosci Nanotechnol 11:1841–1851

    Article  CAS  PubMed  Google Scholar 

  • Jain NK (1997) Controlled and novel drug delivery, 1st edn. CBS, New Delhi

    Google Scholar 

  • Jores K, Mehnert W, Drechsler M, Bunjes H, Johann C, Mader K (2004) Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. J Control Release 95:217–227

    Article  CAS  PubMed  Google Scholar 

  • Joshi MD, Muller RH (2009) Lipid nanoparticles for parenteral delivery of actives. Eur J Pharm Biopharm 71:161–172

    Article  CAS  PubMed  Google Scholar 

  • Joshi AS, Patel HS, Belgamwar VS, Agrawal A, Tekade AR (2012) Solid lipid nanoparticles of ondansetron HCl for intranasal delivery: development, optimization and evaluation. J Mater Sci Mater Med 23:2163–2175

    Article  CAS  PubMed  Google Scholar 

  • Junyaprasert VB, Teeranachaideekul V, Souto EB, Boonme P, Muller RH (2009) Q10-loaded NLC versus nanoemulsions: stability, rheology and in vitro skin permeation. Int J Pharm 377:207–214

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Dong L, Jia A, Chang S, Xue H (2006) Preparation and characterization of solid lipid nanoparticles loaded traditional Chinese medicine. Int J Biol Macromol 38:296–299

    Article  CAS  PubMed  Google Scholar 

  • Li H, Zhao X, Ma Y, Zhai G, Li L, Lou H (2009) Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Control Release 133:238–244

    Article  CAS  PubMed  Google Scholar 

  • Lin YK, Huang ZR, Zhuo RZ, Fang JY (2010) Combination of calcipotriol and methotrexate in nanostructured lipid carriers for topical delivery. Int J Nanomed 5:117–128

    CAS  Google Scholar 

  • Liu J, Gong T, Fu H, Wang C, Wang X, Chen Q, Zhang Q, He Q, Zhang Z (2008) Solid lipid nanoparticles for pulmonary delivery of insulin. Int J Pharm 356:333–344

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Liu Z, Wang L, Zhang C, Zhang N (2011) Nanostructured lipid carriers as novel carrier for parenteral delivery of docetaxel. Colloids Surf B 85:262–269

    Article  CAS  Google Scholar 

  • Martins S, Sarmento B, Ferreira DC, Souto EB (2007) Lipid-based colloidal carriers for peptide and protein delivery-liposomes versus lipid nanoparticles. Int J Nanomedicine 2:595–607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mosallaei N, Jaafari MR, Hanafi-Bojd MY, Golmohammadzadeh S, Malaekeh-Nikouei B (2013) Docetaxel-loaded solid lipid nanoparticles: preparation, characterization, in vitro, and in vivo evaluations. J Pharm Sci 102:1994–2004

    Article  CAS  PubMed  Google Scholar 

  • Muhlen Z, Mehnert W (1998) Drug release and release mechanism of prednisolone loaded solid lipid nanoparticles. Pharmazie 53:552

    Google Scholar 

  • Müller RH (1996) Zetapotential und Partikelladung in der Laborpraxis – Einführung in die Theorie, praktische Meßdurchführung, Dateninterpretation. Wissenschaftliche Verlagsgesellschaft, Stuttgart, 254 S

    Google Scholar 

  • Muller RH, Lucks JS (1996) Arzneistofftrager aus festen Lipidteilchen, Feste Lipidnanospharen (SLN). European Patent No. 0605497

    Google Scholar 

  • Muller RH, Runge SA (1998) Solid lipid nanoparticles (SLN) for controlled drug delivery. In: Benita S (ed) Submicron emulsions in drug targeting and delivery. CRC, Amsterdam, pp 219–234

    Google Scholar 

  • Muller RH, Mader K, Gohla S (2000) Enzymatic degradation of Dynasan 114 SLN – effect of surfactants and particle size. Eur J Pharm Biohgarm 50:161–170

    Article  CAS  Google Scholar 

  • Nayak AP, Tiyaboonchai W, Patankar S, Madhusudhan B, Souto EB (2010) Curcuminoids-loaded lipid nanoparticles: novel approach towards malaria treatment. Colloids Surf B Biointerfaces 81:263–273

    Article  CAS  PubMed  Google Scholar 

  • Obeidat WM (2012) Investigation of temperature-induced physical instability of preserved coenzyme Q10-loaded (NLC): a comparative study at different temperatures. Afr J Pharm Pharmacol 6:2413–2423

    Article  CAS  Google Scholar 

  • Obeidat WM, Schwabe K, Muller RH, Keck CM (2010) Preservation of nanostructured lipid carriers (NLC). Eur J Pharm Biopharm 76:56–67

    Article  CAS  PubMed  Google Scholar 

  • Okonogi S, Riangjanapatee P (2013) Potential technique for tiny crystalline detection in lycopene loaded SLN and NLC development. Drug Dev Ind Pharm 40(10):1–8

    Google Scholar 

  • Olbrich C, Muller RH (1999) Enzymatic degradation of SLN-effect of surfactant and surfactant mixtures. Int J Pharm 180:31–39

    Article  CAS  PubMed  Google Scholar 

  • Olbrich C, Bakowsky U, Lehr CM, Muller RH, Kneuer C (2001) Cationic solid-lipid nanoparticles can efficiently bind and transfect plasmid DNA. J Control Release 77:345–355

    Article  CAS  PubMed  Google Scholar 

  • Omwoyo WN, Ogutu B, Oloo F (2014) Preparation, characterization, and optimization of primaquine-loaded solid lipid nanoparticles. Int J Nanomedicine 9:3865–3874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pardeike J, Schwabe K, Muller RH (2010) Influence of nanostructured lipid carriers (NLC) on the physical properties of the Cutanova Nanorepair Q10 cream and the in vivo skin hydration effect. Int J Pharm 396:166–173

    Article  CAS  PubMed  Google Scholar 

  • Pardeike J, Weber S, Haber T, Wagner J, Zarfl HP, Plank H, Zimmer A (2011) Development of an itraconazole-loaded nanostructured lipid carrier (NLC) formulation for pulmonary application. Int J Pharm 419:329–338

    Article  CAS  PubMed  Google Scholar 

  • Pardeshi CV, Rajput PV, Belgamwar VS, Tekade AR, Surana SJ (2013) Novel surface modified solid lipid nanoparticles as intranasal carriers for ropinirole hydrochloride: application of factorial design approach. Drug Deliv 20:47–56

    Article  CAS  PubMed  Google Scholar 

  • Patil S, Joshi M, Pathak S, Sharma S, Patravale V (2012) Intravenous β-artemether formulation (ARM NLC) as a superior alternative to commercial artesunate formulation. J Antimicrob Chemother 67:2713–2716

    Article  CAS  PubMed  Google Scholar 

  • Patlolla RR, Chougule M, Patel AR, Jackson T, Tata PN, Singh M (2010) Formulation, characterization and pulmonary deposition of nebulized celecoxib encapsulated nanostructured lipid carriers. J Control Release 144:233–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilcer G, Amighi K (2010) Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm 392:1–19

    Article  CAS  PubMed  Google Scholar 

  • Pinto JF, Muller RH (1999) Pellets as carriers of solid lipid nanoparticles (SLNk) for oral administration of drugs. Pharmazie 54:506–509

    CAS  Google Scholar 

  • Rabinarayan P, Padilama S (2010) Production of solid lipid nanoparticles-drug loading and release mechanism. J Chem Pharm Res 2:211–227

    Google Scholar 

  • Ramteke KH, Joshi SA, Dhole SN (2012) Solid lipid nanoparticle: a review. IOSR J Pharm 2(6):34–44

    Google Scholar 

  • Ren J, Zou M, Gao P, Wang Y, Cheng G (2013) Tissue distribution of borneol-modified ganciclovir-loaded solid lipid nanoparticles in mice after intravenous administration. Eur J Pharm Biopharm 83:141–148

    Article  CAS  PubMed  Google Scholar 

  • Saupe A, Gordon KC, Rades T (2006) Structural investigations on nanoemulsions, solid lipid nanoparticles and nanostructured lipid carriers by cryo-field emission scanning electron microscopy and Raman spectroscopy. Int J Pharm 314:56–62

    Article  CAS  PubMed  Google Scholar 

  • Scholer N, Olbrich C, Tabatt K, Muller RH, Hahn H, Liesenfeld O (2001) Surfactant, but not the size of solid lipid nanoparticles (SLN) influences viability and cytokine production of macrophages. Int J Pharm 221:57–67

    Article  CAS  PubMed  Google Scholar 

  • Schwarz C, Mehnert W, Lucks JS, Muller RH (1994) Solid lipid nanoparticles (SLN) for controlled drug delivery: I. Production, characterization and sterilization. J Control Release 30:83–96

    Article  CAS  Google Scholar 

  • Shah C, Shah V, Uphadhyay U (2011) Solid lipid nanoparticles: a review. Curr Pharm Res 1(4):351–368

    Article  Google Scholar 

  • Shakesheff KM, Davies MC, Domb A, Glasbey TO, Jackson DE, Heller J, Roberts CJ, Shard AG, Tendler SJB, Williams PM (1994) Visualizing the degradation of polymer surfaces with an Atomic Force Microscope. Proc Int Symp Control Release Bioact Mater 21:1343–1344

    Google Scholar 

  • Shenoy VS, Gude RP, Murthy RSR (2013) In vitro anticancer evaluation of 5-fluorouracil lipid nanoparticles using B16F10 melanoma cell lines. Int Nano Lett 3:36

    Article  CAS  Google Scholar 

  • Shi L, Li Z, Yu L, Jia H, Zheng L (2011) Effects of surfactants and lipids on the preparation of solid lipid nanoparticles using double emulsion method. J Dispers Sci Tech 32(2):254–259

    Article  CAS  Google Scholar 

  • Siddiqui A, Alayoubi A, El-Malah Y, Nazzal S (2014) Modeling the effect of sonication parameters on size and dispersion temperature of solid lipid nanoparticles (SLNs) by response surface methodology (RSM). Pharm Dev Technol 19:342–346

    Article  CAS  PubMed  Google Scholar 

  • Siekmann B, Westesen K (1996) Investigations on solid lipid nanoparticles prepared by precipitation in o/w emulsions. Eur J Pharm Biopharm 43:104–109

    Google Scholar 

  • Silva AC, Gonzalez-Mira E, Garcia ML, Egea MA, Fonseca J, Silva R, Santos D, Souto EB, Ferreira D (2011) Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): high pressure homogenization versus ultrasound. Colloid Surf B 86:158–165

    Article  CAS  Google Scholar 

  • Sinha VR, Srivastava S, Goel H, Jindal V (2010) Solid lipid nanoparticles (SLN’S) – trends and implications in drug targeting. Int J Adv Pharm Sci 1:212–238

    CAS  Google Scholar 

  • Soares S, Fonte P, Costa A, Andrade J, Seabra V, Ferreira D, Reis S, Sarmento B (2013) Effect of freeze-drying, cryoprotectants and storage conditions on the stability of secondary structure of insulin-loaded solid lipid nanoparticles. Int J Pharm 456:370–381

    Article  CAS  PubMed  Google Scholar 

  • Solans C, Sole I (2012) Nano-emulsions: formation by low-energy methods. Curr Opin Colloid Interface Sci 17:246–254

    Article  CAS  Google Scholar 

  • Storni T, Kundig TM, Senti G, Johansen P (2005) Immunity in response to particulate antigen-delivery systems. Adv Drug Deliv Rev 57:333–355

    Article  CAS  PubMed  Google Scholar 

  • Stoye I, Schroder K, Muller-Goymann CC (1998) Transformation of a liposomal dispersion containing ibuprofen lysinate and phospholipids into mixed micelles – physico-chemical characterization and influence on drug permeation through excised human stratum corneum. Eur J Pharm Biopharm 46:191–200

    Article  CAS  PubMed  Google Scholar 

  • Webster AJ, Cates ME (2001) Osmotic stabilization of concentrated emulsions and foams. Langmuir 17:595–608

    Article  CAS  Google Scholar 

  • Westesen K, Siekmann B (1997) Investigation of the gel formation of phospholipid-stabilized solid lipid nanoparticles. Int J Pharm 151:35–45

    Article  CAS  Google Scholar 

  • Wu M, Tia Z, Yuan S, Huang Z (2012) Magnetic and optical properties of the Aurivillius phase Bi5Ti3FeO15. Mater Lett 68:190–192

    Article  CAS  Google Scholar 

  • Xie S, Zhu L, Dong Z, Wang Y, Wang X, Zhou W (2011) Preparation and evaluation of ofloxacin loaded palmitic acid solid lipid nanoparticles. Int J Nanomedicine 6:547–555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Ciftci ON (2016) Formation of hollow solid lipid micro- and nanoparticles using supercritical carbon dioxide. Food Bioprod Process 98:151–160

    Article  CAS  Google Scholar 

  • Yasuji T, Takeuchi H, Kawashima Y (2008) Particle design of poorly water-soluble drug substances using supercritical fluid technologies. Adv Drug Deliv Rev 60:388–398

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Ping Q, Huang G, Xu W, Cheng Y, Han X (2006) Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int J Pharm 327:153–159

    Article  CAS  PubMed  Google Scholar 

  • Zhuang CY, Li N, Wang M, Zhang XN, Pan WS, Peng JJ, Pan YS, Tang X (2010) Preparation and characterization of vinpocetine loaded nanostructured lipid carriers (NLC) for improved oral bioavailability. Int J Pharm 394:179–185

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jain, A.K., Thareja, S. (2020). Solid Lipid Nanoparticles. In: Bhushan, I., Singh, V., Tripathi, D. (eds) Nanomaterials and Environmental Biotechnology. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-34544-0_13

Download citation

Publish with us

Policies and ethics