Skip to main content

Heparanase in Cancer Metastasis – Heparin as a Potential Inhibitor of Cell Adhesion Molecules

  • Chapter
  • First Online:
Heparanase

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1221))

Abstract

Tumor progression associated with hematogenous metastatic spread is a multistep process based on a cross-talk between tumor and stromal cells in a tumor microenvironment. In the blood circulation, tumor cells interact with blood cells through receptors such as selectin and integrins that promote tumor cells survival. At the metastatic sites, heparanase secreted by tumor or stromal cells is an important modifier of the tumor microenvironment while promoting tumor invasiveness and angiogenesis. Heparin, particularly low molecular weight heparin, is used for treatment of cancer patients with evidence of hypercoagulability. However, in preclinical studies heparins was shown to contain other biological activities that affect cancer progression including inhibition of heparanase, selectins and integrins. While ongoing clinical trials are assessing inhibition of heparanase on cancer progression, the remaining biological activities of heparins inhibiting cells adhesion, through selectins and integrins remains largely unexplored. This chapter addresses the potential role of heparins in oncology with respect to their anti-heparanase and anti-adhesive activities and aims to discuss aspects relevant for broader therapeutic application of heparins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan, D., & Coussens, L. M. (2012). Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell, 21, 309–322.

    Article  CAS  PubMed  Google Scholar 

  2. Quail, D. F., & Joyce, J. A. (2013). Microenvironmental regulation of tumor progression and metastasis. Nature Medicine, 19, 1423–1437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Levy-Adam, F., Ilan, N., & Vlodavsky, I. (2010). Tumorigenic and adhesive properties of heparanase. Seminars in Cancer Biology, 20, 153–160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cohen, I., Pappo, O., Elkin, M., San, T., Bar-Shavit, R., Hazan, R., Peretz, T., Vlodavsky, I., & Abramovitch, R. (2006). Heparanase promotes growth, angiogenesis and survival of primary breast tumors. International Journal of Cancer, 118, 1609–1617.

    Article  CAS  PubMed  Google Scholar 

  5. Vlodavsky, I., Singh, P., Boyango, I., Gutter-Kapon, L., Elkin, M., Sanderson, R. D., & Ilan, N. (2016). Heparanase: From basic research to therapeutic applications in cancer and inflammation. Drug Resistance Updates, 29, 54–75.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vlodavsky, I., Gross-Cohen, M., Weissmann, M., Ilan, N., & Sanderson, R. D. (2018). Opposing functions of Heparanase-1 and Heparanase-2 in Cancer progression. Trends in Biochemical Sciences, 43, 18–31.

    Article  CAS  PubMed  Google Scholar 

  7. Muller, W. A. (2011). Mechanisms of leukocyte transendothelial migration. Annual Review of Pathology, 6, 323–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wolf, M. J., Hoos, A., Bauer, J., Boettcher, S., Knust, M., Weber, A., Simonavicius, N., Schneider, C., Lang, M., Sturzl, M., et al. (2012). Endothelial CCR2 signaling induced by colon carcinoma cells enables extravasation via the JAK2-Stat5 and p38MAPK pathway. Cancer Cell, 22, 91–105.

    Article  CAS  PubMed  Google Scholar 

  9. Hauselmann, I., Roblek, M., Protsyuk, D., Huck, V., Knopfova, L., Grassle, S., Bauer, A. T., Schneider, S. W., & Borsig, L. (2016). Monocyte induction of E-Selectin-mediated endothelial activation releases VE-cadherin junctions to promote tumor cell extravasation in the metastasis Cascade. Cancer Research, 76, 5302–5312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Läubli, H., & Borsig, L. (2010). Selectins promote tumor metastasis. Seminars in Cancer Biology, 20, 169–177.

    Article  PubMed  CAS  Google Scholar 

  11. Stoler-Barak, L., Petrovich, E., Aychek, T., Gurevich, I., Tal, O., Hatzav, M., Ilan, N., Feigelson, S. W., Shakhar, G., Vlodavsky, I., et al. (2015). Heparanase of murine effector lymphocytes and neutrophils is not required for their diapedesis into sites of inflammation. The FASEB Journal, 29, 2010–2021.

    Article  CAS  PubMed  Google Scholar 

  12. Petrovich, E., Feigelson, S. W., Stoler-Barak, L., Hatzav, M., Solomon, A., Bar-Shai, A., Ilan, N., Li, J. P., Engelhardt, B., Vlodavsky, I., et al. (2016). Lung ICAM-1 and ICAM-2 support spontaneous intravascular effector lymphocyte entrapment but are not required for neutrophil entrapment or emigration inside endotoxin-inflamed lungs. The FASEB Journal, 30, 1767–1778.

    Article  CAS  PubMed  Google Scholar 

  13. Läubli, H., Spanaus, K. S., & Borsig, L. (2009). Selectin-mediated activation of endothelial cells induces expression of CCL5 and promotes metastasis through recruitment of monocytes. Blood, 114, 4583–4591.

    Article  PubMed  CAS  Google Scholar 

  14. Cooper, J., & Giancotti, F. G. (2019). Integrin signaling in Cancer: Mechanotransduction, Stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell, 35, 347–367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rodrigues, J. G., Balmana, M., Macedo, J. A., Pocas, J., Fernandes, A., de-Freitas-Junior, J. C. M., Pinho, S. S., Gomes, J., Magalhaes, A., Gomes, C., et al. (2018). Glycosylation in cancer: Selected roles in tumour progression, immune modulation and metastasis. Cellular Immunology, 333, 46–57.

    Article  CAS  PubMed  Google Scholar 

  16. Bendas, G., & Borsig, L. (2012). Cancer cell adhesion and metastasis: Selectins, integrins, and the inhibitory potential of heparins. International journal of cell biology, 2012, 676731.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Borsig, L. (2018). Selectins in cancer immunity. Glycobiology, 28, 648–655.

    Article  CAS  PubMed  Google Scholar 

  18. Witz, I. P. (2008). The selectin-selectin ligand axis in tumor progression. Cancer Metastasis Reviews, 27, 19–30.

    Article  CAS  PubMed  Google Scholar 

  19. Marsico, G., Russo, L., Quondamatteo, F., & Pandit, A. (2018). Glycosylation and integrin regulation in Cancer. Trends Cancer, 4, 537–552.

    Article  CAS  PubMed  Google Scholar 

  20. Ley, K., Laudanna, C., Cybulsky, M. I., & Nourshargh, S. (2007). Getting to the site of inflammation: The leukocyte adhesion cascade updated. Nature Reviews. Immunology, 7, 678–689.

    Article  CAS  PubMed  Google Scholar 

  21. Kansas, G. S. (1996). Selectins and their ligands: Current concepts and controversies. Blood, 88, 3259–3287.

    Article  CAS  PubMed  Google Scholar 

  22. Varki, A. (1997). Selectin ligands: Will the real ones please stand up? The Journal of Clinical Investigation, 99, 158–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hauselmann, I., & Borsig, L. (2014). Altered tumor-cell glycosylation promotes metastasis. Frontiers in Oncology, 4, 28.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pinho, S. S., & Reis, C. A. (2015). Glycosylation in cancer: Mechanisms and clinical implications. Nature Reviews. Cancer, 15, 540–555.

    Article  CAS  PubMed  Google Scholar 

  25. Kannagi, R., Izawa, M., Koike, T., Miyazaki, K., & Kimura, N. (2004). Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Science, 95, 377–384.

    Article  CAS  PubMed  Google Scholar 

  26. Borsig, L., Stevenson, J. L., & Varki, A. (2007). Heparin in Cancer: Role of Selectin interactions. In A. A. Khorana & C. W. Francis (Eds.), Cancer-associated thrombosis (pp. 97–113). New York: Informa Healthcare.

    Chapter  Google Scholar 

  27. Kim, Y. J., Borsig, L., Varki, N. M., & Varki, A. (1998). P-selectin deficiency attenuates tumor growth and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 95, 9325–9330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Borsig, L., Wong, R., Feramisco, J., Nadeau, D. R., Varki, N. M., & Varki, A. (2001). Heparin and cancer revisited: Mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proceedings of the National Academy of Sciences of the United States of America, 98, 3352–3357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Labelle, M., & Hynes, R. O. (2012). The initial hours of metastasis: The importance of cooperative host-tumor cell interactions during hematogenous dissemination. Cancer Discovery, 2, 1091–1099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Coupland, L. A., & Parish, C. R. (2014). Platelets, selectins, and the control of tumor metastasis. Seminars in Oncology, 41, 422–434.

    Article  CAS  PubMed  Google Scholar 

  31. Schlesinger, M. (2018). Role of platelets and platelet receptors in cancer metastasis. Journal of Hematology & Oncology, 11, 125.

    Article  CAS  Google Scholar 

  32. Ludwig, R. J., Boehme, B., Podda, M., Henschler, R., Jager, E., Tandi, C., Boehncke, W. H., Zollner, T. M., Kaufmann, R., & Gille, J. (2004). Endothelial P-selectin as a target of heparin action in experimental melanoma lung metastasis. Cancer Research, 64, 2743–2750.

    Article  CAS  PubMed  Google Scholar 

  33. Hiratsuka, S., Goel, S., Kamoun, W. S., Maru, Y., Fukumura, D., Duda, D. G., & Jain, R. K. (2011). Endothelial focal adhesion kinase mediates cancer cell homing to discrete regions of the lungs via E-selectin up-regulation. Proceedings of the National Academy of Sciences of the United States of America, 108, 3725–3730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kang, S. A., Hasan, N., Mann, A. P., Zheng, W., Zhao, L., Morris, L., Zhu, W., Zhao, Y. D., Suh, K. S., Dooley, W. C., et al. (2015). Blocking the adhesion cascade at the premetastatic niche for prevention of breast cancer metastasis. Molecular Therapy, 23, 1044–1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shi, H., Zhang, J., Han, X., Li, H., Xie, M., Sun, Y., Liu, W., Ba, X., & Zeng, X. (2017). Recruited monocytic myeloid-derived suppressor cells promote the arrest of tumor cells in the premetastatic niche through an IL-1beta-mediated increase in E-selectin expression. International Journal of Cancer, 140, 1370–1383.

    Article  CAS  PubMed  Google Scholar 

  36. Kitamura, T., Qian, B. Z., & Pollard, J. W. (2015). Immune cell promotion of metastasis. Nature Reviews. Immunology, 15, 73–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Borsig, L., Wolf, M. J., Roblek, M., Lorentzen, A., & Heikenwalder, M. (2014). Inflammatory chemokines and metastasis-tracing the accessory. Oncogene, 33, 3217–3224.

    Article  CAS  PubMed  Google Scholar 

  38. Wang, Y., Ding, Y., Guo, N., & Wang, S. (2019). MDSCs: Key criminals of tumor pre-metastatic niche formation. Frontiers in Immunology, 10, 172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Läubli, H., Stevenson, J. L., Varki, A., Varki, N. M., & Borsig, L. (2006). L-selectin facilitation of metastasis involves temporal induction of fut7-dependent ligands at sites of tumor cell arrest. Cancer Research, 66, 1536–1542.

    Article  PubMed  CAS  Google Scholar 

  40. Mohammed, R. N., Watson, H. A., Vigar, M., Ohme, J., Thomson, A., Humphreys, I. R., & Ager, A. (2016). L-selectin is essential for delivery of activated CD8(+) T cells to virus-infected organs for protective immunity. Cell Reports, 14, 760–771.

    Article  CAS  PubMed  Google Scholar 

  41. Seguin, L., Desgrosellier, J. S., Weis, S. M., & Cheresh, D. A. (2015). Integrins and cancer: Regulators of cancer stemness, metastasis, and drug resistance. Trends in Cell Biology, 25, 234–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Seguin, L., Kato, S., Franovic, A., Camargo, M. F., Lesperance, J., Elliott, K. C., Yebra, M., Mielgo, A., Lowy, A. M., Husain, H., et al. (2014). An integrin beta(3)-KRAS-RalB complex drives tumour stemness and resistance to EGFR inhibition. Nature Cell Biology, 16, 457–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jakubzig, B., Baltes, F., Henze, S., Schlesinger, M., & Bendas, G. (2018). Mechanisms of matrix-induced Chemoresistance of breast Cancer cells-deciphering novel potential targets for a cell sensitization. Cancers (Basel), 10.

    Google Scholar 

  44. Parvani, J. G., Gujrati, M. D., Mack, M. A., Schiemann, W. P., & Lu, Z. R. (2015). Silencing beta3 integrin by targeted ECO/siRNA nanoparticles inhibits EMT and metastasis of triple-negative breast Cancer. Cancer Research, 75, 2316–2325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, Z., Ramirez, N. E., Yankeelov, T. E., Li, Z., Ford, L. E., Qi, Y., Pozzi, A., & Zutter, M. M. (2008). alpha2beta1 integrin expression in the tumor microenvironment enhances tumor angiogenesis in a tumor cell-specific manner. Blood, 111, 1980–1988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hamidi, H., & Ivaska, J. (2018). Every step of the way: Integrins in cancer progression and metastasis. Nature Reviews. Cancer, 18, 533–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lavergne, M., Janus-Bell, E., Schaff, M., Gachet, C., & Mangin, P. H. (2017). Platelet Integrins in tumor metastasis: Do they represent a therapeutic target? Cancers (Basel), 9.

    Google Scholar 

  48. Mammadova-Bach, E., Zigrino, P., Brucker, C., Bourdon, C., Freund, M., De Arcangelis, A., Abrams, S. I., Orend, G., Gachet, C., & Mangin, P. H. (2016). Platelet integrin alpha6beta1 controls lung metastasis through direct binding to cancer cell-derived ADAM9. JCI Insight, 1, e88245.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lonsdorf, A. S., Kramer, B. F., Fahrleitner, M., Schonberger, T., Gnerlich, S., Ring, S., Gehring, S., Schneider, S. W., Kruhlak, M. J., Meuth, S. G., et al. (2012). Engagement of alphaIIbbeta3 (GPIIb/IIIa) with alphanubeta3 integrin mediates interaction of melanoma cells with platelets: A connection to hematogenous metastasis. The Journal of Biological Chemistry, 287, 2168–2178.

    Article  CAS  PubMed  Google Scholar 

  50. Schlesinger, M., & Bendas, G. (2015). Contribution of very late antigen-4 (VLA-4) integrin to cancer progression and metastasis. Cancer Metastasis Reviews, 34, 575–591.

    Article  CAS  PubMed  Google Scholar 

  51. Okahara, H., Yagita, H., Miyake, K., & Okumura, K. (1994). Involvement of very late activation antigen 4 (VLA-4) and vascular cell adhesion molecule 1 (VCAM-1) in tumor necrosis factor alpha enhancement of experimental metastasis. Cancer Research, 54, 3233–3236.

    CAS  PubMed  Google Scholar 

  52. Garofalo, A., Chirivi, R. G., Foglieni, C., Pigott, R., Mortarini, R., Martin-Padura, I., Anichini, A., Gearing, A. J., Sanchez-Madrid, F., Dejana, E., et al. (1995). Involvement of the very late antigen 4 integrin on melanoma in interleukin 1-augmented experimental metastases. Cancer Research, 55, 414–419.

    CAS  PubMed  Google Scholar 

  53. Schlesinger, M., Roblek, M., Ortmann, K., Naggi, A., Torri, G., Borsig, L., & Bendas, G. (2014). The role of VLA-4 binding for experimental melanoma metastasis and its inhibition by heparin. Thrombosis Research, 133, 855–862.

    Article  CAS  PubMed  Google Scholar 

  54. Rebhun, R. B., Cheng, H., Gershenwald, J. E., Fan, D., Fidler, I. J., & Langley, R. R. (2010). Constitutive expression of the alpha4 integrin correlates with tumorigenicity and lymph node metastasis of the B16 murine melanoma. Neoplasia, 12, 173–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen, Q., Zhang, X. H., & Massague, J. (2011). Macrophage binding to receptor VCAM-1 transmits survival signals in breast Cancer cells that invade the lungs. Cancer Cell, 20, 538–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hoshino, A., Costa-Silva, B., Shen, T. L., Rodrigues, G., Hashimoto, A., Tesic Mark, M., Molina, H., Kohsaka, S., Di Giannatale, A., Ceder, S., et al. (2015). Tumour exosome integrins determine organotropic metastasis. Nature, 527, 329–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Borsig, L. (2010). Antimetastatic activities of heparins and modified heparins. Experimental evidence. Thromb Res, 125(Suppl 2), S66–S71.

    Article  PubMed  Google Scholar 

  58. Niers, T. M., Klerk, C. P., DiNisio, M., Van Noorden, C. J., Buller, H. R., Reitsma, P. H., & Richel, D. J. (2007). Mechanisms of heparin induced anti-cancer activity in experimental cancer models. Critical Reviews in Oncology/Hematology, 61, 195–207.

    Article  CAS  PubMed  Google Scholar 

  59. Vlodavsky, I., Mohsen, M., Lider, O., Svahn, C. M., Ekre, H. P., Vigoda, M., Ishai-Michaeli, R., & Peretz, T. (1994). Inhibition of tumor metastasis by heparanase inhibiting species of heparin. Invasion & Metastasis, 14, 290–302.

    CAS  Google Scholar 

  60. Stevenson, J. L., Choi, S. H., & Varki, A. (2005). Differential metastasis inhibition by clinically relevant levels of heparins—Correlation with selectin inhibition, not antithrombotic activity. Clinical Cancer Research, 11, 7003–7011.

    Article  CAS  PubMed  Google Scholar 

  61. Ludwig, R. J., Alban, S., Bistrian, R., Boehncke, W. H., Kaufmann, R., Henschler, R., & Gille, J. (2006). The ability of different forms of heparins to suppress P-selectin function in vitro correlates to their inhibitory capacity on bloodborne metastasis in vivo. Thrombosis and Haemostasis, 95, 535–540.

    Article  CAS  PubMed  Google Scholar 

  62. Smorenburg, S. M., & Van Noorden, C. J. (2001). The complex effects of heparins on cancer progression and metastasis in experimental studies. Pharmacological Reviews, 53, 93–105.

    CAS  PubMed  Google Scholar 

  63. Garcia-Escobar, I., Beato-Zambrano, C., Munoz Langa, J., Brozos Vazquez, E., Obispo Portero, B., Gutierrez-Abad, D., Munoz Martin, A. J., & Cancer, and Thrombosis Working Group of the Spanish Society of Medical, O. (2018). Pleiotropic effects of heparins: Does anticoagulant treatment increase survival in cancer patients? Clinical & Translational Oncology, 20, 1097–1108.

    Article  CAS  Google Scholar 

  64. Casu, B., Vlodavsky, I., & Sanderson, R. D. (2008). Non-anticoagulant heparins and inhibition of cancer. Pathophysiology of Haemostasis and Thrombosis, 36, 195–203.

    Article  PubMed  CAS  Google Scholar 

  65. Norgard-Sumnicht, K. E., Varki, N. M., & Varki, A. (1993). Calcium-dependent heparin-like ligands for L-selectin in nonlymphoid endothelial cells. Science, 261, 480–483.

    Article  CAS  PubMed  Google Scholar 

  66. Koenig, A., Norgard-Sumnicht, K., Linhardt, R., & Varki, A. (1998). Differential interactions of heparin and heparan sulfate glycosaminoglycans with the selectins. Implications for the use of unfractionated and low molecular weight heparins as therapeutic agents. The Journal of Clinical Investigation, 101, 877–889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Diamond, M. S., Alon, R., Parkos, C. A., Quinn, M. T., & Springer, T. A. (1995). Heparin is an adhesive ligand for the leukocyte integrin mac-1 (CD11b/CD1). The Journal of Cell Biology, 130, 1473–1482.

    Article  CAS  PubMed  Google Scholar 

  68. Vorup-Jensen, T., Chi, L., Gjelstrup, L. C., Jensen, U. B., Jewett, C. A., Xie, C., Shimaoka, M., Linhardt, R. J., & Springer, T. A. (2007). Binding between the integrin alphaXbeta2 (CD11c/CD18) and heparin. The Journal of Biological Chemistry, 282, 30869–30877.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang, C., Liu, Y., Gao, Y., Shen, J., Zheng, S., Wei, M., & Zeng, X. (2009). Modified heparins inhibit integrin alpha(IIb)beta(3) mediated adhesion of melanoma cells to platelets in vitro and in vivo. International Journal of Cancer, 125, 2058–2065.

    Article  CAS  PubMed  Google Scholar 

  70. Fritzsche, J., Simonis, D., & Bendas, G. (2008). Melanoma cell adhesion can be blocked by heparin in vitro: Suggestion of VLA-4 as a novel target for antimetastatic approaches. Thrombosis and Haemostasis, 100, 1166–1175.

    Article  CAS  PubMed  Google Scholar 

  71. Callander, N., & Rapaport, S. I. (1993). Trousseau’s syndrome. The Western Journal of Medicine, 158, 364–371.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Varki, A. (2007). Trousseau’s syndrome: Multiple definitions and multiple mechanisms. Blood, 110, 1723–1729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Falanga, A., & Marchetti, M. (2007). Heparin in tumor progression and metastatic dissemination. Seminars in Thrombosis and Hemostasis, 33, 688–694.

    Article  CAS  PubMed  Google Scholar 

  74. Rickles, F. R., & Falanga, A. (2001). Molecular basis for the relationship between thrombosis and cancer. Thrombosis Research, 102, V215–V224.

    Article  CAS  PubMed  Google Scholar 

  75. Vignoli, A., Marchetti, M., & Falanga, A. (2017). Heparins inhibit the endothelial pro-thrombotic features induced by tumor cells. Thrombosis Research, 157, 55–57.

    Article  CAS  PubMed  Google Scholar 

  76. Mandala, M., Labianca, R., & European Society for Medical, O. (2010). Venous thromboembolism (VTE) in cancer patients. ESMO clinical recommendations for prevention and management. Thrombosis Research, 125(Suppl 2), S117–S119.

    Article  PubMed  Google Scholar 

  77. Lyman, G. H., Bohlke, K., Falanga, A., & American Society of Clinical, O. (2015). Venous thromboembolism prophylaxis and treatment in patients with cancer: American Society of Clinical Oncology clinical practice guideline update. Journal of Oncology Practice/ American Society of Clinical Oncology, 11, e442–e444.

    Article  Google Scholar 

  78. Prisco, D., Tufano, A., Cenci, C., Pignatelli, P., Santilli, F., Di Minno, G., & Perticone, F. (2019). Position paper of the Italian Society of Internal Medicine (SIMI) on prophylaxis and treatment of venous thromboembolism in patients with cancer. Internal and Emergency Medicine, 14, 21–38.

    Article  PubMed  Google Scholar 

  79. Smorenburg, S. M., Hettiarachchi, R. J., Vink, R., & Buller, H. R. (1999). The effects of unfractionated heparin on survival in patients with malignancy--a systematic review. Thrombosis and Haemostasis, 82, 1600–1604.

    Article  CAS  PubMed  Google Scholar 

  80. Lee, A. Y., Rickles, F. R., Julian, J. A., Gent, M., Baker, R. I., Bowden, C., Kakkar, A. K., Prins, M., & Levine, M. N. (2005). Randomized comparison of low molecular weight heparin and coumarin derivatives on the survival of patients with cancer and venous thromboembolism. Journal of Clinical Oncology, 23, 2123–2129.

    Article  CAS  PubMed  Google Scholar 

  81. Lebeau, B., Chastang, C., Brechot, J. M., Capron, F., Dautzenberg, B., Delaisements, C., Mornet, M., Brun, J., Hurdebourcq, J. P., & Lemarie, E. (1994). Subcutaneous heparin treatment increases survival in small cell lung cancer. "petites cellules" group. Cancer, 74, 38–45.

    Article  CAS  PubMed  Google Scholar 

  82. Kakkar, A. K., Levine, M. N., Kadziola, Z., Lemoine, N. R., Low, V., Patel, H. K., Rustin, G., Thomas, M., Quigley, M., & Williamson, R. C. (2004). Low molecular weight heparin, therapy with dalteparin, and survival in advanced cancer: The fragmin advanced malignancy outcome study (FAMOUS). Journal of Clinical Oncology, 22, 1944–1948.

    Article  CAS  PubMed  Google Scholar 

  83. Klerk, C. P., Smorenburg, S. M., Otten, H. M., Lensing, A. W., Prins, M. H., Piovella, F., Prandoni, P., Bos, M. M., Richel, D. J., van Tienhoven, G., et al. (2005). The effect of low molecular weight heparin on survival in patients with advanced malignancy. Journal of Clinical Oncology, 23, 2130–2135.

    Article  CAS  PubMed  Google Scholar 

  84. Altinbas, M., Coskun, H. S., Er, O., Ozkan, M., Eser, B., Unal, A., Cetin, M., & Soyuer, S. (2004). A randomized clinical trial of combination chemotherapy with and without low-molecular-weight heparin in small cell lung cancer. Journal of Thrombosis and Haemostasis, 2, 1266–1271.

    Article  CAS  PubMed  Google Scholar 

  85. Akl, E. A., Barba, M., Rohilla, S., Terrenato, I., Sperati, F., Muti, P., & Schunemann, H. J. (2008). Low-molecular-weight heparins are superior to vitamin K antagonists for the long term treatment of venous thromboembolism in patients with cancer: A cochrane systematic review. Journal of Experimental & Clinical Cancer Research, 27, 21.

    Article  CAS  Google Scholar 

  86. van Doormaal, F. F., Di Nisio, M., Otten, H. M., Richel, D. J., Prins, M., & Buller, H. R. (2011). Randomized trial of the effect of the low molecular weight heparin nadroparin on survival in patients with cancer. Journal of Clinical Oncology, 29, 2071–2076.

    Article  PubMed  CAS  Google Scholar 

  87. Macbeth, F., Noble, S., Evans, J., Ahmed, S., Cohen, D., Hood, K., Knoyle, D., Linnane, S., Longo, M., Moore, B., et al. (2016). Randomized phase III trial of standard therapy plus Low molecular weight heparin in patients with lung Cancer: FRAGMATIC trial. Journal of Clinical Oncology, 34, 488–494.

    Article  CAS  PubMed  Google Scholar 

  88. Perry, J. R., Julian, J. A., Laperriere, N. J., Geerts, W., Agnelli, G., Rogers, L. R., Malkin, M. G., Sawaya, R., Baker, R., Falanga, A., et al. (2010). PRODIGE: A randomized placebo-controlled trial of dalteparin low-molecular-weight heparin thromboprophylaxis in patients with newly diagnosed malignant glioma. Journal of Thrombosis and Haemostasis, 8, 1959–1965.

    Article  CAS  PubMed  Google Scholar 

  89. Meyer, G., Besse, B., Doubre, H., Charles-Nelson, A., Aquilanti, S., Izadifar, A., Azarian, R., Monnet, I., Lamour, C., Descourt, R., et al. (2018). Anti-tumour effect of low molecular weight heparin in localised lung cancer: A phase III clinical trial. The European Respiratory Journal, 52.

    Google Scholar 

  90. Vlodavsky, I., Ilan, N., Nadir, Y., Brenner, B., Katz, B. Z., Naggi, A., Torri, G., Casu, B., & Sasisekharan, R. (2007). Heparanase, heparin and the coagulation system in cancer progression. Thrombosis Research, 120(Suppl 2), S112–S120.

    Article  PubMed  Google Scholar 

  91. Iozzo, R. V., & Sanderson, R. D. (2011). Proteoglycans in cancer biology, tumour microenvironment and angiogenesis. Journal of Cellular and Molecular Medicine, 15, 1013–1031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ilan, N., Elkin, M., & Vlodavsky, I. (2006). Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. The International Journal of Biochemistry & Cell Biology, 38, 2018–2039.

    Article  CAS  Google Scholar 

  93. Vlodavsky, I., Friedmann, Y., Elkin, M., Aingorn, H., Atzmon, R., Ishai-Michaeli, R., Bitan, M., Pappo, O., Peretz, T., Michal, I., et al. (1999). Mammalian heparanase: Gene cloning, expression and function in tumor progression and metastasis. Nature Medicine, 5, 793–802.

    Article  CAS  PubMed  Google Scholar 

  94. Edovitsky, E., Elkin, M., Zcharia, E., Peretz, T., & Vlodavsky, I. (2004). Heparanase gene silencing, tumor invasiveness, angiogenesis, and metastasis. Journal of the National Cancer Institute, 96, 1219–1230.

    Article  CAS  PubMed  Google Scholar 

  95. Sanderson, R. D., Elkin, M., Rapraeger, A. C., Ilan, N., & Vlodavsky, I. (2017). Heparanase regulation of cancer, autophagy and inflammation: New mechanisms and targets for therapy. The FEBS Journal, 284, 42–55.

    Article  CAS  PubMed  Google Scholar 

  96. Elkin, M., Ilan, N., Ishai-Michaeli, R., Friedmann, Y., Papo, O., Pecker, I., & Vlodavsky, I. (2001). Heparanase as mediator of angiogenesis: Mode of action. The FASEB Journal, 15, 1661–1663.

    Article  CAS  PubMed  Google Scholar 

  97. Thompson, C. A., Purushothaman, A., Ramani, V. C., Vlodavsky, I., & Sanderson, R. D. (2013). Heparanase regulates secretion, composition, and function of tumor cell-derived exosomes. The Journal of Biological Chemistry, 288, 10093–10099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jung, O., Trapp-Stamborski, V., Purushothaman, A., Jin, H., Wang, H., Sanderson, R. D., & Rapraeger, A. C. (2016). Heparanase-induced shedding of syndecan-1/CD138 in myeloma and endothelial cells activates VEGFR2 and an invasive phenotype: Prevention by novel synstatins. Oncogene, 5, e202.

    Article  CAS  Google Scholar 

  99. Peinado, H., Zhang, H., Matei, I. R., Costa-Silva, B., Hoshino, A., Rodrigues, G., Psaila, B., Kaplan, R. N., Bromberg, J. F., Kang, Y., et al. (2017). Pre-metastatic niches: Organ-specific homes for metastases. Nature Reviews. Cancer, 17, 302–317.

    Article  CAS  PubMed  Google Scholar 

  100. Baietti, M. F., Zhang, Z., Mortier, E., Melchior, A., Degeest, G., Geeraerts, A., Ivarsson, Y., Depoortere, F., Coomans, C., Vermeiren, E., et al. (2012). Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nature Cell Biology, 14, 677–685.

    Article  CAS  PubMed  Google Scholar 

  101. Ramani, V. C., Zhan, F., He, J., Barbieri, P., Noseda, A., Tricot, G., & Sanderson, R. D. (2016). Targeting heparanase overcomes chemoresistance and diminishes relapse in myeloma. Oncotarget, 7, 1598–1607.

    Article  PubMed  Google Scholar 

  102. Tsunekawa, N., Higashi, N., Kogane, Y., Waki, M., Shida, H., Nishimura, Y., Adachi, H., Nakajima, M., & Irimura, T. (2016). Heparanase augments inflammatory chemokine production from colorectal carcinoma cell lines. Biochemical and Biophysical Research Communications, 469, 878–883.

    Article  CAS  PubMed  Google Scholar 

  103. Gutter-Kapon, L., Alishekevitz, D., Shaked, Y., Li, J. P., Aronheim, A., Ilan, N., & Vlodavsky, I. (2016). Heparanase is required for activation and function of macrophages. Proceedings of the National Academy of Sciences of the United States of America, 113, E7808–E7817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gerber, U., Hoss, S. G., Shteingauz, A., Jungel, E., Jakubzig, B., Ilan, N., Blaheta, R., Schlesinger, M., Vlodavsky, I., & Bendas, G. (2015). Latent heparanase facilitates VLA-4-mediated melanoma cell binding and emerges as a relevant target of heparin in the interference with metastatic progression. Seminars in Thrombosis and Hemostasis, 41, 244–254.

    Article  CAS  PubMed  Google Scholar 

  105. Nadir, Y., Brenner, B., Zetser, A., Ilan, N., Shafat, I., Zcharia, E., Goldshmidt, O., & Vlodavsky, I. (2006). Heparanase induces tissue factor expression in vascular endothelial and cancer cells. Journal of Thrombosis and Haemostasis, 4, 2443–2451.

    Article  CAS  PubMed  Google Scholar 

  106. Nadir, Y., Brenner, B., Gingis-Velitski, S., Levy-Adam, F., Ilan, N., Zcharia, E., Nadir, E., & Vlodavsky, I. (2008). Heparanase induces tissue factor pathway inhibitor expression and extracellular accumulation in endothelial and tumor cells. Thrombosis and Haemostasis, 99, 133–141.

    Article  CAS  PubMed  Google Scholar 

  107. Levy-Adam, F., Abboud-Jarrous, G., Guerrini, M., Beccati, D., Vlodavsky, I., & Ilan, N. (2005). Identification and characterization of heparin/heparan sulfate binding domains of the endoglycosidase heparanase. The Journal of Biological Chemistry, 280, 20457–20466.

    Article  CAS  PubMed  Google Scholar 

  108. Wu, L., Viola, C. M., Brzozowski, A. M., & Davies, G. J. (2015). Structural characterization of human heparanase reveals insights into substrate recognition. Nature Structural & Molecular Biology, 22, 1016–1022.

    Article  CAS  Google Scholar 

  109. Bar-Ner, M., Eldor, A., Wasserman, L., Matzner, Y., Cohen, I. R., Fuks, Z., & Vlodavsky, I. (1987). Inhibition of heparanase-mediated degradation of extracellular matrix heparan sulfate by non-anticoagulant heparin species. Blood, 70, 551–557.

    Article  CAS  PubMed  Google Scholar 

  110. Bar-Ner, M., Kramer, M. D., Schirrmacher, V., Ishai-Michaeli, R., Fuks, Z., & Vlodavsky, I. (1985). Sequential degradation of heparan sulfate in the subendothelial extracellular matrix by highly metastatic lymphoma cells. International Journal of Cancer, 35, 483–491.

    Article  CAS  PubMed  Google Scholar 

  111. Lapierre, F., Holme, K., Lam, L., Tressler, R. J., Storm, N., Wee, J., Stack, R. J., Castellot, J., & Tyrrell, D. J. (1996). Chemical modifications of heparin that diminish its anticoagulant but preserve its heparanase-inhibitory, angiostatic, anti-tumor and anti- metastatic properties. Glycobiology, 6, 355–366.

    Article  CAS  PubMed  Google Scholar 

  112. Naggi, A., Casu, B., Perez, M., Torri, G., Cassinelli, G., Penco, S., Pisano, C., Giannini, G., Ishai-Michaeli, R., & Vlodavsky, I. (2005). Modulation of the heparanase-inhibiting activity of heparin through selective desulfation, graded N-acetylation, and glycol splitting. The Journal of Biological Chemistry, 280, 12103–12113.

    Article  CAS  PubMed  Google Scholar 

  113. Galli, M., Chatterjee, M., Grasso, M., Specchia, G., Magen, H., Einsele, H., Celeghini, I., Barbieri, P., Paoletti, D., Pace, S., et al. (2018). Phase I study of the heparanase inhibitor roneparstat: An innovative approach for ultiple myeloma therapy. Haematologica, 103, e469–e472.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Ni, M., Elli, S., Naggi, A., Guerrini, M., Torri, G., & Petitou, M. (2016). Investigating glycol-Split-heparin-derived inhibitors of Heparanase: A study of synthetic Trisaccharides. Molecules, 21.

    Google Scholar 

  115. Hostettler, N., Naggi, A., Torri, G., Casu, B., Vlodavsky, I., & Borsig, L. (2007). P-selectin- and heparanase-dependent antimetastatic activity of non-anticoagulant heparins. The FASEB Journal, 21, 3562–3572.

    Article  CAS  PubMed  Google Scholar 

  116. Gomes, A. M., Kozlowski, E. O., Borsig, L., Teixeira, F. C., Vlodavsky, I., & Pavao, M. S. (2015). Antitumor properties of a new non-anticoagulant heparin analog from the mollusk Nodipecten nodosus: Effect on P-selectin, heparanase, metastasis and cellular recruitment. Glycobiology, 25, 386–393.

    Article  CAS  PubMed  Google Scholar 

  117. Loka, R.S., Sletten, E.T., Barash, U., Vlodavsky, I., and Nguyen, H.M. 2018. Specific inhibition of Heparanase by Glycopolymer with well-defined Sulfation pattern prevents breast Cancer metastasis in mice. ACS Applied Materials & Interfaces (in press):doi: https://doi.org/10.1021/acsami.1028b17625.

  118. Läubli, H., & Borsig, L. (2009). Heparins attenuate cancer metastasis: Are selectins the link? Cancer Investigation, 27, 474–481.

    Article  PubMed  CAS  Google Scholar 

  119. Zhou, H., Roy, S., Cochran, E., Zouaoui, R., Chu, C. L., Duffner, J., Zhao, G., Smith, S., Galcheva-Gargova, Z., Karlgren, J., et al. (2011). M402, a novel heparan sulfate mimetic, targets multiple pathways implicated in tumor progression and metastasis. PLoS One, 6, e21106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Parish, C. R., Freeman, C., Brown, K. J., Francis, D. J., & Cowden, W. B. (1999). Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity. Cancer Research, 59, 3433–3441.

    CAS  PubMed  Google Scholar 

  121. Kragh, M., Binderup, L., Vig Hjarnaa, P. J., Bramm, E., Johansen, K. B., & Frimundt Petersen, C. (2005). Non-anti-coagulant heparin inhibits metastasis but not primary tumor growth. Oncology Reports, 14, 99–104.

    CAS  PubMed  Google Scholar 

  122. Borsig, L., Vlodavsky, I., Ishai-Michaeli, R., Torri, G., & Vismara, E. (2011). Sulfated hexasaccharides attenuate metastasis by inhibition of P-selectin and heparanase. Neoplasia, 13, 445–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Weissmann, M., Arvatz, G., Horowitz, N., Feld, S., Naroditsky, I., Zhang, Y., Ng, M., Hammond, E., Nevo, E., Vlodavsky, I., et al. (2016). Heparanase-neutralizing antibodies attenuate lymphoma tumor growth and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 113, 704–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Koliopanos, A., Friess, H., Kleeff, J., Shi, X., Liao, Q., Pecker, I., Vlodavsky, I., Zimmermann, A., & Buchler, M. W. (2001). Heparanase expression in primary and metastatic pancreatic cancer. Cancer Research, 61, 4655–4659.

    CAS  PubMed  Google Scholar 

  125. Ritchie, J. P., Ramani, V. C., Ren, Y., Naggi, A., Torri, G., Casu, B., Penco, S., Pisano, C., Carminati, P., Tortoreto, M., et al. (2011). SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis. Clinical Cancer Research, 17, 1382–1393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lubor Borsig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bendas, G., Borsig, L. (2020). Heparanase in Cancer Metastasis – Heparin as a Potential Inhibitor of Cell Adhesion Molecules. In: Vlodavsky, I., Sanderson, R., Ilan, N. (eds) Heparanase. Advances in Experimental Medicine and Biology, vol 1221. Springer, Cham. https://doi.org/10.1007/978-3-030-34521-1_11

Download citation

Publish with us

Policies and ethics