Skip to main content

Antibacterial Polymeric and Peptide Gels/Hydrogels to Prevent Biomaterial-Related Infections

Abstract

The emerging threat of antibiotic resistance in pathogenic microbes is a menace to public health. The situation is equally alarming so far as biomaterial-related infections resulting from implantation are concerned. Antibiotics were considered effective in treating bacterial infections and saved millions of lives from infection but the repeated use of antibiotics has led to the development of resistance in microbes. Several strategies have been developed to address the challenge of antibiotic resistance in bacteria. Examples include the use of antiseptics, antiadhesives, metal ions and nanoparticles, carbon nanotubes, graphene and graphene oxide, antimicrobial peptides, and antimicrobial polymers. Even though these approaches offer varying degree of success, they are also associated with serious limitations. Consequently, scientists have focused their efforts toward the development of self-assembled peptide and polymeric gels/hydrogels, as antibacterial biomaterials, to address the challenge of antibiotic resistance in bacteria. This chapter provides a critical review of the developments in the field of antibacterial self-assembled peptides and polymeric gels/hydrogels for treating biomaterial-related infections.

Keywords

  • Antibacterial
  • Antibiotic resistance
  • Bacterial infection
  • Biomaterial-related infection
  • Polymeric hydrogel
  • Self-assembled peptide gel

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

SiCl4:

Silicon tetrachloride

A. baumannii :

Acinetobacter baumannii

AG:

Agarose

AgNPs:

Silver nanoparticles

A-lys:

Acryloyl-lysine

AMPs:

Antimicrobial peptides

BMA:

n-butyl methacrylate

BP:

Bacterial polysaccharide

C. albicans :

Candida albicans

cfu/dm2:

Colony-forming units/decimeter square

cfu/mL:

Colony-forming units per milliliter

CH:

Chlorhexidine

CMC/ODex:

Carboxymethyl chitosan/oxidized dextran

CNF:

Carboxylated cellulose nanofiber

CTX:

Ceftriaxone sodium

DMSO:

Dimethyl sulfoxide

E. coli :

Escherichia coli

E. faecalis :

Enterococcus faecalis

EAK 16-II:

AEAEAKAKAEAEAKAK

EPL-MA:

Epsilon-poly-l-lysine-graft-methacrylamide

EPS:

Extracellular polymeric substances

F. solani :

Fusarium solani

FDA:

Food and Drug Administration USA

G:

Gelatin

GO:

Graphene oxide

h:

Hour

hMSCs:

Human mesenchymal stem cells

hRBCs:

Human red blood cells

HRTEM:

High-resolution transmission electron microscopy

K. pneumonia :

Klebsiella pneumonia

KLD-12:

Ac-KLDLKLDLKLDL-NH2

L. ivanovii :

Listeria ivanovii

M. smegmatis :

Mycobacterium smegmatis

M. tuberculosis :

Mycobacterium tuberculosis

MAX-1:

VKVKVKVKVDPPTKVKVKVKV-NH2

MDR:

Multidrug resistance

MRSA:

Methicillin-resistant S. aureus

MWNTs:

Multiwalled carbon nanotubes

NCG:

Natural cashew gum

NH007:

Boc-D-Phe-γ4-L-Phe-PEA

NH009:

Boc-L-Phe-γ4-L-Phe-PEA

NVP:

N-vinylpyrrolidone

P. aeruginosa :

Pseudomonas aeruginosa

P. gingivalis :

Porphyromonas gingivalis

P1:

Boc-AUDA-Phe-COOH

P2:

Boc-AUDA-Phg-COOH

pCBOH1:

Poly(2-((2-hydroxyethyl) (2-(methacryloyloxy) ethyl) (methyl) ammonio) acetate

pCBOH2:

Poly(2-(bis(2-hydroxyethyl) (2-(methacryloyloxy)ethyl) ammonio) acetate)

PDMAEMA:

Poly(2-dimethylamino) ethylmethacrylate

PDR:

Pandrug resistance

PEG:

Polyethylene glycol

PEGDA:

Poly(ethylene glycol) diacrylate

PES:

Poly(ether sulfone)

PET:

Polyethylene terephthalate

PF 127:

Pluronic F-127

PHMB:

Polyhexamethylene biguanide

PLLA-PEG-PLLA:

Poly(l-lactide)-b-poly(ethylene glycol)-b-poly(lactide)

PNIPAAm:

Poly(N-isopropylacrylamide)

QAC:

Quaternary ammonium compounds

QCS:

Quaternized chitosan

RBCs:

Red blood cells

rBMSC:

Rat bone mesenchymal stem cell

rGO:

Reduced graphene oxide

ROS:

Reactive oxygen species

S. aureus :

Staphylococcus aureus

S. epidermidis :

Staphylococcus epidermidis

S. mutans :

Streptococcus mutans

S. pyogenes :

Streptococcus pyogenes

SEM:

Scanning electron microscopy

SPAAC:

Strain-promoted alkyne–azide cycloaddition

SWCNTs:

Single-wall carbon nanotubes

UV:

Ultraviolet

WHO:

World Health Organization

XRD:

Extensively drug resistant

References

  1. (2008) The global burden of disease: 2004 update. World Health Organization, Geneva, Switzerland

    Google Scholar 

  2. Laxminarayan R, Chaudhury RR (2016) Antibiotic resistance in India: drivers and opportunities for action. PLoS Med 13(3):e1001974

    CrossRef  PubMed  PubMed Central  Google Scholar 

  3. Kumar SG, Adithan C, Harish B, Roy G, Malini A, Sujatha S (2013) Antimicrobial resistance in India: a review. J Nat Sci Biol Med 4(2):286

    CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Ventola CL (2015) The antibiotic resistance crisis. P&T 40(4):277–283

    Google Scholar 

  5. Gupta A, Mumtaz S, Li C-H, Hussain I, Rotello VM (2019) Combatting antibiotic-resistant bacteria using nanomaterials. Chem Soc Rev 48(2):415–427

    CrossRef  PubMed  PubMed Central  Google Scholar 

  6. Cooper IR (2015) Introduction to biomaterials and medical device-associated infections. In: Barnes L, Cooper IR (Eds) Biomaterials and Medical Device – Associated Infections. pp 3–17

    Google Scholar 

  7. Busscher HJ, van der Mei HC, Subbiahdoss G, Jutte PC, van den Dungen JJ, Zaat SA et al (2012) Biomaterial-associated infection: locating the finish line in the race for the surface. Sci Transl Med 4:153rv10

    CrossRef  PubMed  CAS  Google Scholar 

  8. Wolfmeier H, Pletzer D, Mansour SC, Hancock REW (2018) New perspectives in biofilm eradication. ACS Infect Dis 4:93–106

    CrossRef  CAS  PubMed  Google Scholar 

  9. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    CAS  PubMed  Google Scholar 

  10. Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199

    CrossRef  CAS  PubMed  Google Scholar 

  11. Roilides E, Walsh TJ, Simitsopoulou M, Katragkou A (2015) How biofilms evade host defenses. In: Mukherjee PK, Ghannoum M, Whiteley M, Parsek M (eds) Microbial biofilms, 2nd edn. American Society of Microbiology, pp 287–300

    Google Scholar 

  12. Boucher HW, Talbot GH, Bradley JS et al (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48(1):1–12

    CrossRef  PubMed  Google Scholar 

  13. Paramythiotou E, Routsi C (2016) Association between infections caused by multidrug-resistant gram-negative bacteria and mortality in critically ill patients. World J Crit Care Med 5(2):111

    CrossRef  PubMed  PubMed Central  Google Scholar 

  14. Ciofu O, Rojo-Molinero E, Macià MD, Oliver A (2017) Antibiotic treatment of biofilm infections. APMIS 125(4):304–319

    CrossRef  PubMed  Google Scholar 

  15. Deresinski S (2009) Vancomycin in combination with other antibiotics for the treatment of serious methicillin-resistant Staphylococcus aureus infections. Clin Infect Dis 49(7):1072–1079

    CrossRef  CAS  PubMed  Google Scholar 

  16. Gaynes R (2017) The discovery of Penicillin—new insights after more than 75 years of clinical use. Emerg Infect Dis 23(5):849–853

    CrossRef  PubMed Central  Google Scholar 

  17. Kapoor G, Saigal S, Elongavan A (2017) Action and resistance mechanisms of antibiotics: a guide for clinicians. J Anaesthesiol Clin Pharmacol 33(3):300

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  18. Petchiappan A, Chatterji D (2017) Antibiotic resistance: current perspectives. ACS Omega 2(10):7400–7409

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  19. Elbossaty WF (2017) Antibiotic drugs and multidrug resistance bacteria. Int J Pub Health Safe 2(3):3

    Google Scholar 

  20. Tangcharoensathien V, Sattayawutthipong W, Kanjanapimai S et al. (2017) Antimicrobial resistance: from global agenda to national strategic plan. Thailand Bull World Health Organ 95(8):599–603

    Google Scholar 

  21. Magiorakos A-P, Srinivasan A, Carey RB et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281

    CrossRef  CAS  PubMed  Google Scholar 

  22. Fleming A (1929) On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol 10(3):226–236

    CAS  PubMed Central  Google Scholar 

  23. Walsh W (2005) Introduction: antibiotic resistance. Chem Rev 105(2):391–394

    CrossRef  CAS  PubMed  Google Scholar 

  24. Gimeno M, Pinczowski P, Pérez M et al (2015) A controlled antibiotic release system to prevent orthopedic-implant associated infections: an in vitro study. Eur J Pharm Biopharm 96:264–271

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  25. Albright V, Zhuk I, Wang Y et al (2017) Self-defensive antibiotic-loaded layer-by-layer coatings: imaging of localized bacterial acidification and pH-triggering of antibiotic release. Acta Biomater 61:66–74

    CrossRef  CAS  PubMed  Google Scholar 

  26. (2007) Premarket notification [510(k)] submissions for medical devices that include antimicrobial agents—draft guidance for industry and FDA staff. 510:1–18

    Google Scholar 

  27. Science History Institute. (2017). Gerhard Domagk. https://www.sciencehistory.org/historical-profile/gerhard-domagk

  28. Mcdonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:33

    CrossRef  Google Scholar 

  29. Iqbal A (2012) Antimicrobial irrigants in the endodontic therapy. Int J Health Sci 6(2):1–7

    CrossRef  Google Scholar 

  30. Gadea R, Glibota N, Pérez Pulido R, Gálvez A, Ortega E (2017) Adaptation to biocides cetrimide and chlorhexidine in Bacteria from organic foods: association with tolerance to other antimicrobials and physical stresses. J Agric Food Chem 65(8):1758–1770

    CrossRef  CAS  PubMed  Google Scholar 

  31. Ong YL, Razatos A, Georgiou G, Sharma MM (1999) Adhesion forces between E. coli Bacteria and biomaterial surfaces. Langmuir 15(8):2719–2725

    CrossRef  CAS  Google Scholar 

  32. Thebault P, Jouenne T (2015) The battle against microbial pathogens: basic science, technological advances and educational programs. ISBN-13 Vol. 1: 978-84-942134-6-5

    Google Scholar 

  33. Dong B, Manolache S, Wong ACL, Denes FS (2011) Antifouling ability of polyethylene glycol of different molecular weights grafted onto polyester surfaces by cold plasma. Polym Bull 66(4):517–528

    CrossRef  CAS  Google Scholar 

  34. Rendueles O, Kaplan JB, Ghigo J-M (2013) Antibiofilm polysaccharides. Environ Microbiol 15(2):334–346

    CrossRef  CAS  PubMed  Google Scholar 

  35. Muszanska AK, Rochford ETJ, Gruszka A et al (2014) Antiadhesive polymer brush coating functionalized with antimicrobial and RGD peptides to reduce biofilm formation and enhance tissue integration. Biomacromolecules 15(6):2019–2026

    CrossRef  CAS  PubMed  Google Scholar 

  36. Jiang P, Li J, Han F, Duan G, Lu X, Gu Y et al (2011) Antibiofilm activity of an exopolysaccharide from marine bacterium Vibrio sp. QY101. PLoS One 6:e18514

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rendueles O, Travier L, Latour-Lambert P, Fontaine T, Magnus J, Denamur E et al (2011) Screening of Escherichia coli species biodiversity reveals new biofilm-associated antiadhesion polysaccharides. mBio 2:e00043–e00011

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  38. Qin Z, Yang L, Qu D, Molin S, Tolker-Nielsen T (2009) Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth, and disrupt established biofilms produced by Staphylococcus epidermidis. Microbiology 155:2148–2156

    CrossRef  CAS  PubMed  Google Scholar 

  39. Chernousova S, Epple M (2013) Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed 52(6):1636–1653

    CrossRef  CAS  Google Scholar 

  40. Rupp ME, Fitzgerald T, Marion N et al (2004) Effect of silver-coated urinary catheters: efficacy, cost-effectiveness, and antimicrobial resistance. Am J Infect Control 32(8):445–450

    CrossRef  PubMed  Google Scholar 

  41. Rigo C, Ferroni L, Tocco I et al (2013) Active silver nanoparticles for wound healing. Int J Mol Sci 14(3):4817–4840

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stevens KNJ, Croes S, Boersma RS et al (2011) Hydrophilic surface coatings with embedded biocidal silver nanoparticles and sodium heparin for central venous catheters. Biomaterials 32(5):1264–1269

    CrossRef  CAS  PubMed  Google Scholar 

  43. Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2(1):32

    CrossRef  Google Scholar 

  44. Matsumura Y, Yoshikata K, Kunisaki S-I, Tsuchido T (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69(7):4278–4281

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  45. Panáček A, Kvítek L, Smékalová M et al (2018) Bacterial resistance to silver nanoparticles and how to overcome it. Nat Nanotechnol 13(1):65–71

    CrossRef  PubMed  CAS  Google Scholar 

  46. Greulich C, Braun D, Peetsch A et al (2012) The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range. RSC Adv 2(17):6981

    CrossRef  CAS  Google Scholar 

  47. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 44:278–284

    CrossRef  CAS  Google Scholar 

  48. Ballo MKS, Rtimi S, Pulgarin C et al (2016) In vitro and in vivo effectiveness of an innovative silver-copper nanoparticle coating of catheters to prevent methicillin-resistant Staphylococcus aureus infection. Antimicrob Agents Chemother 60(9):5349–5356

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu R, Memarzadeh K, Chang B et al (2016) Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis. Sci Rep 6(1):29985

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chatterjee AK, Chakraborty R, Basu T (2014) Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 25(13):135101

    CrossRef  PubMed  CAS  Google Scholar 

  51. Casey AL, Adams D, Karpanen TJ et al (2010) Role of copper in reducing hospital environment contamination. J Hosp Infect 74(1):72–77

    CrossRef  CAS  PubMed  Google Scholar 

  52. Guo J, Gao S-H, Lu J, Bond PL, Verstraete W, Yuan Z (2017) Copper oxide nanoparticles induce lysogenic bacteriophage and metal-resistance genes in Pseudomonas aeruginosa PAO1. ACS Appl Mater Interfaces 9(27):22298–22307

    CrossRef  CAS  PubMed  Google Scholar 

  53. Pati R, Mehta RK, Mohanty S et al (2014) Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomedicine 10(6):1195–1208

    CrossRef  CAS  PubMed  Google Scholar 

  54. Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against campylobacter jejuni. Appl Environ Microbiol 77(7):2325–2331

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A 41(12):2699–2711

    CrossRef  CAS  Google Scholar 

  56. Siddiqi KS, Ur Rahman A, Tajuddin, Husen A (2018) Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res Lett 13:141

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  57. Li N, Su X, Lu Y (2015) Nanomaterial-based biosensors using dual transducing elements for solution phase detection. Analyst 140(9):2916–2943

    CrossRef  CAS  PubMed  Google Scholar 

  58. Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23(17):8670–8673

    CrossRef  CAS  PubMed  Google Scholar 

  59. Hirschfeld J, Akinoglu EM, Wirtz DC et al (2017) Long-term release of antibiotics by carbon nanotube-coated titanium alloy surfaces diminish biofilm formation by Staphylococcus epidermidis. Nanomedicine 13(4):1587–1593

    Google Scholar 

  60. Zardini HZ, Amiri A, Shanbedi M, Maghrebi M, Baniadam M (2012) Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method. Colloids Surf B: Biointerfaces 92:196–202

    CrossRef  CAS  PubMed  Google Scholar 

  61. Liu S, Wei L, Hao L et al (2009) Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3(12):3891–3902

    CrossRef  CAS  PubMed  Google Scholar 

  62. Yang F, Jiang Q, Xie W, Zhang Y (2017) Effects of multi-walled carbon nanotubes with various diameters on bacterial cellular membranes: cytotoxicity and adaptive mechanisms. Chemosphere 185:162–170

    CrossRef  CAS  PubMed  Google Scholar 

  63. Kang S, Herzberg M, Rodrigues DF, Elimelech M (2008) Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24(13):6409–6413

    CrossRef  CAS  PubMed  Google Scholar 

  64. Jia G, Wang H, Yan L et al (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39(5):1378–1383

    CrossRef  CAS  PubMed  Google Scholar 

  65. Hu W, Peng C, Luo W et al (2010) Graphene-based antibacterial paper. ACS Nano 4(7):4317–4323

    CrossRef  CAS  PubMed  Google Scholar 

  66. Li K, Wang C, Yan J et al (2018) Evaluation of the osteogenesis and osseointegration of titanium alloys coated with graphene: an in vivo study. Sci Rep 8(1):1843

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  67. Yadav N, Dubey A, Shukla S et al (2017) Graphene oxide-coated surface: inhibition of bacterial biofilm formation due to specific surface–interface interactions. ACS Omega 2(7):3070–3082

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  68. Akhavan O, Ghaderi E, Akhavan A (2012) Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials 33(32):8017–8025

    CrossRef  CAS  PubMed  Google Scholar 

  69. Pelin M, Fusco L, León V et al (2017) Differential cytotoxic effects of graphene and graphene oxide on skin keratinocytes. Sci Rep 7:40572

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hancock REW, Sahl H-G (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24(12):1551–1557

    CrossRef  CAS  PubMed  Google Scholar 

  71. Mahlapuu M, Håkansson J, Ringstad L, Björn C (2016) Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 6:194

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  72. Dean SN, Bishop BM, van Hoek ML (2011) Natural and synthetic cathelicidin peptides with anti-microbial and anti-biofilm activity against Staphylococcus aureus. BMC Microbiol 11(1):114

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yoshinari M, Kato T, Matsuzaka K, Hayakawa T, Shiba K (2010) Prevention of biofilm formation on titanium surfaces modified with conjugated molecules comprised of antimicrobial and titanium-binding peptides. Biofouling 26(1):103–110

    CrossRef  CAS  PubMed  Google Scholar 

  74. Gopal R, Kim YG, Lee JH et al (2014) Synergistic effects and antibiofilm properties of chimeric peptides against multidrug-resistant Acinetobacter baumannii strains. Antimicrob Agents Chemother 58(3):1622–1629

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  75. Lombana A, Raja Z, Casale S et al (2014) Temporin-SHa peptides grafted on gold surfaces display antibacterial activity. J Pept Sci 20(7):563–569

    Google Scholar 

  76. Godoy-Gallardo M, Mas-Moruno C, Fernández-Calderón MC et al (2014) Covalent immobilization of hLf1-11 peptide on a titanium surface reduces bacterial adhesion and biofilm formation. Acta Biomater 10(8):3522–3534

    CrossRef  CAS  PubMed  Google Scholar 

  77. Glinel K, Jonas AM, Jouenne T, Leprince J, Galas L, Huck WTS (2009) Antibacterial and antifouling polymer brushes incorporating antimicrobial peptide. Bioconjug Chem 20(1):71–77

    CrossRef  CAS  PubMed  Google Scholar 

  78. Etienne O, Picart C, Taddei C et al (2004) Multilayer polyelectrolyte films functionalized by insertion of defensin: a new approach to protection of implants from bacterial colonization. Antimicrob Agents Chemother 48(10):3662–3669

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  79. Guyomard A, Dé E, Jouenne T, Malandain J-J, Muller G, Glinel K (2008) Incorporation of a hydrophobic antibacterial peptide into amphiphilic polyelectrolyte multilayers: a bioinspired approach to prepare biocidal thin coatings. Adv Funct Mater 18(5):758–765

    CrossRef  CAS  Google Scholar 

  80. Shukla A, Fleming KE, Chuang HF et al (2010) Controlling the release of peptide antimicrobial agents from surfaces. Biomaterials 31(8):2348–2357

    CrossRef  CAS  PubMed  Google Scholar 

  81. Andrade CA (2016) Chemical immobilization of antimicrobial peptides on biomaterial surfaces. Front Biosci 8(1):129–142

    CrossRef  Google Scholar 

  82. Gao G, Lange D, Hilpert K et al (2011) The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials 32(16):3899–3909

    CrossRef  CAS  PubMed  Google Scholar 

  83. Humblot V, Yala J-F, Thebault P et al (2009) The antibacterial activity of Magainin I immobilized onto mixed thiols self-assembled monolayers. Biomaterials 30(21):3503–3512

    CrossRef  CAS  PubMed  Google Scholar 

  84. Yala J-F, Thebault P, Héquet A, Humblot V, Pradier C-M, Berjeaud J-M (2011) Elaboration of antibiofilm materials by chemical grafting of an antimicrobial peptide. Appl Microbiol Biotechnol 89(3):623–634

    CrossRef  CAS  PubMed  Google Scholar 

  85. Hilpert K, Elliott M, Jenssen H et al (2009) Screening and characterization of surface-tethered cationic peptides for antimicrobial activity. Chem Biol 16(1):58–69

    CrossRef  CAS  PubMed  Google Scholar 

  86. Onaizi SA, Leong SSJ (2011) Tethering antimicrobial peptides: current status and potential challenges. Biotechnol Adv 29(1):67–74

    CrossRef  CAS  PubMed  Google Scholar 

  87. Pal K, Banthia AK, Majumdar DK (2009) Polymeric hydrogels: characterization and biomedical applications. Des Monomers Polym 12(3):197–220

    CrossRef  CAS  Google Scholar 

  88. Siedenbiedel F, Tiller JC (2012) Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers 4(1):46–71

    CrossRef  CAS  Google Scholar 

  89. Cornell RJ, Donaruma LG (1965) 2-Methacryloxytropones. Intermediates for the synthesis of biologically active polymers. J Med Chem 8(3):388–390

    CrossRef  CAS  PubMed  Google Scholar 

  90. Panarin EF, Solovskii MV, Ekzemplyarov ON (1971) Synthesis and antimicrobial properties of polymers containing quaternary ammonium groups. Pharm Chem J 5(7):406–408

    CrossRef  Google Scholar 

  91. Kuroda K (2005) Amphiphilic polymethacrylate derivatives as antimicrobial agents. J Am Chem Soc 125(12):4128–4129

    CrossRef  CAS  Google Scholar 

  92. Kuroki A, Sangwan P, Qu Y et al (2017) Sequence control as a powerful tool for improving the selectivity of antimicrobial polymers. ACS Appl Mater Interfaces 9(46):40117–40126

    CrossRef  CAS  PubMed  Google Scholar 

  93. Lin J, Chen X, Chen C et al (2018) Durably antibacterial and bacterially antiadhesive cotton fabrics coated by cationic fluorinated polymers. ACS Appl Mater Interfaces 10(7):6124–6136

    CrossRef  CAS  PubMed  Google Scholar 

  94. Huang K-S, Yang C-H, Huang S-L, Chen C-Y, Lu Y-Y, Lin Y-S (2016) Recent advances in antimicrobial polymers: a mini-review. Int J Mol Sci 17(9):1578

    CrossRef  PubMed Central  CAS  Google Scholar 

  95. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

    CrossRef  Google Scholar 

  96. Ng VWL, Chan JMW, Sardon H et al (2014) Antimicrobial hydrogels: a new weapon in the arsenal against multidrug-resistant infections. Adv Drug Deliv Rev 78:46–62

    CrossRef  CAS  PubMed  Google Scholar 

  97. Eslahi N, Abdorahim M, Simchi A (2016) Smart polymeric hydrogels for cartilage tissue engineering: a review on the chemistry and biological functions. Biomacromolecules 17(11):3441–3463

    CrossRef  CAS  PubMed  Google Scholar 

  98. De Giglio E, Cometa S, Ricci MA et al (2011) Ciprofloxacin-modified electrosynthesized hydrogel coatings to prevent titanium-implant-associated infections. Acta Biomater 7(2):882–891

    CrossRef  PubMed  CAS  Google Scholar 

  99. Lakes AL, Peyyala R, Ebersole JL, Puleo DA, Hilt JZ, Dziubla TD (2014) Synthesis and characterization of an antibacterial hydrogel containing covalently bound vancomycin. Biomacromolecules 15(8):3009–3018

    CrossRef  CAS  PubMed  Google Scholar 

  100. Wu F, Meng G, He J, Wu Y, Wu F, Gu Z (2014) Antibiotic-loaded chitosan hydrogel with superior dual functions: antibacterial efficacy and osteoblastic cell responses. ACS Appl Mater Interfaces 6(13):10005–10013

    CrossRef  CAS  PubMed  Google Scholar 

  101. Qi X, Wei W, Li J et al (2017) Design of Salecan-containing semi-IPN hydrogel for amoxicillin delivery. Mater Sci Eng C 75:487–494

    CrossRef  CAS  Google Scholar 

  102. Zhang Y, Zhang J, Chen M, Gong H, Thamphiwatana S, Eckmann L, Gao W, Zhnag L (2016) A bioadhesive nanoparticle−hydrogel hybrid system for localized antimicrobial drug delivery. ACS Appl Mater Interfaces 8:18367–18374

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ng VWL, Ke X, Lee ALZ, Hedrick JL, Yang YY (2013) Synergistic co-delivery of membrane-disrupting polymers with commercial antibiotics against highly opportunistic bacteria. Adv Mater 25(46):6730–6736

    CrossRef  CAS  PubMed  Google Scholar 

  104. Shi Y, Truong VX, Kulkarni K et al (2015) Light-triggered release of ciprofloxacin from an in situ forming click hydrogel for antibacterial wound dressings. J Mater Chem B 3(45):8771–8774

    CrossRef  CAS  PubMed  Google Scholar 

  105. ter Boo G-JA, Arens D, Metsemakers W-J et al (2016) Injectable gentamicin-loaded thermo-responsive hyaluronic acid derivative prevents infection in a rabbit model. Acta Biomater 43:185–194

    CrossRef  PubMed  CAS  Google Scholar 

  106. Li Z, He C, Yuan B, Dong X, Chen X (2017) Injectable polysaccharide hydrogels as biocompatible platforms for localized and sustained delivery of antibiotics for preventing local infections. Macromol Biosci 17(4):1600347

    CrossRef  CAS  Google Scholar 

  107. Hu J, Quan Y, Lai Y et al (2017) A smart aminoglycoside hydrogel with tunable gel degradation, on-demand drug release, and high antibacterial activity. J Control Release 247:145–152

    CrossRef  CAS  PubMed  Google Scholar 

  108. Hoque J, Bhattacharjee B, Prakash RG, Paramanandham K, Haldar J (2018) Dual function injectable hydrogel for controlled release of antibiotic and local antibacterial therapy. Biomacromolecules 19(2):267–278

    CrossRef  CAS  PubMed  Google Scholar 

  109. Varaprasad K, Mohan YM, Vimala K, Mohana Raju K (2011) Synthesis and characterization of hydrogel-silver nanoparticle-curcumin composites for wound dressing and antibacterial application. J Appl Polym Sci 121(2):784–796

    CrossRef  CAS  Google Scholar 

  110. González-Sánchez MI, Perni S, Tommasi G et al (2015) Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications. Mater Sci Eng C 50:332–340

    CrossRef  CAS  Google Scholar 

  111. Noimark S, Weiner J, Noor N et al (2015) Dual-mechanism antimicrobial polymer-ZnO nanoparticle and crystal violet-encapsulated silicone. Adv Funct Mater 25(9):1367–1373

    CrossRef  CAS  Google Scholar 

  112. GhavamiNejad A, Park CH, Kim CS (2016) In situ synthesis of antimicrobial silver nanoparticles within antifouling Zwitterionic hydrogels by Catecholic Redox chemistry for wound healing application. Biomacromolecules 17(3):1213–1223

    CrossRef  CAS  PubMed  Google Scholar 

  113. Lustosa A, de Jesus Oliveira A, Quelemes P et al (2017) In situ synthesis of silver nanoparticles in a hydrogel of Carboxymethyl cellulose with Phthalated-cashew gum as a promising antibacterial and healing agent. Int J Mol Sci 18(11):2399

    CrossRef  PubMed Central  CAS  Google Scholar 

  114. He M, Wang Q, Wang R, Xie Y, Zhao W, Zhao C (2017) Design of antibacterial poly(ether sulfone) membranes via covalently attaching hydrogel thin layers loaded with Ag nanoparticles. ACS Appl Mater Interfaces 9(19):15962–15974

    CrossRef  CAS  PubMed  Google Scholar 

  115. Yang W, Fortunati E, Bertoglio F et al (2018) Polyvinyl alcohol/chitosan hydrogels with enhanced antioxidant and antibacterial properties induced by lignin nanoparticles. Carbohydr Polym 181:275–284

    CrossRef  CAS  PubMed  Google Scholar 

  116. Liu R, Dai L, Si C, Zeng Z (2018) Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers. Carbohydr Polym 195:63–70

    CrossRef  CAS  PubMed  Google Scholar 

  117. Richards S-J, Isufi K, Wilkins LE, Lipecki J, Fullam E, Gibson MI (2018) Multivalent antimicrobial polymer nanoparticles target mycobacteria and Gram-negative Bacteria by distinct mechanisms. Biomacromolecules 19(1):256–264

    CrossRef  CAS  PubMed  Google Scholar 

  118. Jiang B, Larson JC, Drapala PW, Pérez-Luna VH, Kang-Mieler JJ, Brey EM (2012) Investigation of lysine acrylate containing poly(N-isopropylacrylamide) hydrogels as wound dressings in normal and infected wounds. J Biomed Mater Res B Appl Biomater 100B(3):668–676

    CrossRef  CAS  Google Scholar 

  119. Laverty G, Gorman SP, Gilmore BF (2012) Antimicrobial peptide incorporated poly(2-hydroxyethyl methacrylate) hydrogels for the prevention of Staphylococcus epidermidis-associated biomaterial infections. J Biomed Mater Res A 100A(7):1803–1814

    CrossRef  CAS  Google Scholar 

  120. Buhrman JS, Cook LC, Rayahin JE, Federle MJ, Gemeinhart RA (2013) Proteolytically activated antibacterial hydrogel microspheres. J Control Release 171(3):288–295

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  121. Du H, Wang Y, Yao X et al (2016) Injectable cationic hydrogels with high antibacterial activity and low toxicity. Polym Chem 7(36):5620–5624

    CrossRef  CAS  Google Scholar 

  122. Aziz MA, Cabral JD, Brooks HJL, Moratti SC, Hanton LR (2012) Antimicrobial properties of a chitosan dextran-based hydrogel for surgical use. Antimicrob Agents Chemother 56(1):280–287

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  123. Li P, Poon YF, Li W et al (2011) A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat Mater 10(2):149–156

    CrossRef  CAS  PubMed  Google Scholar 

  124. Tsao CT, Chang CH, Lin YY et al (2011) Evaluation of chitosan/γ-poly (glutamic acid) polyelectrolyte complex for wound dressing materials. Carbohydr Polym 84(2):812–819

    CrossRef  CAS  Google Scholar 

  125. Li M, Mitra D, Kang E-T, Lau T, Chiong E, Neoh KG (2017) Thiol-ol chemistry for grafting of natural polymers to form highly stable and efficacious antibacterial coatings. ACS Appl Mater Interfaces 9(2):1847–1857

    CrossRef  CAS  PubMed  Google Scholar 

  126. Mukherjee I, Ghosh A, Bhadury P, De P (2017) Side-chain amino acid-based cationic antibacterial polymers: investigating the morphological switching of a polymer-treated bacterial cell. ACS Omega 2(4):1633–1644

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mukherjee I, Ghosh A, Bhadury P, De P (2018) Leucine-based polymer architecture-induced antimicrobial properties and bacterial cell morphology switching. ACS Omega 3(1):769–780

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  128. Liu SQ, Yang C, Huang Y et al (2012) Antimicrobial and antifouling hydrogels formed in situ from polycarbonate and poly (ethylene glycol) via Michael addition. Adv Mater 24(48):6484–6489

    CrossRef  CAS  PubMed  Google Scholar 

  129. Li Y, Fukushima K, Coady DJ et al (2013) Broad-spectrum antimicrobial and biofilm-disrupting hydrogels: stereocomplex-driven supramolecular assemblies. Angew Chem Int Ed 52(2):674–678

    CrossRef  CAS  Google Scholar 

  130. Cao B, Tang Q, Li L et al (2013) Switchable antimicrobial and antifouling hydrogels with enhanced mechanical properties. Adv Healthc Mater 2(8):1096–1102

    CrossRef  CAS  PubMed  Google Scholar 

  131. Gaetano G, Giuseppe P, Salvatore PF, Susanna M, Sara S, Luca RC (2018) Hyaluronic-based antibacterial hydrogel coating for implantable biomaterials in orthopedics and trauma: from basic research to clinical applications. In: Haider S, Haider A (eds) Hydrogels. InTech

    Google Scholar 

  132. Habibi N, Kamaly N, Memic A, Shafiee H (2016) Self-assembled peptide-based nanostructures: smart nanomaterials toward targeted drug delivery. Nano Today 11(1):41–60

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang S, Lockshin C, Herbert A, Winter E, Rich A (1992) Zuotin, a putative Z-DNA binding protein in Saccharomyces cerevisiae. EMBO J 11(10):3787–3796

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  134. Holmest T, Lockshin C, Rich A (1993) Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci U S A 90(8):3334–3338

    CrossRef  Google Scholar 

  135. Zhang S, Holmes TC, DiPersio CM, Hynes RO, Su X, Rich A (1995) Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials 16(18):1385–1393

    CrossRef  PubMed  Google Scholar 

  136. Zhang S, Lockshin C, Cook R, Rich A (1994) Unusually stable β-sheet formation in an ionic self-complementary oligopeptide. Biopolymers 34(5):663–672

    CrossRef  CAS  PubMed  Google Scholar 

  137. Kisiday J, Jin M, Kurz B et al (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci 99(15):9996–10001

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  138. Salick DA, Kretsinger JK, Pochan DJ, Schneider JP (2007) Inherent antibacterial activity of a peptide-based β-hairpin hydrogel. J Am Chem Soc 129(47):14793–14799

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  139. Salick DA, Pochan DJ, Schneider JP (2009) Design of an Injectable β-hairpin peptide hydrogel that kills methicillin-resistant Staphylococcus aureus. Adv Mater 21(41):4120–4123

    CrossRef  CAS  Google Scholar 

  140. Veiga AS, Sinthuvanich C, Gaspar D, Franquelim HG, Castanho MARB, Schneider JP (2012) Arginine-rich self-assembling peptides as potent antibacterial gels. Biomaterials 33(35):8907–8916

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhou C, Li P, Qi X et al (2011) A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-l-lysine. Biomaterials 32(11):2704–2712

    CrossRef  CAS  PubMed  Google Scholar 

  142. Liu Y, Yang Y, Wang C, Zhao X (2013) Stimuli-responsive self-assembling peptides made from antibacterial peptides. Nanoscale 5(14):6413

    CrossRef  CAS  PubMed  Google Scholar 

  143. Wan Y, Liu L, Yuan S, Sun J, Li Z (2017) pH-responsive peptide supramolecular hydrogels with antibacterial activity. Langmuir 33(13):3234–3240

    CrossRef  CAS  PubMed  Google Scholar 

  144. Debnath S, Shome A, Das D, Das PK (2010) Hydrogelation through self-assembly of Fmoc-peptide functionalized cationic amphiphiles: potent antibacterial agent. J Phys Chem B 114(13):4407–4415

    CrossRef  CAS  PubMed  Google Scholar 

  145. Laverty G, McCloskey AP, Gilmore BF, Jones DS, Zhou J, Xu B (2014) Ultrashort cationic naphthalene-derived self-assembled peptides as antimicrobial nanomaterials. Biomacromolecules 15(9):3429–3439

    CrossRef  CAS  PubMed  Google Scholar 

  146. McCloskey AP, Draper ER, Gilmore BF, Laverty G (2017) Ultrashort self-assembling Fmoc-peptide gelators for anti-infective biomaterial applications: Fmoc-peptides demonstrate selective activity against biofilms. J Pept Sci 23(2):131–140

    CrossRef  CAS  PubMed  Google Scholar 

  147. Baral A, Roy S, Ghosh S, Hermida-Merino D, Hamley IW, Banerjee A (2016) A peptide-based mechano-sensitive, proteolytically stable hydrogel with remarkable antibacterial properties. Langmuir 32(7):1836–1845

    CrossRef  CAS  PubMed  Google Scholar 

  148. Wani NA, Singh G, Shankar S, Sharma A, Katoch M, Rai R (2017) Short hybrid peptides incorporating β- and γ-amino acids as antimicrobial agents. Peptides 97:46–53

    CrossRef  CAS  PubMed  Google Scholar 

  149. Malhotra K, Shankar S, Rai R, Singh Y (2018) Broad-spectrum antibacterial activity of proteolytically stable self-assembled αγ-hybrid peptide gels. Biomacromolecules 19:782–792

    CrossRef  CAS  PubMed  Google Scholar 

  150. Malhotra K, Shankar S, Rai R, Singh Y. Design, characterization, and evaluation of antibacterial gels, Boc-D-Phe-γ4-L-Phe-PEA/chitosan and Boc-L-Phe-γ4-L-Phe-PEA/chitosan, for biomaterial-related infections. Unpublished work

    Google Scholar 

  151. Adak A, Ghosh S, Gupta V, Ghosh S (2019) Biocompatible lipopeptide-based antibacterial hydrogel. Biomacromolecules 20(5):1889–1898

    CrossRef  CAS  PubMed  Google Scholar 

  152. Gahane AY, Ranjan P, Singh V et al (2018) Fmoc-phenylalanine displays antibacterial activity against Gram-positive bacteria in gel and solution phases. Soft Matter 14(12):2234–2244

    CrossRef  CAS  PubMed  Google Scholar 

  153. Romanò CL, Tsuchiya H, Morelli I, Battaglia AG, Drago L (2019) Antibacterial coating of implants: are we missing something? Bone Joint Res 8:199–206

    CrossRef  PubMed  PubMed Central  Google Scholar 

  154. Santos M, Fonseca A, Mendonça P, Branco R, Serra A, Morais P et al (2016) Recent developments in antimicrobial polymers: a review. Materials 9:599

    CrossRef  PubMed Central  CAS  Google Scholar 

  155. Huang R, Qi W, Feng L, Su R, He Z (2011) Self-assembling peptide–polysaccharide hybrid hydrogel as a potential carrier for drug delivery. Soft Matter 7:6222

    CrossRef  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge our students (PhD, MSc, and MTech) and colleagues who contributed to this work and the financial support to YS from the CSIR, New Delhi (grant # 02(0245)/15/EMR-II) and SERB, New Delhi (grant # EMR/2017/000045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yashveer Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malhotra, K., Singh, Y. (2020). Antibacterial Polymeric and Peptide Gels/Hydrogels to Prevent Biomaterial-Related Infections. In: Li, B., Moriarty, T., Webster, T., Xing, M. (eds) Racing for the Surface. Springer, Cham. https://doi.org/10.1007/978-3-030-34475-7_23

Download citation