Skip to main content

Boolean Recombinase-Based Devices

  • 308 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 11934)

Abstract

This paper relates to a central problem in synthetic biology, which is that of designing Recombinase-based biological devices by matching a functional specification expressed as a Boolean function. This task is challenging as exploring the space of possibilities is typically unfeasible, and therefore many non-trivial design alternatives remain unexplored. Also, the issue has been so far regarded mainly from a practical perspective and is still lacking of formal foundations on which the definition of algorithms for assisting the biologists in their design tasks can be based. In this work, we present the first formal study of the problem, and give a formal semantics for a family of Recombinase-based biological devices. We then exhibit a set of semantic properties leading to the definition of representative devices, a notion that allows one to express infinitely large classes of design possibilities in a finite way. Building on this, we then provide a terminating algorithm for generating representative devices for n-input Boolean functions. An open online database of 18M design solutions for 4-inputs devices generated with our method has been released at http://recombinator.lirmm.fr.

Keywords

  • Boolean devices
  • Synthetic biology

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-34500-6_5
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-34500-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 1.

Notes

  1. 1.

    \(\varphi \) also denotes the Boolean function associated with the logic formula built with the inputs. For instance, \(\varphi _{(\lnot i_1 \wedge i_2)} = \{ 00\mapsto 0, 01\mapsto 1, 10\mapsto 0, 11\mapsto 0\}\).

References

  1. Astola, J., Stankovic, R.: Fundamentals of Switching Theory and Logic Design A Hands on Approach. Springer, Cham (2006). https://doi.org/10.1007/0-387-30311-1

    CrossRef  Google Scholar 

  2. Bischof, J., Maeda, R.K., Hediger, M., Karch, F., Basler, K.: An optimized transgenesis system for drosophila using germ-line-specific \(\varphi \)c31 integrases. Proc. Natl. Acad. Sci. 104(9), 3312–3317 (2007)

    CrossRef  Google Scholar 

  3. Bonnet, J., Yin, P., Ortiz, M.E., Subsoontorn, P., Endy, D.: Amplifying genetic logic gates. Science 340(6132), 599–603 (2013)

    CrossRef  Google Scholar 

  4. Chiu, T.Y., Jiang, J.H.R.: Logic synthesis of recombinase-based genetic circuits. Sci. Rep. 7(1), 12873 (2017)

    CrossRef  Google Scholar 

  5. Dueber, J.E., Yeh, B.J., Chak, K., Lim, W.A.: Reprogramming control of an allosteric signaling switch through modular recombination. Science 301(5641), 1904–1908 (2003)

    CrossRef  Google Scholar 

  6. Endy, D.: Foundations for engineering biology. Nature 438(7067), 449 (2005)

    CrossRef  Google Scholar 

  7. Guiziou, S., Pérution-Kihli, G., Ulliana, F., Leclère, M., Bonnet, J.: Exploring the design space of recombinase logic circuits. bioRxiv (2019). https://doi.org/10.1101/711374

  8. Guiziou, S., Ulliana, F., Moreau, V., Leclère, M., Bonnet, J.: An automated design framework for multicellular recombinase logic. ACS Synth. Biol. 7(5), 1406–1412 (2018)

    CrossRef  Google Scholar 

  9. Kumari, A., Pasini, P., Daunert, S.: Detection of bacterial quorum sensing n-acyl homoserine lactones in clinical samples. Anal. Bioanal. Chem. 391(5), 1619–1627 (2008)

    CrossRef  Google Scholar 

  10. Nielsen, A.A., et al.: Genetic circuit design automation. Science 352(6281), aac7341 (2016)

    CrossRef  Google Scholar 

  11. Wang, Y., Yau, Y.Y., Perkins-Balding, D., Thomson, J.G.: Recombinase technology: applications and possibilities. Plant Cell Rep. 30(3), 267–285 (2011). https://doi.org/10.1007/s00299-010-0938-1

    CrossRef  Google Scholar 

  12. Weinberg, B.H., et al.: Large-scale design of robust genetic circuits with multiple inputs and outputs for mammalian cells. Nat. Biotechnol. 35(5), 453 (2017)

    CrossRef  Google Scholar 

  13. Win, M.N., Smolke, C.D.: Higher-order cellular information processing with synthetic RNA devices. Science 322(5900), 456–460 (2008)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Leclère .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Pérution-Kihli, G., Guiziou, S., Ulliana, F., Leclère, M., Bonnet, J. (2019). Boolean Recombinase-Based Devices. In: Martín-Vide, C., Pond, G., Vega-Rodríguez, M. (eds) Theory and Practice of Natural Computing. TPNC 2019. Lecture Notes in Computer Science(), vol 11934. Springer, Cham. https://doi.org/10.1007/978-3-030-34500-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34500-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34499-3

  • Online ISBN: 978-3-030-34500-6

  • eBook Packages: Computer ScienceComputer Science (R0)