Skip to main content

Heparanase Inhibition by Pixatimod (PG545): Basic Aspects and Future Perspectives

  • Chapter
  • First Online:
Heparanase

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1221))

Abstract

Pixatimod is an inhibitor of heparanase, a protein which promotes cancer via its regulation of the extracellular environment by enzymatic cleavage of heparan sulfate (HS) and non-enzymatic signaling. Through its inhibition of heparanase and other HS-binding signaling proteins, pixatimod blocks a number of pro-cancerous processes including cell proliferation, invasion, metastasis, angiogenesis and epithelial-mesenchymal transition. Several laboratories have found that these activities have translated into potent activity using a range of different mouse cancer models, including approximately 30 xenograft and 20 syngeneic models. Analyses of biological samples from these studies have confirmed the heparanase targeting of this agent in vivo and the broad spectrum of anti-cancer effects that heparanase blockade achieves. Pixatimod has been tested in combination with a number of approved anti-cancer drugs demonstrating its clinical potential, including with gemcitabine, paclitaxel, sorafenib, platinum agents and an anti-PD-1 antibody. Clinical testing has shown pixatimod to be well tolerated as a monotherapy, and it is currently being investigated in combination with the anti-PD-1 drug nivolumab in a pancreatic cancer phase I trial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dredge, K., Hammond, E., Davis, K., Li, C. P., Liu, L., Johnstone, K., et al. (2010). The PG500 series: Novel heparan sulfate mimetics as potent angiogenesis and heparanase inhibitors for cancer therapy. Investigational New Drugs, 28, 276–283. https://doi.org/10.1007/s10637-009-9245-5.

    Article  CAS  PubMed  Google Scholar 

  2. Hammond, E., Handley, P., Dredge, K., & Bytheway, I. (2013). Mechanisms of heparanase inhibition by the heparan sulfate mimetic PG545 and three structural analogues. FEBS Open Bio, 3, 346–351. https://doi.org/10.1016/j.fob.2013.07.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jung, D.-B., Yun, M., Kim, E.-O., Kim, J., Kim, B., Jung, J. H., et al. (2015). The heparan sulfate mimetic PG545 interferes with Wnt/β-catenin signaling and significantly suppresses pancreatic tumorigenesis alone and in combination with gemcitabine. Oncotarget, 6, 4992–5004. https://doi.org/10.18632/oncotarget.3214.

    Article  PubMed  Google Scholar 

  4. Winterhoff, B., Freyer, L., Hammond, E., Giri, S., Mondal, S., Roy, D., et al. (2015). PG545 enhances anti-cancer activity of chemotherapy in ovarian models and increases surrogate biomarkers such as VEGF in preclinical and clinical plasma samples. European Journal of Cancer, 51, 879–892. https://doi.org/10.1016/j.ejca.2015.02.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rapraeger, A. C., Krufka, A., & Olwin, B. B. (1991). Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science, 252, 1705–1708. http://www.ncbi.nlm.nih.gov/pubmed/1646484.

    Article  CAS  PubMed  Google Scholar 

  6. Soker, S., Goldstaub, D., Svahn, C. M., Vlodavsky, I., Levi, B. Z., & Neufeld, G. (1994). Variations in the size and sulfation of heparin modulate the effect of heparin on the binding of VEGF165 to its receptors. Biochemical and Biophysical Research Communications, 203, 1339–1347. https://doi.org/10.1006/bbrc.1994.2329.

    Article  CAS  PubMed  Google Scholar 

  7. Thompson, S. A., Higashiyama, S., Wood, K., Pollitt, N. S., Damm, D., McEnroe, G., et al. (1994). Characterization of sequences within heparin-binding EGF-like growth factor that mediate interaction with heparin. The Journal of Biological Chemistry, 269, 2541–2549. http://www.ncbi.nlm.nih.gov/pubmed/8300582.

    CAS  PubMed  Google Scholar 

  8. Zhang, L. (2010). Glycosaminoglycan (GAG) biosynthesis and GAG-binding proteins. Progress in Molecular Biology and Translational Science, 93, 1–17. https://doi.org/10.1016/S1877-1173(10)93001-9.

    Article  CAS  PubMed  Google Scholar 

  9. Boyango, I., Barash, U., Naroditsky, I., Li, J.-P., Hammond, E., Ilan, N., et al. (2014). Heparanase cooperates with Ras to drive breast and skin tumorigenesis. Cancer Research, 74, 4504–4514. https://doi.org/10.1158/0008-5472.CAN-13-2962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shteingauz, A., Boyango, I., Naroditsky, I., Hammond, E., Gruber, M., Doweck, I., et al. (2015). Heparanase enhances tumor growth and Chemoresistance by promoting autophagy. Cancer Research, 75, 3946–3957. https://doi.org/10.1158/0008-5472.CAN-15-0037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Weissmann, M., Arvatz, G., Horowitz, N., Feld, S., Naroditsky, I., Zhang, Y., et al. (2016). Heparanase-neutralizing antibodies attenuate lymphoma tumor growth and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 113, 704–709. https://doi.org/10.1073/pnas.1519453113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ostapoff, K. T., Awasthi, N., Cenik, B. K., Hinz, S., Dredge, K., Schwarz, R. E., et al. (2013). PG545, an angiogenesis and heparanase inhibitor, reduces primary tumor growth and metastasis in experimental pancreatic cancer. Molecular Cancer Therapeutics, 12, 1190–1201. https://doi.org/10.1158/1535-7163.MCT-12-1123.

    Article  CAS  PubMed  Google Scholar 

  13. Kundu, S., Xiong, A., Spyrou, A., Wicher, G., Marinescu, V. D., P-HD, E., et al. (2016). Heparanase promotes glioma progression and is inversely correlated with patient survival. Molecular Cancer Research, 14, 1243–1253. https://doi.org/10.1158/1541-7786.MCR-16-0223.

    Article  CAS  PubMed  Google Scholar 

  14. Khurana, A., Tun, H. W., Marlow, L., Copland, J. A., Dredge, K., & Shridhar, V. (2012). Hypoxia negatively regulates heparan sulfatase 2 expression in renal cancer cell lines. Molecular Carcinogenesis, 51, 565–575. https://doi.org/10.1002/mc.20824.

    Article  CAS  PubMed  Google Scholar 

  15. Barash, U., Lapidot, M., Zohar, Y., Loomis, C., Moreira, A., Feld, S., et al. (2018). Involvement of Heparanase in the pathogenesis of mesothelioma: Basic aspects and clinical applications. Journal of the National Cancer Institute, 110, 1102–1114. https://doi.org/10.1093/jnci/djy032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Katz, A., Barash, U., Boyango, I., Feld, S., Zohar, Y., Hammond, E., et al. (2018). Patient derived xenografts (PDX) predict an effective heparanase-based therapy for lung cancer. Oncotarget, 9, 19294–19306. https://doi.org/10.18632/oncotarget.25022.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gingis-Velitski, S., Zetser, A., Flugelman, M. Y., Vlodavsky, I., & Ilan, N. (2004). Heparanase induces endothelial cell migration via protein kinase B/Akt activation. The Journal of Biological Chemistry, 279, 23536–23541. https://doi.org/10.1074/jbc.M400554200.

    Article  CAS  PubMed  Google Scholar 

  18. Ben-Zaken, O., Gingis-Velitski, S., Vlodavsky, I., & Ilan, N. (2007). Heparanase induces Akt phosphorylation via a lipid raft receptor. Biochemical and Biophysical Research Communications, 361, 829–834. https://doi.org/10.1016/j.bbrc.2007.06.188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Spyrou, A., Kundu, S., Haseeb, L., Yu, D., Olofsson, T., Dredge, K., et al. (2017). Inhibition of Heparanase in Pediatric brain tumor cells attenuates their proliferation, invasive capacity, and in vivo tumor growth. Molecular Cancer Therapeutics, 16, 1705–1716. https://doi.org/10.1158/1535-7163.MCT-16-0900.

    Article  CAS  PubMed  Google Scholar 

  20. Weissmann, M., Bhattacharya, U., Feld, S., Hammond, E., Ilan, N., & Vlodavsky, I. (2018.;In press). The heparanase inhibitor PG545 is a potent anti-lymphoma drug: Mode of action. Matrix Biology. https://doi.org/10.1016/j.matbio.2018.08.005.

  21. Purushothaman, A., Hurst, D. R., Pisano, C., Mizumoto, S., Sugahara, K., & Sanderson, R. D. (2011). Heparanase-mediated loss of nuclear syndecan-1 enhances histone acetyltransferase (HAT) activity to promote expression of genes that drive an aggressive tumor phenotype. The Journal of Biological Chemistry, 286, 30377–30383. https://doi.org/10.1074/jbc.M111.254789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, S., Campos, J., Gallotta, M., Gong, M., Crain, C., Naik, E., et al. (2016). Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8+ T cells. Proceedings of the National Academy of Sciences of the United States of America, 113, E7240–E7249. https://doi.org/10.1073/pnas.1608555113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Song, Y., Hu, B., Qu, H., Wang, L., Zhang, Y., Tao, J., et al. (2016). Novel 1, 3-N, O-Spiroheterocyclic compounds inhibit heparanase activity and enhance nedaplatin-induced cytotoxicity in cervical cancer cells. Oncotarget, 7, 36154–36167. https://doi.org/10.18632/oncotarget.8959.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gui, S., Yuan, G., Wang, L., Zhou, L., Xue, Y., Yu, Y., et al. (2013). Wnt3a regulates proliferation, apoptosis and function of pancreatic NIT-1 beta cells via activation of IRS2/PI3K signaling. Journal of Cellular Biochemistry, 114, 1488–1497. https://doi.org/10.1002/jcb.24490.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, Y., Morris, J. P., Yan, W., Schofield, H. K., Gurney, A., Simeone, D. M., et al. (2013). Canonical wnt signaling is required for pancreatic carcinogenesis. Cancer Research, 73, 4909–4922. https://doi.org/10.1158/0008-5472.CAN-12-4384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, J., Gong, W., Li, X., Wan, R., Mo, F., Zhang, Z., et al. (2018). Recent Progress of Wnt pathway inhibitor Dickkopf-1 in liver Cancer. Journal of Nanoscience and Nanotechnology, 18, 5192–5206. https://doi.org/10.1166/jnn.2018.14636.

    Article  CAS  PubMed  Google Scholar 

  27. Mondal, S., Roy, D., Camacho-Pereira, J., Khurana, A., Chini, E., Yang, L., et al. (2015). HSulf-1 deficiency dictates a metabolic reprograming of glycolysis and TCA cycle in ovarian cancer. Oncotarget, 6, 33705–33719. https://doi.org/10.18632/oncotarget.5605.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Roy, D., Mondal, S., Khurana, A., Jung, D.-B., Hoffmann, R., He, X., et al. (2017). Loss of HSulf-1: The missing link between autophagy and lipid droplets in ovarian Cancer. Scientific Reports, 7, 41977. https://doi.org/10.1038/srep41977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Noone, A., Howlader, N., Krapcho, M., Miller, D., Brest, A., Yu, M., et al. (2018). SEER Cancer statistics review, 1975-2015, National Cancer Institute. Bethesda, MD. National Cancer Institute.. https://seer.cancer.gov/csr/1975_2015/.

  30. Dredge, K., Hammond, E., Handley, P., Gonda, T. J., Smith, M. T., Vincent, C., et al. (2011). PG545, a dual heparanase and angiogenesis inhibitor, induces potent anti-tumour and anti-metastatic efficacy in preclinical models. British Journal of Cancer, 104, 635–642. https://doi.org/10.1038/bjc.2011.11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Singh, P., Blatt, A., Feld, S., Zohar, Y., Saadi, E., Barki-Harrington, L., et al. (2017). The Heparanase inhibitor PG545 attenuates Colon Cancer initiation and growth, associating with increased p21 expression. Neoplasia, 19, 175–184. https://doi.org/10.1016/j.neo.2016.12.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hammond, E., Brandt, R., & Dredge, K. (2012). PG545, a heparan sulfate mimetic, reduces heparanase expression in vivo, blocks spontaneous metastases and enhances overall survival in the 4T1 breast carcinoma model. PLoS One, 7, e52175. https://doi.org/10.1371/journal.pone.0052175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brennan, T. V., Lin, L., Brandstadter, J. D., Rendell, V. R., Dredge, K., Huang, X., et al. (2016). Heparan sulfate mimetic PG545-mediated antilymphoma effects require TLR9-dependent NK cell activation. The Journal of Clinical Investigation, 126, 207–219. https://doi.org/10.1172/JCI76566.

    Article  PubMed  Google Scholar 

  34. Hammond, E., Haynes, N. M., Cullinane, C., Brennan, T. V., Bampton, D., Handley, P., et al. (2018). Immunomodulatory activities of pixatimod: Emerging nonclinical and clinical data, and its potential utility in combination with PD-1 inhibitors. Journal for Immunotherapy of Cancer, 6, 54. https://doi.org/10.1186/s40425-018-0363-5.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 68, 394–424. https://doi.org/10.3322/caac.21492.

    Article  Google Scholar 

  36. Modest, D. P., Pant, S., & Sartore-Bianchi, A. (2019). Treatment sequencing in metastatic colorectal cancer. European Journal of Cancer, 109, 70–83. https://doi.org/10.1016/j.ejca.2018.12.019.

    Article  CAS  PubMed  Google Scholar 

  37. Giavazzi, R., Jessup, J. M., Campbell, D. E., Walker, S. M., & Fidler, I. J. (1986). Experimental nude mouse model of human colorectal cancer liver metastases. Journal of the National Cancer Institute, 77, 1303–1308. http://www.ncbi.nlm.nih.gov/pubmed/3467119.

    CAS  PubMed  Google Scholar 

  38. Zirvi, K. A., Dasmahapatra, K. S., & Atabek, U. Lyons MA. Alpha-Difluoromethylornithine inhibits liver metastasis produced by intrasplenic injection of human tumor cells into nude mice. Clinical & Experimental Metastasis, 7, 591–598. http://www.ncbi.nlm.nih.gov/pubmed/2505959.

  39. Yamada, Y., & Mori, H. (2007). Multistep carcinogenesis of the colon in Apc(min/+) mouse. Cancer Science, 98, 6–10. https://doi.org/10.1111/j.1349-7006.2006.00348.x.

    Article  CAS  PubMed  Google Scholar 

  40. Jackstadt, R., & Sansom, O. J. (2016). Mouse models of intestinal cancer. The Journal of Pathology, 238, 141–151. https://doi.org/10.1002/path.4645.

    Article  PubMed  Google Scholar 

  41. Ilic, M., & Ilic, I. (2016). Epidemiology of pancreatic cancer. World Journal of Gastroenterology, 22, 9694–9705. https://doi.org/10.3748/wjg.v22.i44.9694.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hidalgo, M., Cascinu, S., Kleeff, J., Labianca, R., Löhr, J.-M., Neoptolemos, J., et al. Addressing the challenges of pancreatic cancer: Future directions for improving outcomes. Pancreatology, 15, 8–18. https://doi.org/10.1016/j.pan.2014.10.001.

  43. Vincent, A., Herman, J., Schulick, R., Hruban, R. H., & Goggins, M. (2011). Pancreatic cancer. Lancet (London, England)., 378, 607–620. https://doi.org/10.1016/S0140-6736(10)62307-0.

    Article  PubMed Central  Google Scholar 

  44. Aguirre, A. J., Bardeesy, N., Sinha, M., Lopez, L., Tuveson, D. A., Horner, J., et al. (2003). Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes & Development, 17, 3112–3126. https://doi.org/10.1101/gad.1158703.

    Article  CAS  Google Scholar 

  45. Dineen, S. P., Roland, C. L., Greer, R., Carbon, J. G., Toombs, J. E., Gupta, P., et al. (2010). Smac mimetic increases chemotherapy response and improves survival in mice with pancreatic cancer. Cancer Research, 70, 2852–2861. https://doi.org/10.1158/0008-5472.CAN-09-3892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ying, H., Dey, P., Yao, W., Kimmelman, A. C., Draetta, G. F., Maitra, A., et al. (2016). Genetics and biology of pancreatic ductal adenocarcinoma. Genes & Development, 30, 355–385. https://doi.org/10.1101/gad.275776.115.

    Article  CAS  Google Scholar 

  47. Masola, V., Gambaro, G., Tibaldi, E., Brunati, A. M., Gastaldello, A., D’Angelo, A., et al. (2012). Heparanase and syndecan-1 interplay orchestrates fibroblast growth factor-2-induced epithelial-mesenchymal transition in renal tubular cells. The Journal of Biological Chemistry, 287, 1478–1488. https://doi.org/10.1074/jbc.M111.279836.

    Article  CAS  PubMed  Google Scholar 

  48. Masola, V., Zaza, G., Gambaro, G., Onisto, M., Bellin, G., Vischini, G., et al. (2016). Heparanase: A potential new factor involved in the renal epithelial mesenchymal transition (EMT) induced by ischemia/reperfusion (I/R) injury. PLoS One, 11, e0160074. https://doi.org/10.1371/journal.pone.0160074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Damia, G., & Broggini, M. (2019). Platinum resistance in ovarian Cancer: Role of DNA repair. Cancers (Basel)., 11, 119. https://doi.org/10.3390/cancers11010119.

    Article  CAS  PubMed Central  Google Scholar 

  50. Gadducci, A., Guarneri, V., Peccatori, F. A., Ronzino, G., Scandurra, G., Zamagni, C., et al. (2019). Current strategies for the targeted treatment of high-grade serous epithelial ovarian cancer and relevance of BRCA mutational status. J Ovarian Res., 12, 9. https://doi.org/10.1186/s13048-019-0484-6.

  51. Lai, J., Chien, J., Staub, J., Avula, R., Greene, E. L., Matthews, T. A., et al. (2003). Loss of HSulf-1 up-regulates heparin-binding growth factor signaling in cancer. The Journal of Biological Chemistry, 278, 23107–23117. https://doi.org/10.1074/jbc.M302203200.

    Article  CAS  PubMed  Google Scholar 

  52. Liu, P., Khurana, A., Rattan, R., He, X., Kalloger, S., Dowdy, S., et al. (2009). Regulation of HSulf-1 expression by variant hepatic nuclear factor 1 in ovarian cancer. Cancer Research, 69, 4843–4850. https://doi.org/10.1158/0008-5472.CAN-08-3065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lai, J.-P., Chien, J., Strome, S. E., Staub, J., Montoya, D. P., Greene, E. L., et al. (2004). HSulf-1 modulates HGF-mediated tumor cell invasion and signaling in head and neck squamous carcinoma. Oncogene, 23, 1439–1447. https://doi.org/10.1038/sj.onc.1207258.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, H., Newman, D. R., & Sannes, P. L. (2012). HSULF-1 inhibits ERK and AKT signaling and decreases cell viability in vitro in human lung epithelial cells. Respiratory Research, 13, 69. https://doi.org/10.1186/1465-9921-13-69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Khurana, A., Beleford, D., He, X., Chien, J., & Shridhar, V. (2013). Role of heparan sulfatases in ovarian and breast cancer. American Journal of Cancer Research, 3, 34–45. http://www.ncbi.nlm.nih.gov/pubmed/23359864.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Okada, Y., Yamada, S., Toyoshima, M., Dong, J., Nakajima, M., & Sugahara, K. (2002). Structural recognition by recombinant human heparanase that plays critical roles in tumor metastasis. Hierarchical sulfate groups with different effects and the essential target disulfated trisaccharide sequence. The Journal of Biological Chemistry, 277, 42488–42495. https://doi.org/10.1074/jbc.M206510200.

    Article  CAS  PubMed  Google Scholar 

  57. Mason, J., Blyth, B., MacManus, M. P., & Martin, O. A. (2017). Treatment for non-small-cell lung cancer and circulating tumor cells. Lung Cancer Manag., 6, 129–139. https://doi.org/10.2217/lmt-2017-0019.

    Article  CAS  PubMed  Google Scholar 

  58. Byrne, A. T., Alférez, D. G., Amant, F., Annibali, D., Arribas, J., Biankin, A. V., et al. (2017). Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nature Reviews. Cancer, 17, 254–268. https://doi.org/10.1038/nrc.2016.140.

    Article  CAS  PubMed  Google Scholar 

  59. Lai, Y., Wei, X., Lin, S., Qin, L., Cheng, L., & Li, P. (2017). Current status and perspectives of patient-derived xenograft models in cancer research. Journal of Hematology & Oncology, 10, 106. https://doi.org/10.1186/s13045-017-0470-7.

    Article  CAS  Google Scholar 

  60. Rossi, A., & Di Maio, M. (2016). Platinum-based chemotherapy in advanced non-small-cell lung cancer: Optimal number of treatment cycles. Expert Review of Anticancer Therapy, 16, 653–660. https://doi.org/10.1586/14737140.2016.1170596.

    Article  CAS  PubMed  Google Scholar 

  61. Gutter-Kapon, L., Alishekevitz, D., Shaked, Y., Li, J.-P., Aronheim, A., Ilan, N., et al. (2016). Heparanase is required for activation and function of macrophages. Proceedings of the National Academy of Sciences of the United States of America, 113, E7808–E7817. https://doi.org/10.1073/pnas.1611380113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, J., Gold, K. A., & Kim, E. (2012). Sorafenib in non-small cell lung cancer. Expert Opinion on Investigational Drugs, 21, 1417–1426. https://doi.org/10.1517/13543784.2012.699039.

    Article  CAS  PubMed  Google Scholar 

  63. Metro, G., Minotti, V., & Crinò, L. (2012). Years of sorafenib investigation in advanced non-small cell lung cancer: Is there a “NExUS” linking an unsuccessful treatment and a potentially active one? Journal of Thoracic Disease, 4, 635–638. https://doi.org/10.3978/j.issn.2072-1439.2012.10.06.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zhu, H., Kauffman, M. E., Trush, M. A., Jia, Z., & Li, Y. R. (2018). A simple bioluminescence imaging method for studying Cancer cell growth and metastasis after subcutaneous injection of Lewis lung carcinoma cells in syngeneic C57BL/6 mice. React Oxyg species (Apex, NC)., 5, 118–125. https://doi.org/10.20455/ros.2018.813.

    Article  PubMed  PubMed Central  Google Scholar 

  65. McDonald, J. C., & McDonald, A. D. (1996). The epidemiology of mesothelioma in historical context. The European Respiratory Journal, 9, 1932–1942. http://www.ncbi.nlm.nih.gov/pubmed/8880114.

    Article  CAS  PubMed  Google Scholar 

  66. Strauchen, J. A. (2011). Rarity of malignant mesothelioma prior to the widespread commercial introduction of asbestos: The Mount Sinai autopsy experience 1883-1910. American Journal of Industrial Medicine, 54, 467–469. https://doi.org/10.1002/ajim.20951.

    Article  PubMed  Google Scholar 

  67. Clements, M., Berry, G., Shi, J., Ware, S., Yates, D., & Johnson, A. (2007). Projected mesothelioma incidence in men in New South Wales. Occupational and Environmental Medicine, 64, 747–752. https://doi.org/10.1136/oem.2006.031823.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Price, B., & Ware, A. (2009). Time trend of mesothelioma incidence in the United States and projection of future cases: An update based on SEER data for 1973 through 2005. Critical Reviews in Toxicology, 39, 576–588. https://doi.org/10.1080/10408440903044928.

    Article  PubMed  Google Scholar 

  69. Hodgson, J. T., McElvenny, D. M., Darnton, A. J., Price, M. J., & Peto, J. (2005). The expected burden of mesothelioma mortality in Great Britain from 2002 to 2050. British Journal of Cancer, 92, 587–593. https://doi.org/10.1038/sj.bjc.6602307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Marinaccio, A., Montanaro, F., Mastrantonio, M., Uccelli, R., Altavista, P., Nesti, M., et al. (2005). Predictions of mortality from pleural mesothelioma in Italy: A model based on asbestos consumption figures supports results from age-period-cohort models. International Journal of Cancer, 115, 142–147. https://doi.org/10.1002/ijc.20820.

    Article  CAS  PubMed  Google Scholar 

  71. Park, E.-K., Takahashi, K., Hoshuyama, T., Cheng, T.-J., Delgermaa, V., Le, G. V., et al. (2011). Global magnitude of reported and unreported mesothelioma. Environmental Health Perspectives, 119, 514–518. https://doi.org/10.1289/ehp.1002845.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Robinson, B. M. (2012). Malignant pleural mesothelioma: An epidemiological perspective. Ann Cardiothorac Surg., 1, 491–496. https://doi.org/10.3978/j.issn.2225-319X.2012.11.04.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Berzenji, L., & Van Schil, P. (2018). Multimodality treatment of malignant pleural mesothelioma. F1000Research., 7. https://doi.org/10.12688/f1000research.15796.1.

  74. de Gooijer, C. J., Baas, P., & Burgers, J. A. (2018). Current chemotherapy strategies in malignant pleural mesothelioma. Transl lung cancer Res., 7, 574–583. https://doi.org/10.21037/tlcr.2018.04.10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sasaki, N., Higashi, N., Taka, T., Nakajima, M., & Irimura, T. (2004). Cell surface localization of heparanase on macrophages regulates degradation of extracellular matrix heparan sulfate. Journal of Immunology, 172, 3830–3835. http://www.ncbi.nlm.nih.gov/pubmed/15004189.

    Article  CAS  Google Scholar 

  76. Hermano, E., Meirovitz, A., Meir, K., Nussbaum, G., Appelbaum, L., Peretz, T., et al. (2014). Macrophage polarization in pancreatic carcinoma: Role of heparanase enzyme. Journal of the National Cancer Institute, 106. https://doi.org/10.1093/jnci/dju332.

  77. Center, M. M., & Jemal, A. (2011). International trends in liver cancer incidence rates. Cancer Epidemiology, Biomarkers & Prevention, 20, 2362–2368. https://doi.org/10.1158/1055-9965.EPI-11-0643.

    Article  Google Scholar 

  78. Wong, M. C. S., Jiang, J. Y., Goggins, W. B., Liang, M., Fang, Y., Fung, F. D. H., et al. (2017). International incidence and mortality trends of liver cancer: A global profile. Scientific Reports, 7, 45846. https://doi.org/10.1038/srep45846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Altekruse, S. F., McGlynn, K. A., & Reichman, M. E. (2009). Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005. Journal of Clinical Oncology, 27, 1485–1491. https://doi.org/10.1200/JCO.2008.20.7753.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Mittal, S., & El-Serag, H. B. (2013). Epidemiology of hepatocellular carcinoma: Consider the population. Journal of Clinical Gastroenterology, 47(Suppl), S2–S6. https://doi.org/10.1097/MCG.0b013e3182872f29.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Tang, T. C., Man, S., Lee, C. R., Xu, P., & Kerbel, R. S. (2010). Impact of metronomic UFT/cyclophosphamide chemotherapy and antiangiogenic drug assessed in a new preclinical model of locally advanced orthotopic hepatocellular carcinoma. Neoplasia, 12, 264–274. http://www.ncbi.nlm.nih.gov/pubmed/20234820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. McKillop, D., Partridge, E. A., Kemp, J. V., Spence, M. P., Kendrew, J., Barnett, S., et al. (2005). Tumor penetration of gefitinib (Iressa), an epidermal growth factor receptor tyrosine kinase inhibitor. Molecular Cancer Therapeutics, 4, 641–649. https://doi.org/10.1158/1535-7163.MCT-04-0329.

    Article  CAS  PubMed  Google Scholar 

  83. Ferlay, J., Ervik, M., Lam, F., Colombet, M., Mery, L., Piñeros, M., et al. (2018). Global Cancer observatory: Cancer today. Lyon, France: International Agency for Research on. Cancer. https://gco.iarc.fr/today.

  84. Perez-Chacon, G., de Los Rios, C., & Zapata, J. M. (2014). Indole-3-carbinol induces cMYC and IAP-family downmodulation and promotes apoptosis of Epstein-Barr virus (EBV)-positive but not of EBV-negative Burkitt’s lymphoma cell lines. Pharmacological Research, 89, 46–56. https://doi.org/10.1016/j.phrs.2014.08.005.

    Article  CAS  PubMed  Google Scholar 

  85. Li, J.-P. (2008). Heparin, heparan sulfate and heparanase in cancer: Remedy for metastasis? Anti-Cancer Agents in Medicinal Chemistry, 8, 64–76. http://www.ncbi.nlm.nih.gov/pubmed/18220506.

    Article  PubMed  Google Scholar 

  86. Arvatz, G., Shafat, I., Levy-Adam, F., Ilan, N., & Vlodavsky, I. (2011). The heparanase system and tumor metastasis: Is heparanase the seed and soil? Cancer Metastasis Reviews, 30, 253–268. https://doi.org/10.1007/s10555-011-9288-x.

    Article  CAS  PubMed  Google Scholar 

  87. Putz, E. M., Mayfosh, A. J., Kos, K., Barkauskas, D. S., Nakamura, K., Town, L., et al. (2017). NK cell heparanase controls tumor invasion and immune surveillance. The Journal of Clinical Investigation, 127, 2777–2788. https://doi.org/10.1172/JCI92958.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Nowakowski, G. S., Blum, K. A., Kahl, B. S., Friedberg, J. W., Baizer, L., Little, R. F., et al. (2016). Beyond RCHOP: A blueprint for diffuse large B cell lymphoma research. Journal of the National Cancer Institute, 108. https://doi.org/10.1093/jnci/djw257.

  89. Thieblemont, C., Bernard, S., Meignan, M., & Molina, T. (2018). Optimizing initial therapy in DLBCL. Best Practice & Research. Clinical Haematology, 31, 199–208. https://doi.org/10.1016/j.beha.2018.08.001.

    Article  Google Scholar 

  90. Krajnak, S., Battista, M., Brenner, W., Almstedt, K., Elger, T., Heimes, A.-S., et al. (2018). Explorative analysis of low-dose metronomic chemotherapy with cyclophosphamide and methotrexate in a cohort of metastatic breast Cancer patients. Breast Care (Basel)., 13, 272–276. https://doi.org/10.1159/000487629.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Brown, M., Tsodikov, A., Bauer, K. R., Parise, C. A., & Caggiano, V. (2008). The role of human epidermal growth factor receptor 2 in the survival of women with estrogen and progesterone receptor-negative, invasive breast cancer: The California Cancer registry, 1999-2004. Cancer, 112, 737–747. https://doi.org/10.1002/cncr.23243.

    Article  PubMed  Google Scholar 

  92. Garrido-Castro, A. C., Lin, N. U., & Polyak, K. (2019). Insights into molecular classifications of triple-negative breast Cancer: Improving patient selection for treatment. Cancer Discovery, 9, 176–198. https://doi.org/10.1158/2159-8290.CD-18-1177.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Neve, R. M., Chin, K., Fridlyand, J., Yeh, J., Baehner, F. L., Fevr, T., et al. (2006). A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell, 10, 515–527. https://doi.org/10.1016/j.ccr.2006.10.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Holland, S. J., Pan, A., Franci, C., Hu, Y., Chang, B., Li, W., et al. (2010). R428, a selective small molecule inhibitor of Axl kinase, blocks tumor spread and prolongs survival in models of metastatic breast cancer. Cancer Research, 70, 1544–1554. https://doi.org/10.1158/0008-5472.CAN-09-2997.

    Article  CAS  PubMed  Google Scholar 

  95. Al-Sahaf, O., Wang, J. H., Browne, T. J., Cotter, T. G., & Redmond, H. P. (2010). Surgical injury enhances the expression of genes that mediate breast cancer metastasis to the lung. Annals of Surgery, 252, 1037–1043. https://doi.org/10.1097/SLA.0b013e3181efc635.

    Article  PubMed  Google Scholar 

  96. Baklaushev, V. P., Grinenko, N. F., Yusubalieva, G. M., Abakumov, M. A., Gubskii, I. L., Cherepanov, S. A., et al. (2015). Modeling and integral X-ray, optical, and MRI visualization of multiorgan metastases of orthotopic 4T1 breast carcinoma in BALB/c mice. Bulletin of Experimental Biology and Medicine, 158, 581–588. https://doi.org/10.1007/s10517-015-2810-3.

    Article  CAS  PubMed  Google Scholar 

  97. Ebos, J. M. L., Lee, C. R., Cruz-Munoz, W., Bjarnason, G. A., Christensen, J. G., & Kerbel, R. S. (2009). Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell, 15, 232–239. https://doi.org/10.1016/j.ccr.2009.01.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pàez-Ribes, M., Allen, E., Hudock, J., Takeda, T., Okuyama, H., Viñals, F., et al. (2009). Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell, 15, 220–231. https://doi.org/10.1016/j.ccr.2009.01.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Carlo, M. I., Voss, M. H., & Motzer, R. J. (2016). Checkpoint inhibitors and other novel immunotherapies for advanced renal cell carcinoma. Nature Reviews. Urology, 13, 420–431. https://doi.org/10.1038/nrurol.2016.103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Franklin, C., Livingstone, E., Roesch, A., Schilling, B., & Schadendorf, D. (2017). Immunotherapy in melanoma: Recent advances and future directions. European Journal of Surgical Oncology, 43, 604–611. https://doi.org/10.1016/j.ejso.2016.07.145.

    Article  CAS  PubMed  Google Scholar 

  101. Giroux Leprieur, E., Dumenil, C., Julie, C., Giraud, V., Dumoulin, J., Labrune, S., et al. (2017). Immunotherapy revolutionises non-small-cell lung cancer therapy: Results, perspectives and new challenges. European Journal of Cancer, 78, 16–23. https://doi.org/10.1016/j.ejca.2016.12.041.

    Article  CAS  PubMed  Google Scholar 

  102. Nadal, E., Massuti, B., Dómine, M., García-Campelo, R., Cobo, M., & Felip, E. (2019). Immunotherapy with checkpoint inhibitors in non-small cell lung cancer: Insights from long-term survivors. Cancer Immunology, Immunotherapy. https://doi.org/10.1007/s00262-019-02310-2.

  103. Fux, L., Feibish, N., Cohen-Kaplan, V., Gingis-Velitski, S., Feld, S., Geffen, C., et al. (2009). Structure-function approach identifies a COOH-terminal domain that mediates heparanase signaling. Cancer Research, 69, 1758–1767. https://doi.org/10.1158/0008-5472.CAN-08-1837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Arvatz, G., Barash, U., Nativ, O., Ilan, N., & Vlodavsky, I. (2010). Post-transcriptional regulation of heparanase gene expression by a 3’ AU-rich element. The FASEB Journal, 24, 4969–4976. https://doi.org/10.1096/fj.10-156372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Becker, J. C., Houben, R., Schrama, D., Voigt, H., Ugurel, S., & Reisfeld, R. A. (2010). Mouse models for melanoma: A personal perspective. Experimental Dermatology, 19, 157–164. https://doi.org/10.1111/j.1600-0625.2009.00986.x.

    Article  CAS  PubMed  Google Scholar 

  106. Kuzu OF, Nguyen, F. D., Noory, M. A., & Sharma, A. (2015). Current state of animal (mouse) Modeling in melanoma research. Cancer Growth Metastasis., 8(Suppl 1), 81–94. https://doi.org/10.4137/CGM.S21214.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Lechner, M. G., Karimi, S. S., Barry-Holson, K., Angell, T. E., Murphy, K. A., Church, C. H., et al. (2013). Immunogenicity of murine solid tumor models as a defining feature of in vivo behavior and response to immunotherapy. Journal of Immunotherapy, 36, 477–489. https://doi.org/10.1097/01.cji.0000436722.46675.4a.

    Article  CAS  PubMed  Google Scholar 

  108. Mosely, S. I. S., Prime, J. E., Sainson, R. C. A., Koopmann, J.-O., Wang, D. Y. Q., Greenawalt, D. M., et al. (2017). Rational selection of syngeneic preclinical tumor models for immunotherapeutic drug discovery. Cancer Immunology Research, 5, 29–41. https://doi.org/10.1158/2326-6066.CIR-16-0114.

    Article  CAS  PubMed  Google Scholar 

  109. Alshaker, H., Wang, Q., Böhler, T., Mills, R., Winkler, M., Arafat, T., et al. (2017). Combination of RAD001 (everolimus) and docetaxel reduces prostate and breast cancer cell VEGF production and tumour vascularisation independently of sphingosine-kinase-1. Scientific Reports, 7, 3493. https://doi.org/10.1038/s41598-017-03728-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nesbitt, H., Worthington, J., Errington, R. J., Patterson, L. H., Smith, P. J., McKeown, S. R., et al. (2017). The unidirectional hypoxia-activated prodrug OCT1002 inhibits growth and vascular development in castrate-resistant prostate tumors. The Prostate, 77, 1539–1547. https://doi.org/10.1002/pros.23434.

    Article  CAS  PubMed  Google Scholar 

  111. Kang, M. K., Kim, R. H., Kim, S. J., Yip, F. K., Shin, K.-H., Dimri, G. P., et al. (2007). Elevated Bmi-1 expression is associated with dysplastic cell transformation during oral carcinogenesis and is required for cancer cell replication and survival. British Journal of Cancer, 96, 126–133. https://doi.org/10.1038/sj.bjc.6603529.

    Article  CAS  PubMed  Google Scholar 

  112. Yang, M.-H., Hsu, D. S.-S., Wang, H.-W., Wang, H.-J., Lan, H.-Y., Yang, W.-H., et al. (2010). Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nature Cell Biology, 12, 982–992. https://doi.org/10.1038/ncb2099.

    Article  CAS  PubMed  Google Scholar 

  113. Wang, Q., Li, Z., Wu, Y., Huang, R., Zhu, Y., Zhang, W., et al. (2017). Pharmacological inhibition of Bmi1 by PTC-209 impaired tumor growth in head neck squamous cell carcinoma. Cancer Cell International, 17, 107. https://doi.org/10.1186/s12935-017-0481-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dredge, K., Brennan, T. V., Hammond, E., Lickliter, J. D., Lin, L., Bampton, D., et al. (2018). A phase I study of the novel immunomodulatory agent PG545 (pixatimod) in subjects with advanced solid tumours. British Journal of Cancer, 118, 1035–1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Hammond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hammond, E., Dredge, K. (2020). Heparanase Inhibition by Pixatimod (PG545): Basic Aspects and Future Perspectives. In: Vlodavsky, I., Sanderson, R., Ilan, N. (eds) Heparanase. Advances in Experimental Medicine and Biology, vol 1221. Springer, Cham. https://doi.org/10.1007/978-3-030-34521-1_22

Download citation

Publish with us

Policies and ethics