Skip to main content

Exercise

  • Chapter
  • First Online:
Handbook of Burns Volume 2
  • 610 Accesses

Abstract

The benefits of exercise in reversing the negative consequences of bed rest have been well documented. Exercise after hospital discharge is also clearly critically important for facilitating maintenance of and/or improvements in physical function, lean body mass (LBM), and metabolic recovery following a major burn injury [1, 2]. However, the utility of exercise during critical care and acute care hospitalization following burn injury has not been fully described. The purpose of this chapter is to describe the importance of positioning, mobilization up out of bed, and aerobic exercise during the acute stage can be safely incorporated into the treatment plan following burn injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cucuzzo NA, Ferrando A, Herndon DN. The effects of exercise programming vs traditional outpatient therapy in the rehabilitation of severely burned children. J Burn Care Rehabil. 2001;22(3):214–20.

    Article  CAS  PubMed  Google Scholar 

  2. Suman OE, Herndon DN. Effects of cessation of a structured and supervised exercise conditioning program on lean mass and muscle strength in severely burned children. Arch Phys Med Rehabil. 2007;88(12 Suppl 2):S24–9.

    Article  PubMed  Google Scholar 

  3. Ishizaki Y, et al. Psychological effects of bed rest in young healthy subjects. Acta Physiol Scand Suppl. 1994;616:83–7.

    CAS  PubMed  Google Scholar 

  4. Convertino VA, et al. Cardiorespiratory responses to exercise after bed rest in men and women. Acta Astronaut. 1977;4(7–8):895–905.

    Article  CAS  PubMed  Google Scholar 

  5. Dirks ML, et al. One week of bed rest leads to substantial muscle atrophy and induces whole-body insulin resistance in the absence of skeletal muscle lipid accumulation. Diabetes. 2016;65(10):2862–75.

    Article  CAS  PubMed  Google Scholar 

  6. Buehlmeier J, et al. Markers of bone metabolism during 14 days of bed rest in young and older men. J Musculoskelet Neuronal Interact. 2017;17(1):399–408.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Convertino VA, Bloomfield SA, Greenleaf JE. An overview of the issues: physiological effects of bed rest and restricted physical activity. Med Sci Sports Exerc. 1997;29(2):187–90.

    Article  CAS  PubMed  Google Scholar 

  8. Kortebein P, et al. Effect of 10 days of bed rest on skeletal muscle in healthy older adults. JAMA. 2007;297(16):1772–4.

    Article  CAS  PubMed  Google Scholar 

  9. Schweickert WD, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet. 2009;373(9678):1874–82.

    Article  PubMed  Google Scholar 

  10. Stiller K. Safety issues that should be considered when mobilizing critically ill patients. Crit Care Clin. 2007;23(1):35–53.

    Article  PubMed  Google Scholar 

  11. Timmerman RA. A mobility protocol for critically ill adults. Dimens Crit Care Nurs. 2007;26(5):175–9; quiz 180–1.

    Article  PubMed  Google Scholar 

  12. Elledge ES, et al. Heterotopic bone formation in burned patients. J Trauma. 1988;28(5):684–7.

    Article  CAS  PubMed  Google Scholar 

  13. Higashimori H, Carlsen RC, Whetzel TP. Early excision of a full-thickness burn prevents peripheral nerve conduction deficits in mice. Plast Reconstr Surg. 2006;117(1):152–64.

    Article  CAS  PubMed  Google Scholar 

  14. Klein MB, et al. Extended time to wound closure is associated with increased risk of heterotopic ossification of the elbow. J Burn Care Res. 2007;28(3):447–50.

    Article  PubMed  Google Scholar 

  15. Smith K, Owens K. Physical and occupational therapy burn unit protocol—benefits and uses. J Burn Care Rehabil. 1985;6(6):506–8.

    Article  CAS  PubMed  Google Scholar 

  16. Schneider JC, et al. Contractures in burn injury: defining the problem. J Burn Care Res. 2006;27(4):508–14.

    Article  PubMed  Google Scholar 

  17. Richard R, et al. Burn rehabilitation and research: proceedings of a consensus summit. J Burn Care Res. 2009;30(4):543–73.

    Article  PubMed  Google Scholar 

  18. Helm PA, et al. Burn injury: rehabilitation management in 1982. Arch Phys Med Rehabil. 1982;63(1):6–16.

    CAS  PubMed  Google Scholar 

  19. Kottke FJ, Pauley DL, Ptak RA. The rationale for prolonged stretching for correction of shortening of connective tissue. Arch Phys Med Rehabil. 1966;47(6):345–52.

    CAS  PubMed  Google Scholar 

  20. Demling RH. The burn edema process: current concepts. J Burn Care Rehabil. 2005;26(3):207–27.

    PubMed  Google Scholar 

  21. Gabriel V, Kowalske KJ, Holavanahalli RK. Assessment of recovery from burn-related neuropathy by electrodiagnostic testing. J Burn Care Res. 2009;30(4):668–74.

    Article  PubMed  Google Scholar 

  22. Simons M, et al. Occupational therapy and physiotherapy for the patient with burns: principles and management guidelines. J Burn Care Rehabil. 2003;24(5):323–35; discussion 322.

    Article  CAS  PubMed  Google Scholar 

  23. Cheng S, Rogers JC. Changes in occupational role performance after a severe burn: a retrospective study. Am J Occup Ther. 1989;43(1):17–24.

    Article  CAS  PubMed  Google Scholar 

  24. Rondinelli RD, et al. Guides to the evaluation of permanent impairment. 6th ed. Chicago, IL: American Medical Association; 2008. p. 634, xxiv.

    Book  Google Scholar 

  25. Cronan T, Hammond J, Ward CG. The value of isokinetic exercise and testing in burn rehabilitation and determination of back-to-work status. J Burn Care Rehabil. 1990;11(3):224–7.

    Article  CAS  PubMed  Google Scholar 

  26. de Lateur BJ, et al. Augmented exercise in the treatment of deconditioning from major burn injury. Arch Phys Med Rehabil. 2007;88(12 Suppl 2):S18–23.

    Article  PubMed  Google Scholar 

  27. Hart DW, et al. Persistence of muscle catabolism after severe burn. Surgery. 2000;128(2):312–9.

    Article  CAS  PubMed  Google Scholar 

  28. St-Pierre DM, et al. Muscle strength in individuals with healed burns. Arch Phys Med Rehabil. 1998;79(2):155–61.

    Article  CAS  PubMed  Google Scholar 

  29. Harden NG, Luster SH. Rehabilitation considerations in the care of the acute burn patient. Crit Care Nurs Clin North Am. 1991;3(2):245–53.

    Article  CAS  PubMed  Google Scholar 

  30. Richard R, Staley M. Burn care and rehabilitation: principles and practice. Philadelphia, PA: F.A. Davis; 1994. p. 711, xxviii.

    Google Scholar 

  31. Celis MM, et al. Effect of a supervised exercise and physiotherapy program on surgical interventions in children with thermal injury. J Burn Care Rehabil. 2003;24(1):57–61; discussion 56.

    Article  PubMed  Google Scholar 

  32. Suman OE, et al. Effects of a 12-wk resistance exercise program on skeletal muscle strength in children with burn injuries. J Appl Physiol (1985). 2001;91(3):1168–75.

    Article  CAS  Google Scholar 

  33. Suman OE, Mlcak RP, Herndon DN. Effect of exercise training on pulmonary function in children with thermal injury. J Burn Care Rehabil. 2002;23(4):288–93; discussion 287.

    Article  PubMed  Google Scholar 

  34. Neugebauer CT, et al. Effects of a 12-week rehabilitation program with music & exercise groups on range of motion in young children with severe burns. J Burn Care Res. 2008;29(6):939–48.

    Article  PubMed  Google Scholar 

  35. Birke G, et al. Studies on burns. XII. Lipid metabolism, catecholamine excretion, basal metabolic rate, and water loss during treatment of burns with warm dry air. Acta Chir Scand. 1972;138(4):321–33.

    CAS  PubMed  Google Scholar 

  36. Wilmore DW, et al. Catecholamines: mediator of the hypermetabolic response to thermal injury. Ann Surg. 1974;180(4):653–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wilmore DW, et al. Effect of ambient temperature on heat production and heat loss in burn patients. J Appl Physiol. 1975;38(4):593–7.

    Article  CAS  PubMed  Google Scholar 

  38. Davis SL, et al. Impaired cutaneous vasodilation and sweating in grafted skin during whole-body heating. J Burn Care Res. 2007;28(3):427–34.

    Article  PubMed  Google Scholar 

  39. McGibbon B, et al. Thermal regulation in patients after the healing of large deep burns. Plast Reconstr Surg. 1973;52(2):164–70.

    Article  CAS  PubMed  Google Scholar 

  40. Shapiro Y, et al. Thermoregulatory responses of patients with extensive healed burns. J Appl Physiol. 1982;53(4):1019–22.

    Article  CAS  PubMed  Google Scholar 

  41. Pearson J, et al. Post junctional sudomotor and cutaneous vascular responses in noninjured skin following heat acclimation in burn survivors. J Burn Care Res. 2016;38(1):e284–92.

    Article  Google Scholar 

  42. Ganio MS, et al. Nongrafted skin area best predicts exercise core temperature responses in burned humans. Med Sci Sports Exerc. 2015;47(10):2224–32.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Schlader ZJ, et al. Heat acclimation improves heat exercise tolerance and heat dissipation in individuals with extensive skin grafts. J Appl Physiol (1985). 2015;119(1):69–76.

    Article  Google Scholar 

  44. Ganio MS, et al. Effect of human skin grafts on whole-body heat loss during exercise heat stress: a case report. J Burn Care Res. 2013;34(4):e263–70.

    Article  PubMed  Google Scholar 

  45. McEntire SJ, et al. Thermoregulation during exercise in severely burned children. Pediatr Rehabil. 2006;9(1):57–64.

    Article  CAS  PubMed  Google Scholar 

  46. McEntire SJ, et al. Absence of exertional hyperthermia in a 17-year-old boy with severe burns. J Burn Care Res. 2009;30(4):752–5.

    Article  PubMed  Google Scholar 

  47. Clayton RP, et al. Effects of different duration exercise programs in children with severe burns. Burns. 2016;

    Google Scholar 

  48. Hardee JP, et al. Early rehabilitative exercise training in the recovery from pediatric burn. Med Sci Sports Exerc. 2014;46(9):1710–6.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wurzer P, et al. Long-term effects of physical exercise during rehabilitation in patients with severe burns. Surgery. 2016;160(3):781–8.

    Article  PubMed  Google Scholar 

  50. Suman OE, et al. Effect of exogenous growth hormone and exercise on lean mass and muscle function in children with burns. J Appl Physiol (1985). 2003;94(6):2273–81.

    Article  CAS  Google Scholar 

  51. Pescatello LS, American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. 9th ed. Philadelphia, PA: Wolters Kluwer/Lippincott Williams & Wilkins Health; 2014. p. 456, xxiv.

    Google Scholar 

  52. Suman OE, Mlcak RP, Herndon DN. Effects of exogenous growth hormone on resting pulmonary function in children with thermal injury. J Burn Care Rehabil. 2004;25(3):287–93.

    Article  PubMed  Google Scholar 

  53. Adams RB, et al. Cardiovascular rehabilitation of patients with burns. J Burn Care Rehabil. 1990;11(3):246–55.

    Article  CAS  PubMed  Google Scholar 

  54. American Academy of Pediatrics Committee on Sports Medicine. Risks in distance running for children. Pediatrics. 1990;86(5):799–800.

    Google Scholar 

  55. Guy JA, Micheli LJ. Strength training for children and adolescents. J Am Acad Orthop Surg. 2001;9(1):29–36.

    Article  CAS  PubMed  Google Scholar 

  56. Gillett JG, et al. The impact of strength training on skeletal muscle morphology and architecture in children and adolescents with spastic cerebral palsy: a systematic review. Res Dev Disabil. 2016;56:183–96.

    Article  PubMed  Google Scholar 

  57. Barbieri D, Zaccagni L. Strength training for children and adolescents: benefits and risks. Coll Antropol. 2013;37(Suppl 2):219–25.

    PubMed  Google Scholar 

  58. Schranz N, Tomkinson G, Olds T. What is the effect of resistance training on the strength, body composition and psychosocial status of overweight and obese children and adolescents? A systematic review and meta-analysis. Sports Med. 2013;43(9):893–907.

    Article  PubMed  Google Scholar 

  59. Maeder M, et al. Impact of the exercise mode on exercise capacity: bicycle testing revisited. Chest. 2005;128(4):2804–11.

    Article  PubMed  Google Scholar 

  60. Myers J, et al. Recommendations for clinical exercise laboratories: a scientific statement from the american heart association. Circulation. 2009;119(24):3144–61.

    Article  PubMed  Google Scholar 

  61. Borg GA. Perceived exertion. Exerc Sport Sci Rev. 1974;2:131–53.

    Article  CAS  PubMed  Google Scholar 

  62. Roemmich JN, et al. Validity of PCERT and OMNI walk/run ratings of perceived exertion. Med Sci Sports Exerc. 2006;38(5):1014–9.

    Article  PubMed  Google Scholar 

  63. Peyer K, Pivarnik JM, Coe DP. The relationship among HRpeak, RERpeak, and VO2peak during treadmill testing in girls. Res Q Exerc Sport. 2011;82(4):685–92.

    Article  PubMed  Google Scholar 

  64. Howley ET, Bassett DR Jr, Welch HG. Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc. 1995;27(9):1292–301.

    Article  CAS  PubMed  Google Scholar 

  65. Rowland TW. Does peak VO2 reflect VO2max in children? Evidence from supramaximal testing. Med Sci Sports Exerc. 1993;25(6):689–93.

    Article  CAS  PubMed  Google Scholar 

  66. Howley ET. Type of activity: resistance, aerobic and leisure versus occupational physical activity. Med Sci Sports Exerc. 2001;33(6 Suppl):S364–9; discussion S419–20.

    Article  CAS  PubMed  Google Scholar 

  67. Foster C, et al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15(1):109–15.

    CAS  PubMed  Google Scholar 

  68. Loose BD, et al. Consistency of the counting talk test for exercise prescription. J Strength Cond Res. 2012;26(6):1701–7.

    Article  PubMed  Google Scholar 

  69. Heyward VH, Gibson AL, editors. Advanced fitness assessment and exercise prescription. 7th ed. Champaign, IL: Human Kinetics; 2014. p. 537, xiv.

    Google Scholar 

  70. Matecki S, et al. Maximal oxygen uptake in healthy children: factors of variation and available standards. Rev Mal Respir. 2001;18(5):499–506.

    CAS  PubMed  Google Scholar 

  71. Cooper DM, et al. Aerobic parameters of exercise as a function of body size during growth in children. J Appl Physiol Respir Environ Exerc Physiol. 1984;56(3):628–34.

    CAS  PubMed  Google Scholar 

  72. Porter C, et al. The role of exercise in the rehabilitation of patients with severe burns. Exerc Sport Sci Rev. 2015;43(1):34–40.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Behm DG, Button DC, Butt JC. Factors affecting force loss with prolonged stretching. Can J Appl Physiol. 2001;26(3):261–72.

    Article  CAS  PubMed  Google Scholar 

  74. Kokkonen J, Nelson AG, Cornwell A. Acute muscle stretching inhibits maximal strength performance. Res Q Exerc Sport. 1998;69(4):411–5.

    Article  CAS  PubMed  Google Scholar 

  75. American College of Sports Medicine Position Stand. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Med Sci Sports Exerc. 1998;30(6):975–91.

    Google Scholar 

  76. Haskell WL. Cardiovascular complications during exercise training of cardiac patients. Circulation. 1978;57(5):920–4.

    Article  CAS  PubMed  Google Scholar 

  77. Swain DP, American College of Sports Medicine and American College of Sports Medicine. ACSM’s resource manual for Guidelines for exercise testing and prescription. 7th ed. Philadelphia, PA: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2014. p. 862, xv.

    Google Scholar 

  78. Hodges PW, Richardson CA. Contraction of the abdominal muscles associated with movement of the lower limb. Phys Ther. 1997;77(2):132–42; discussion 142–4.

    Article  CAS  PubMed  Google Scholar 

  79. Hodges PW, Richardson CA. Relationship between limb movement speed and associated contraction of the trunk muscles. Ergonomics. 1997;40(11):1220–30.

    Article  CAS  PubMed  Google Scholar 

  80. Fleck SJ, Kraemer WJ. Designing resistance training programs. 3rd ed. Champaign, IL: Human Kinetics; 2004. p. 377, xiii.

    Google Scholar 

  81. Stone MH, Wilson GD. Resistive training and selected effects. Med Clin North Am. 1985;69(1):109–22.

    Article  CAS  PubMed  Google Scholar 

  82. Baechle TR, Earle RW. Weight training: steps to success. 4th ed. Champaign, IL: Human Kinetics; 2012. p. 215, xx.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar E. Suman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rivas, E., McEntire, S.J., Kowalske, K.J., Suman, O.E. (2020). Exercise. In: Kamolz, LP., Jeschke, M.G., Horch, R.E., Küntscher, M., Brychta, P. (eds) Handbook of Burns Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-030-34511-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34511-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34510-5

  • Online ISBN: 978-3-030-34511-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics