Skip to main content

Burn Scar Treatment

  • Chapter
  • First Online:
Handbook of Burns Volume 2
  • 621 Accesses

Abstract

Scar formation is considered as an integrative part of the complex and dynamic process of normal physiological wound healing to restore skin integrity following injury and is referred to as the maturation phase. This phase is dominated by fibroblasts. The pivotal feature of this process is the synthesis, deposition, and remodeling of collagen, the major structural substance of connective tissue. The collagen deposition in normal wound healing peaks by the third week after injury. Collagen remodeling is characterized by a (balanced) continuous synthesis and degradation of collagen and is observed already early during the wound healing process. The degradation of wound collagen is controlled by a variety of enzymes such as collagenases (e.g., MMP-1) derived from granulocytes, macrophages, keratinocytes, and fibroblasts. On the other hand, the expression and activity of collagenases is tightly controlled by cytokines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83:835–70.

    Article  CAS  PubMed  Google Scholar 

  2. Deitch EA, Wheelahan TM, Rose MP, Clothier J, Cotter J. Hypertrophic burn scars: analysis of variables. J Trauma. 1983;23:895–8.

    Article  CAS  PubMed  Google Scholar 

  3. Wang J, Dodd C, Shankowsky HA, Scott PG, Tredget EE. Deep dermal fibroblasts contribute to hypertrophic scarring. Lab Investig. 2008;88:1278–90.

    Article  CAS  PubMed  Google Scholar 

  4. Wang R, et al. Hypertrophic scar tissues and fibroblasts produce more transforming growth factor-beta1 mRNA and protein than normal skin and cells. Wound Repair Regen. 2000;8:128–37.

    Article  CAS  PubMed  Google Scholar 

  5. Colwell AS, Phan TT, Kong W, Longaker MT, Lorenz PH. Hypertrophic scar fibroblasts have increased connective tissue growth factor expression after transforming growth factor-beta stimulation. Plast Reconstr Surg. 2005;116:1387–90.

    Article  CAS  PubMed  Google Scholar 

  6. Clark RA. Fibrin and wound healing. Ann N Y Acad Sci. 2001;936:355–67.

    Article  CAS  PubMed  Google Scholar 

  7. Tuan TL, et al. Increased plasminogen activator inhibitor-1 in keloid fibroblasts may account for their elevated collagen accumulation in fibrin gel cultures. Am J Pathol. 2003;162:1579–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ignotz RA, Massague J. Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem. 1986;261:4337–45.

    Article  CAS  PubMed  Google Scholar 

  9. Tredget EE, et al. Transforming growth factor-beta in thermally injured patients with hypertrophic scars: effects of interferon alpha-2 b. Plast Reconstr Surg. 1998;102:1317–28.

    Article  CAS  PubMed  Google Scholar 

  10. Ghahary A, Shen Q, Shen YJ, Scott PG, Tredget EE. Induction of transforming growth factor beta 1 by insulin-like growth factor-1 in dermal fibroblasts. J Cell Physiol. 1998;174:301–9.

    Article  CAS  PubMed  Google Scholar 

  11. Ghahary A, et al. Collagenase production is lower in post-burn hypertrophic scar fibroblasts than in normal fibroblasts and is reduced by insulin-like growth factor-1. J Invest Dermatol. 1996;106:476–81.

    Article  CAS  PubMed  Google Scholar 

  12. O’Sullivan ST, et al. Major injury leads to predominance of the T helper-2 lymphocyte phenotype and diminished interleukin-12 production associated with decreased resistance to infection. Ann Surg. 1995;222:482–90.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Horgan AF, et al. Altered gene transcription after burn injury results in depressed T-lymphocyte activation. Ann Surg. 1994;220:342–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang J, et al. Increased TGF-beta-producing CD4+ T lymphocytes in postburn patients and their potential interaction with dermal fibroblasts in hypertrophic scarring. Wound Repair Regen. 2007;15:530–9.

    Article  PubMed  Google Scholar 

  15. Ladak A, Tredget EE. Pathophysiology and management of the burn scar. Clin Plast Surg. 2009;36:661–74.

    Article  PubMed  Google Scholar 

  16. Yang L, et al. Identification of fibrocytes in postburn hypertrophic scar. Wound Repair Regen. 2005;13:398–404.

    Article  PubMed  Google Scholar 

  17. Yang L, et al. Peripheral blood fibrocytes from burn patients: identification and quantification of fibrocytes in adherent cells cultured from peripheral blood mononuclear cells. Lab Investig. 2002;82:1183–92.

    Article  CAS  PubMed  Google Scholar 

  18. Scott PG, Ghahary A, Tredget EE. Molecular and cellular aspects of fibrosis following thermal injury. Hand Clin. 2000;16:271–87.

    Article  CAS  PubMed  Google Scholar 

  19. Wang J, et al. Accelerated wound healing in leukocyte-specific, protein 1-deficient mouse is associated with increased infiltration of leukocytes and fibrocytes. J Leukoc Biol. 2007;82:1554–63.

    Article  CAS  PubMed  Google Scholar 

  20. Grotendorst GR. Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts. Cytokine Growth Factor Rev. 1997;8:171–9.

    Article  CAS  PubMed  Google Scholar 

  21. Mustoe TA, et al. International clinical recommendations on scar management. Plast Reconstr Surg. 2002;110:560–71.

    Article  PubMed  Google Scholar 

  22. Teot L. Clinical evaluation of scars. Wound Repair Regen. 2002;10:93–7.

    Article  PubMed  Google Scholar 

  23. Silver GM, et al. Standard operating procedures for the clinical management of patients enrolled in a prospective study of inflammation and the host response to thermal injury. J Burn Care Res. 2007;28:222–30.

    Article  PubMed  Google Scholar 

  24. Ramzy PI, Barret JP, Herndon DN. Thermal injury. Crit Care Clin. 1999;15:333–52.

    Article  CAS  PubMed  Google Scholar 

  25. Atiyeh BS, et al. Benefit-cost analysis of moist exposed burn ointment. Burns. 2002;28:659–63.

    Article  PubMed  Google Scholar 

  26. Tewari AK, et al. Use of a novel absorbable barbed plastic surgical suture enables a “self-cinching” technique of vesicourethral anastomosis during robot-assisted prostatectomy and improves anastomotic times. J Endourol. 2010;24:1645–50.

    Article  PubMed  Google Scholar 

  27. Demyttenaere SV, et al. Barbed suture for gastrointestinal closure: a randomized control trial. Surg Innov. 2009;16:237–42.

    Article  PubMed  Google Scholar 

  28. Heimbach DM, et al. Multicenter postapproval clinical trial of Integra dermal regeneration template for burn treatment. J Burn Care Rehabil. 2003;24:42–8.

    Article  PubMed  Google Scholar 

  29. Scuderi N, et al. The clinical application of autologous bioengineered skin based on a hyaluronic acid scaffold. Biomaterials. 2008;29:1620–9.

    Article  CAS  PubMed  Google Scholar 

  30. Gravante G, et al. The use of hyalomatrix PA in the treatment of deep partial-thickness burns. J Burn Care Res. 2007;28:269–74.

    Article  PubMed  Google Scholar 

  31. Fujioka M, Fujii T. Maxillary growth following atelocollagen implantation on mucoperiosteal denudation of the palatal process in young rabbits: implications for clinical cleft palate repair. Cleft Palate Craniofac J. 1997;34:297–308.

    Article  CAS  PubMed  Google Scholar 

  32. Ryssel H, Gazyakan E, Germann G, Ohlbauer M. The use of MatriDerm in early excision and simultaneous autologous skin grafting in burns – a pilot study. Burns. 2008;34:93–7.

    Article  CAS  PubMed  Google Scholar 

  33. Haslik W, et al. First experiences with the collagen-elastin matrix Matriderm as a dermal substitute in severe burn injuries of the hand. Burns. 2007;33:364–8.

    Article  CAS  PubMed  Google Scholar 

  34. Wang XQ, Liu YK, Qing C, Lu SL. A review of the effectiveness of antimitotic drug injections for hypertrophic scars and keloids. Ann Plast Surg. 2009;63:688–92.

    Article  CAS  PubMed  Google Scholar 

  35. Ferguson MW, et al. Prophylactic administration of avotermin for improvement of skin scarring: three double-blind, placebo-controlled, phase I/II studies. Lancet. 2009;373:1264–74.

    Article  CAS  PubMed  Google Scholar 

  36. Reiffel RS. Prevention of hypertrophic scars by long-term paper tape application. Plast Reconstr Surg. 1995;96:1715–8.

    Article  CAS  PubMed  Google Scholar 

  37. Atkinson JA, McKenna KT, Barnett AG, McGrath DJ, Rudd M. A randomized, controlled trial to determine the efficacy of paper tape in preventing hypertrophic scar formation in surgical incisions that traverse Langer’s skin tension lines. Plast Reconstr Surg. 2005;116:1648–56.

    Article  CAS  PubMed  Google Scholar 

  38. Linares HA, Larson DL, Willis-Galstaun BA. Historical notes on the use of pressure in the treatment of hypertrophic scars or keloids. Burns. 1993;19:17–21.

    Article  CAS  PubMed  Google Scholar 

  39. Rose MP, Deitch EA. The clinical use of a tubular compression bandage, Tubigrip, for burn-scar therapy: a critical analysis. Burns Incl Therm Inj. 1985;12:58–64.

    Article  CAS  PubMed  Google Scholar 

  40. Kealey GP, Jensen KL, Laubenthal KN, Lewis RW. Prospective randomized comparison of two types of pressure therapy garments. J Burn Care Rehabil. 1990;11:334–6.

    Article  CAS  PubMed  Google Scholar 

  41. Johnson J, Greenspan B, Gorga D, Nagler W, Goodwin C. Compliance with pressure garment use in burn rehabilitation. J Burn Care Rehabil. 1994;15:180–8.

    Article  CAS  PubMed  Google Scholar 

  42. Niessen FB, Spauwen PH, Schalkwijk J, Kon M. On the nature of hypertrophic scars and keloids: a review. Plast Reconstr Surg. 1999;104:1435–58.

    Article  CAS  PubMed  Google Scholar 

  43. Anzarut A. The evidence for and against the effectiveness of pressure garment therapy for scar management. Plast Reconstr Surg. 2007;120:1437–8.

    Article  CAS  PubMed  Google Scholar 

  44. Ahn ST, Monafo WW, Mustoe TA. Topical silicone gel: a new treatment for hypertrophic scars. Surgery. 1989;106:781–6.

    CAS  PubMed  Google Scholar 

  45. Ahn ST, Monafo WW, Mustoe TA. Topical silicone gel for the prevention and treatment of hypertrophic scar. Arch Surg. 1991;126:499–504.

    Article  CAS  PubMed  Google Scholar 

  46. Cruz-Korchin NI. Effectiveness of silicone sheets in the prevention of hypertrophic breast scars. Ann Plast Surg. 1996;37:345–8.

    Article  CAS  PubMed  Google Scholar 

  47. Gold MH. A controlled clinical trial of topical silicone gel sheeting in the treatment of hypertrophic scars and keloids. J Am Acad Dermatol. 1994;30:506–7.

    Article  CAS  PubMed  Google Scholar 

  48. Berman B, Flores F. Comparison of a silicone gel-filled cushion and silicon gel sheeting for the treatment of hypertrophic or keloid scars. Dermatol Surg. 1999;25:484–6.

    Article  CAS  PubMed  Google Scholar 

  49. Su CW, Alizadeh K, Boddie A, Lee RC. The problem scar. Clin Plast Surg. 1998;25:451–65.

    Article  CAS  PubMed  Google Scholar 

  50. Poston J. The use of silicone gel sheeting in the management of hypertrophic and keloid scars. J Wound Care. 2000;9:10–6.

    Article  CAS  PubMed  Google Scholar 

  51. Berman B, et al. A review of the biologic effects, clinical efficacy, and safety of silicone elastomer sheeting for hypertrophic and keloid scar treatment and management. Dermatol Surg. 2007;33:1291–302.

    CAS  PubMed  Google Scholar 

  52. Hirshowitz B, et al. Static-electric field induction by a silicone cushion for the treatment of hypertrophic and keloid scars. Plast Reconstr Surg. 1998;101:1173–83.

    Article  CAS  PubMed  Google Scholar 

  53. Gilman TH. Silicone sheet for treatment and prevention of hypertrophic scar: a new proposal for the mechanism of efficacy. Wound Repair Regen. 2003;11:235–6.

    Article  PubMed  Google Scholar 

  54. Suetak T, Sasai S, Zhen YX, Tagami H. Effects of silicone gel sheet on the stratum corneum hydration. Br J Plast Surg. 2000;53:503–7.

    Article  CAS  PubMed  Google Scholar 

  55. Branagan M, Chenery DH, Nicholson S. Use of infrared attenuated total reflectance spectroscopy for the in vivo measurement of hydration level and silicone distribution in the stratum corneum following skin coverage by polymeric dressings. Skin Pharmacol Appl Ski Physiol. 2000;13:157–64.

    Article  CAS  Google Scholar 

  56. Musgrave MA, Umraw N, Fish JS, Gomez M, Cartotto RC. The effect of silicone gel sheets on perfusion of hypertrophic burn scars. J Burn Care Rehabil. 2002;23:208–14.

    Article  PubMed  Google Scholar 

  57. Manuskiatti W, Fitzpatrick RE. Treatment response of keloidal and hypertrophic sternotomy scars: comparison among intralesional corticosteroid, 5-fluorouracil, and 585-nm flashlamp-pumped pulsed-dye laser treatments. Arch Dermatol. 2002;138:1149–55.

    Article  CAS  PubMed  Google Scholar 

  58. Kang N, Sivakumar B, Sanders R, Nduka C, Gault D. Intra-lesional injections of collagenase are ineffective in the treatment of keloid and hypertrophic scars. J Plast Reconstr Aesthet Surg. 2006;59:693–9.

    Article  PubMed  Google Scholar 

  59. Urioste SS, Arndt KA, Dover JS. Keloids and hypertrophic scars: review and treatment strategies. Semin Cutan Med Surg. 1999;18:159–71.

    Article  CAS  PubMed  Google Scholar 

  60. Sherris DA, Larrabee WF Jr, Murakami CS. Management of scar contractures, hypertrophic scars, and keloids. Otolaryngol Clin N Am. 1995;28:1057–68.

    Article  CAS  Google Scholar 

  61. Brissett AE, Sherris DA. Scar contractures, hypertrophic scars, and keloids. Facial Plast Surg. 2001;17:263–72.

    Article  CAS  PubMed  Google Scholar 

  62. Nemeth AJ. Keloids and hypertrophic scars. J Dermatol Surg Oncol. 1993;19:738–46.

    Article  CAS  PubMed  Google Scholar 

  63. Boutli-Kasapidou F, Tsakiri A, Anagnostou E, Mourel-lou O. Hypertrophic and keloidal scars: an approach to polytherapy. Int J Dermatol. 2005;44:324–7.

    Article  PubMed  Google Scholar 

  64. Asilian A, Darougheh A, Shariati F. New combination of triamcinolone, 5-fluorouracil, and pulsed-dye laser for treatment of keloid and hypertrophic scars. Dermatol Surg. 2006;32:907–15.

    CAS  PubMed  Google Scholar 

  65. Borok TL, et al. Role of ionizing irradiation for 393 keloids. Int J Radiat Oncol Biol Phys. 1988;15:865–70.

    Article  CAS  PubMed  Google Scholar 

  66. Berman B, Bieley HC. Adjunct therapies to surgical management of keloids. Dermatol Surg. 1996;22:126–30.

    CAS  PubMed  Google Scholar 

  67. Slemp AE, Kirschner RE. Keloids and scars: a review of keloids and scars, their pathogenesis, risk factors, and management. Curr Opin Pediatr. 2006;18:396–402.

    Article  PubMed  Google Scholar 

  68. Malaker K, Vijayraghavan K, Hodson I, Al YT. Retrospective analysis of treatment of unresectable keloids with primary radiation over 25 years. Clin Oncol (R Coll Radiol). 2004;16:290–8.

    Article  CAS  Google Scholar 

  69. Ogawa R, Yoshitatsu S, Yoshida K, Miyashita T. Is radiation therapy for keloids acceptable? The risk of radiation-induced carcinogenesis. Plast Reconstr Surg. 2009;124:1196–201.

    Article  CAS  PubMed  Google Scholar 

  70. Castro DJ, et al. Effects of the Nd:YAG laser on DNA synthesis and collagen production in human skin fibroblast cultures. Ann Plast Surg. 1983;11:214–22.

    Article  CAS  PubMed  Google Scholar 

  71. Apfelberg DB, Maser MR, Lash H, White D, Weston J. Preliminary results of argon and carbon dioxide laser treatment of keloid scars. Lasers Surg Med. 1984;4:283–90.

    Article  CAS  PubMed  Google Scholar 

  72. Henderson DL, Cromwell TA, Mes LG. Argon and carbon dioxide laser treatment of hypertrophic and keloid scars. Lasers Surg Med. 1984;3:271–7.

    Article  CAS  PubMed  Google Scholar 

  73. Abergel RP, et al. Control of connective tissue metabolism by lasers: recent developments and future prospects. J Am Acad Dermatol. 1984;11:1142–50.

    Article  CAS  PubMed  Google Scholar 

  74. Alster TS, Nanni CA. Pulsed dye laser treatment of hypertrophic burn scars. Plast Reconstr Surg. 1998;102:2190–5.

    Article  CAS  PubMed  Google Scholar 

  75. Allison KP, Kiernan MN, Waters RA, Clement RM. Pulsed dye laser treatment of burn scars. Alleviation or irritation? Burns. 2003;29:207–13.

    Article  CAS  PubMed  Google Scholar 

  76. Kono T, et al. The flashlamp-pumped pulsed dye laser (585 nm) treatment of hypertrophic scars in Asians. Ann Plast Surg. 2003;51:366–71.

    Article  PubMed  Google Scholar 

  77. Alster TS, Williams CM. Treatment of keloid sternotomy scars with 585 nm flashlamp-pumped pulsed-dye laser. Lancet. 1995;345:1198–200.

    Article  CAS  PubMed  Google Scholar 

  78. Kumar K, Kapoor BS, Rai P, Shukla HS. In-situ irradiation of keloid scars with Nd:YAG laser. J Wound Care. 2000;9:213–5.

    Article  CAS  PubMed  Google Scholar 

  79. Kwon SD, Kye YC. Treatment of scars with a pulsed Er:YAG laser. J Cutan Laser Ther. 2000;2:27–31.

    Article  CAS  PubMed  Google Scholar 

  80. Gaston P, Humzah MD, Quaba AA. The pulsed tuneable dye laser as an aid in the management of postburn scarring. Burns. 1996;22:203–5.

    Article  CAS  PubMed  Google Scholar 

  81. Liew SH, Murison M, Dickson WA. Prophylactic treatment of deep dermal burn scar to prevent hypertrophic scarring using the pulsed dye laser: a preliminary study. Ann Plast Surg. 2002;49:472–5.

    Article  CAS  PubMed  Google Scholar 

  82. Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science. 1983;220:524–7.

    Article  CAS  PubMed  Google Scholar 

  83. Reiken SR, et al. Control of hypertrophic scar growth using selective photothermolysis. Lasers Surg Med. 1997;21:7–12.

    Article  CAS  PubMed  Google Scholar 

  84. Paquet P, Hermanns JF, Pierard GE. Effect of the 585 nm flashlamp-pumped pulsed dye laser for the treatment of keloids. Dermatol Surg. 2001;27:171–4.

    CAS  PubMed  Google Scholar 

  85. Kuo YR, et al. Activation of ERK and p38 kinase mediated keloid fibroblast apoptosis after flashlamp pulsed-dye laser treatment. Lasers Surg Med. 2005;36:31–7.

    Article  PubMed  Google Scholar 

  86. Kuo YR, et al. Suppressed TGF-beta1 expression is correl ated with up-regulation of matrix metalloproteinase-13 in keloid regression after flashlamp pulsed-dye laser treatment. Lasers Surg Med. 2005;36:38–42.

    Article  PubMed  Google Scholar 

  87. Rusciani L, Rossi G, Bono R. Use of cryotherapy in the treatment of keloids. J Dermatol Surg Oncol. 1993;19:529–34.

    Article  CAS  PubMed  Google Scholar 

  88. Har-Shai Y, Amar M, Sabo E. Intralesional cryotherapy for enhancing the involution of hypertrophic scars and keloids. Plast Reconstr Surg. 2003;111:1841–52.

    Article  PubMed  Google Scholar 

  89. Ernst K, Hundeiker M. Results of cryosurgery in 394 patients with hypertrophic scars and keloids. Hautarzt. 1995;46:462–6.

    Article  CAS  PubMed  Google Scholar 

  90. Layton AM, Yip J, Cunliffe WJ. A comparison of intralesional triamcinolone and cryosurgery in the treatment of acne keloids. Br J Dermatol. 1994;130:498–501.

    Article  CAS  PubMed  Google Scholar 

  91. Apikian M, Goodman G. Intralesional 5-fluorouracil in the treatment of keloid scars. Australas J Dermatol. 2004;45:140–3.

    Article  PubMed  Google Scholar 

  92. Nouri K, Vidulich K, Rivas MP. Lasers for scars: a review. J Cosmet Dermatol. 2006;5:14–22.

    Article  PubMed  Google Scholar 

  93. Lebwohl M. From the literature: intralesional 5-FU in the treatment of hypertrophic scars and keloids: clinical experience. J Am Acad Dermatol. 2000;42:677.

    Article  CAS  PubMed  Google Scholar 

  94. Gupta S, Kalra A. Efficacy and safety of intralesional 5-fluorouracil in the treatment of keloids. Dermatology. 2002;204:130–2.

    Article  CAS  PubMed  Google Scholar 

  95. Baisch A, Riedel F. Hyperplastic scars and keloids: part II: surgical and non-surgical treatment modalities. HNO. 2006;54:981–92.

    Article  CAS  PubMed  Google Scholar 

  96. Jimenez SA, Freundlich B, Rosenbloom J. Selective inhibition of human diploid fibroblast collagen synthesis by interferons. J Clin Invest. 1984;74:1112–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Granstein RD, et al. A controlled trial of intralesional recombinant interferon-gamma in the treatment of keloidal scarring. Clinical and histologic findings. Arch Dermatol. 1990;126:1295–302.

    Article  CAS  PubMed  Google Scholar 

  98. Pittet B, et al. Effect of gamma-interferon on the clinical and biologic evolution of hypertrophic scars and Dupuytren’s disease: an open pilot study. Plast Reconstr Surg. 1994;93:1224–35.

    Article  CAS  PubMed  Google Scholar 

  99. Larrabee WF Jr, East CA, Jaffe HS, Stephenson C, Peterson KE. Intralesional interferon gamma treatment for keloids and hypertrophic scars. Arch Otolaryngol Head Neck Surg. 1990;116:1159–62.

    Article  PubMed  Google Scholar 

  100. Berman B, Flores F. Recurrence rates of excised keloids treated with postoperative triamcinolone acetonide injections or interferon alfa-2 b injections. J Am Acad Dermatol. 1997;37:755–7.

    Article  CAS  PubMed  Google Scholar 

  101. Wong TW, Chiu HC, Yip KM. Intralesional interferon alpha-2 b has no effect in the treatment of keloids. Br J Dermatol. 1994;130:683–5.

    Article  CAS  PubMed  Google Scholar 

  102. Al-Khawajah MM. Failure of interferon-alpha 2 b in the treatment of mature keloids. Int J Dermatol. 1996;35:515–7.

    Article  CAS  PubMed  Google Scholar 

  103. Occleston NL, Fairlamb D, Hutchison J, O’Kane S, Ferguson MW. Avotermin for the improvement of scar appearance: a new pharmaceutical in a new therapeutic area. Expert Opin Investig Drugs. 2009;18:1231–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Teot, L., Otman, S., Brancati, A., Mittermayr, R. (2020). Burn Scar Treatment. In: Kamolz, LP., Jeschke, M.G., Horch, R.E., Küntscher, M., Brychta, P. (eds) Handbook of Burns Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-030-34511-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34511-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34510-5

  • Online ISBN: 978-3-030-34511-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics