Skip to main content

Molecular Aspects of Heparanase Interaction with Heparan Sulfate, Heparin and Glycol Split Heparin

  • Chapter
  • First Online:
Heparanase

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1221))

Abstract

Heparanase is the principal enzyme that degrades heparan sulfate (HS) in both physiological (HS turnover) and pathological (tumor metastasis, inflammation) cell conditions, catalysing the hydrolysis of the β-1-4 glycosidic bond in -GlcUA-β(1-4)-GlcNX-. Despite efforts to define the minimum trisaccharide sequence that allows glycans to be recognized by heparanase, a rigorous “molecular code” by which the enzyme reads and degrades HS chains has not been identified. The X-ray diffraction model of heparanase, resolved by Wu et al (2015), revealed a complex between the trisaccharide GlcNS6S-GlcUA-GlcNS6S and heparanase. Efforts are ongoing to better understand how HS mimetics longer than three residues are recognized by heparanase before being hydrolyzed or inhibit the enzyme. It is also important to consider the flexibility of the enzyme active site, a feature that opens up the development of heparanase inhibitors with structures significantly different from HS or heparin. This chapter reviews the state-of-the-art knowledge about structural aspects of heparanase activities in terms of substrate recognition, mechanism of hydrolysis, and inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ögren, S., & Lindahl, U. (1976). Cleavage of Macromolecular Heparin by an Enzyme from Mouse Mastocytoma. Biochemical Journal, 154(3), 605–611.

    Article  Google Scholar 

  2. Vlodavsky, I., Friedmann, Y., Elkin, M., et al. (1999). Mammalian heparanase: Gene cloning, expression and function in tumor progression and metastasis. Nature Medicine, 5(7), 793–802.

    Article  CAS  Google Scholar 

  3. Hulett, M. D., Freeman, C., Hamdorf, B. J., Baker, R. T., Harris, M. J., & Parish, C. R. (1999). Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nature Medicine, 5(7), 803–809.

    Article  CAS  Google Scholar 

  4. Kussie, P. H., Hulmes, J. D., Ludwig, D. L., et al. (1999). Cloning and functional expression of a human heparanase gene. Biochemical and Biophysical Research Communications, 261(1), 183–187.

    Article  CAS  Google Scholar 

  5. Fairbanks, M. B., Mildner, A. M., Leone, J. W., et al. (1999). Processing of the human heparanase precursor and evidence that the active enzyme is a heterodimer. The Journal of Biological Chemistry, 274(42), 29587–29590.

    Article  CAS  Google Scholar 

  6. Toyoshima, M., & Nakajima, M. (1999). Human heparanase. Purification, characterization, cloning, and expression. The Journal of Biological Chemistry, 274(34), 24153–24160.

    Article  CAS  Google Scholar 

  7. Mackenzie, E., Tyson, K., Stamps, A., et al. (2000). Cloning and expression profiling of Hpa2, a novel mammalian heparanase family member. Biochemical and Biophysical Research Communications, 276(3), 1170–1177.

    Article  Google Scholar 

  8. Rivara, S., Milazzo, F. M., & Giannini, G. (2016). Heparanase: A rainbow pharmacological target associated to multiple pathologies including rare diseases. Future Medicinal Chemistry, 8(6), 647–680.

    Article  CAS  Google Scholar 

  9. Yates, E. A., Gallagher, J. T., & Guerrini, M. (2019). Introduction to the molecules special edition entitled ‘Heparan Sulfate and heparin: Challenges and controversies’: Some outstanding questions in Heparan Sulfate and heparin research. Molecules, 24(7), 1399. https://doi.org/10.3390/molecules24071399.

    Article  CAS  PubMed Central  Google Scholar 

  10. Wu, L., Viola, C. M., Brzozowski, A. M., & Davies, G. J. (2015). Structural characterization of human heparanase reveals insights into substrate recognition. Nature Structure And Molecular Biology, 22(12), 1016–1023.

    Article  CAS  Google Scholar 

  11. Davies, G., & Henrissat, B. (1995). Structure and mechanisms of glycosyl hydrolases. Current Opinion in Structural Biology, 3(9), 853–859.

    CAS  Google Scholar 

  12. Pikas, D. S., Li, J. P., Vlodavsky, I., & Lindahl, U. (1998). Substrate specificity of heparanases from human hepatoma and platelets. The Journal of Biological Chemistry, 273, 18770–18777.

    Article  CAS  Google Scholar 

  13. Okada, Y., Yamada, S., Toyoshima, M., Dong, J., Nakajima, M., & Sugahara, K. (2002). Structural recognition by recombinant human heparanase that plays critical roles in tumor metastasis. Hierarchical sulfate groups with different effects and the essential target disulfated trisaccharide sequence. The Journal of Biological Chemistry, 277, 42488–42495.

    Article  CAS  Google Scholar 

  14. Davies, G. J., Wilson, K. S., & Henrissat, B. (1997). Nomenclature for sugar-binding subsites in Glycosyl hydrolases. The Biochemical Journal, 321, 557–559.

    Article  CAS  Google Scholar 

  15. Bisio, A., Mantegazza, A., Urso, E., Naggi, A., Torri, G., Viskov, C., & Benito, C. (2007). High-performance liquid chromatographic/mass spectrometric studies on the susceptibility of heparin species to cleavage by Heparanase. Seminars in Thrombosis and Hemostasis, 33, 488–495.

    Article  CAS  Google Scholar 

  16. Peterson, S. B., & Liu, J. (2010). Unraveling the specificity of Heparanase UtilizingSynthetic substrates. The Journal of Biological Chemistry, 285, 14504–14513.

    Article  CAS  Google Scholar 

  17. Vlodavsky, I., Ilan, N., Naggi, A., & Casu, B. (2007). Heparanase: Structure, biological functions, and inhibition by heparin-derived mimetics of heparan sulfate. Current Pharmaceutical Design, 13(20), 2057–2073.

    Article  CAS  Google Scholar 

  18. Hulett, M. D., Hornby, J. R., Ohms, S. J., Zuegg, J., Freeman, C., Gready, J. E., & Parish, C. R. (2000). Identification of active-site residues of the pro-metastatic endoglycosidase heparanase. Biochemistry, 39, 15659–15667.

    Article  CAS  Google Scholar 

  19. Zhou, Z., Bates, M., & Madura, J. D. (2006). Structure Modeling, ligand binding, and binding affinity calculation (LR-MM-PBSA) of human Heparanase for inhibition and drug design. Proteins, 65, 580–592.

    Article  CAS  Google Scholar 

  20. Courtney, S. M., Hay, P. A., Buck, R. T., Colville, C. S., Porter, D. W., Scopes, D. I. C., & Pollard, F. C. PageMJ, Bennett JM, Hircock ML,McKenzie EA,Stubberfield CR, Turner PR. (2004) 2,3-Dihydro-1,3-dioxo-1H-isoindole-5-carboxylic acid derivatives: A novel class of small molecule heparanase inhibitors. Bioorganic & Medicinal Chemistry Letters, 14, 3269–3273.

    Google Scholar 

  21. Courtney, S. M., Hay, P. A., Buck, R. T., Colville, C. S., Phillips, D. J., Scopes, D. I. C., Pollard, F. C., Page, M. J., Bennett, J. M., Hircock, M. L., McKenzie, E. A., Bhaman, M., Felix, R., Stubberfield, C. R., & Turner, P. R. (2005). Furanyl-1,3-thiazol-2-yl and benzoxazol-5-ylacetic acid derivatives: Novel classes of heparanase inhibitor. Bioorganic & Medicinal Chemistry Letters, 15, 2295–2299.

    Article  CAS  Google Scholar 

  22. Sapay, N., Cabannes, E., Petitou, M., & Imberty, A. (2012). Molecular model of human Heparanase with proposed binding mode of a Heparan Sulfate oligosaccharide and catalytic amino acids. Biopolymers, 97(1), 21–34.

    Article  CAS  Google Scholar 

  23. Gandhi, N. S., Freeman, C., Parish, C. R., & Mancera, R. L. (2012). Computational analyses of the catalytic and heparin-binding sites and their interactions with glycosaminoglycans in glycoside hydrolase family 79 endo-β-D-glucuronidase (heparanase). Glycobiology, 22(1), 35–55.

    Article  CAS  Google Scholar 

  24. Parish, C. R., Freeman, C., & Hulett, M. D. (2001). Heparanase: A key enzyme involved in cell invasion. Biochimica et Biophysica Acta, 1471, M99–M108.

    CAS  PubMed  Google Scholar 

  25. Ferro, V., Dredge, K., Liu, L., Hammond, E., Bytheway, I., Li, C., Johnstone, K., Karoli, T., Davis, K., Copeman, E., et al. (2007). PI-88 and novel heparan sulfate mimetics inhibit angiogenesis. Seminars in Thrombosis and Hemostasis, 33, 557–568.

    Article  CAS  Google Scholar 

  26. Pala, D., Rivara, S., Mor, M., Milazzo, F. M., Roscilli, G., Pavoni, E., & Giannini, G. (2016). Kinetic analysis and molecular modeling of the inhibition mechanism of roneparstat (SST0001) on human heparinase. Glycobiology, 26, 640–654.

    Article  CAS  Google Scholar 

  27. Elli S., Guerrini M., Casu B., Naggi A., Torri G., Livnah O., Vlodavsky I., Sanderson R. D., Valerio A., Vismara E. (2011) A Computational approach for chemical and physical characterization of heparan sulphate like oligosaccharides as Heparanase inhibitors Oral presentation at CDDD conference Dompé Research Centre Italy, L’Aquila Nov. 21-23.

    Google Scholar 

  28. Vlodavsky, I., Singh, P., Boyango, I., Gutter-Kapon, L., Elkin, M., Sanderson, R. D., & Ilan, N. (2016). Heparanase: From basic research to therapeutic applications in cancer and inflammation. Drug Resistance Updates, 29, 54–75.

    Article  Google Scholar 

  29. Nardella, C., Lahm, A., Pallaoro, M., Brunetti, M., Vannini, A., & Steinkühler, C. (2004). Mechanism of Activation of Human Heparanase Investigated by Protein Engineering. Biochemistry, 43(7), 1862–1873.

    Article  CAS  Google Scholar 

  30. Levy-Adam, F., Abboud-Jarrous, G., Guerrini, M., Beccati, D., Vlodavsky, I., & Ilan, N. (2005). Identification and characterization of heparin/Heparan SulfateBinding domains of the Endoglycosidase Heparanase. The Journal of Biological Chemistry, 280, 20457–20466.

    Article  CAS  Google Scholar 

  31. Case, D. A., Darden, T. A., Cheatham, T. E., III, Simmerling, C. L., Wang, J., Duke, R. E., Luo, R., Walker, R. C., Zhang, W., Merz, K. M., Roberts, B. P., Wang, B., Hayik, S., Roitberg, A., Seabra, G., Kolossvai, I., Wong, K. F., Paesani, F., Vanicek, J., Liu, J., Wu, X., Brozell, S. R., Steinbrecher, T., Gohlke, H., Cai, Q., Ye, J., Wang, J., Hsieh, M.-J., Cui, G., Roe, D. R., Mathews, D. H., Seetin, M. G., Sagui, C., Babin, V., Luchko, T., Gusarov, S., Kovalenko, A., & Kollman, P. A. (2010). AMBER 11. San Francisco: University of California.

    Google Scholar 

  32. Kirschner, K. N., Yongye, A. B., Tschampel, S. M., González-Outeiriño, J., Daniels, C. R., Foley, B. L., & Woods, R. J. (2008). GLYCAM06: A generalizable biomolecular force field. Carbohydrates. Journal of Computational Chemistry, 29, 622–655.

    Article  CAS  Google Scholar 

  33. Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kale, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26, 1781–1802.

    Article  CAS  Google Scholar 

  34. Xu, Y., Masuko, S., Takieddin, M., Xu, H., Liu, R., Jing, J., Mousa, S. A., Linhardt, R. J., & Liu, J. (2011). Chemoenzymatic synthesis of homogeneous ultralow molecular weight heparins. Science, 334(6055), 498–501.

    Article  CAS  Google Scholar 

  35. Stancanelli, E., Elli, S., Hsieh, P. H., Liu, J., & Guerrini, M. (2018). Recognition and conformational properties of an alternative Antithrombin binding sequence obtained by Chemoenzymatic synthesis. Chembiochem, 19, 1178–1188.

    Article  CAS  Google Scholar 

  36. Mulloy, B., Foster, M. J., Jones, C., & Davies, D. B. (1993). N.m.r. and molecular-modelling studies of the solution conformation of heparin. Biochem. J., 293, 849–858.

    Article  CAS  Google Scholar 

  37. Bisio, A., Mantegazza, A., Urso, E., Naggi, A., Torri, G., Viskov, C., & Casu, B. (2007). High-performance liquid chromatographic/mass spectrometric studies on the susceptibility of heparin species to cleavage by heparanase. Seminars in Thrombosis and Hemostasis, 33, 488–495.

    Article  CAS  Google Scholar 

  38. Naggi, A., Casu, B., Perez, M., Torri, G., Cassinelli, G., Penco, S., Pisano, C., Giannini, G., Ishai-Michaeli, R., & Vlodavsky, I. (2005). Modulation of the heparanase-inhibiting activity of heparin through selective desulfation, graded N-acetylation, and glycol splitting. The Journal of Biological Chemistry, 280, 12103–12113.

    Article  CAS  Google Scholar 

  39. Casu B, Guerrini M, Naggi A., Perez M., Torri G., Ribatti D., Carminati P., Giannini G., Penco SD., Pisano C., Belleri M. Rusnati M., Presta M. (2002) Short Heparin Sequences Spaced by Glycol-Split Uronate Residues Are Antagonists of Fibroblast Growth Factor 2 and Angiogenesis Inhibitors Biochemistry 41:10519-10528.

    Google Scholar 

  40. Ni, M., Elli, S., Naggi, A., Guerrini, M., Torri, G., & Petitou, M. (2016). Investigating glycol-Split-heparin-derived inhibitors of Heparanase: A study of synthetic Trisaccharides. Molecules, 21(11), 1602. https://doi.org/10.3390/molecules21111602.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Guerrini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elli, S., Guerrini, M. (2020). Molecular Aspects of Heparanase Interaction with Heparan Sulfate, Heparin and Glycol Split Heparin. In: Vlodavsky, I., Sanderson, R., Ilan, N. (eds) Heparanase. Advances in Experimental Medicine and Biology, vol 1221. Springer, Cham. https://doi.org/10.1007/978-3-030-34521-1_6

Download citation

Publish with us

Policies and ethics