Abstract
The emerging threat of antibiotic resistance in pathogenic microbes is a menace to public health. The situation is equally alarming so far as biomaterial-related infections resulting from implantation are concerned. Antibiotics were considered effective in treating bacterial infections and saved millions of lives from infection but the repeated use of antibiotics has led to the development of resistance in microbes. Several strategies have been developed to address the challenge of antibiotic resistance in bacteria. Examples include the use of antiseptics, antiadhesives, metal ions and nanoparticles, carbon nanotubes, graphene and graphene oxide, antimicrobial peptides, and antimicrobial polymers. Even though these approaches offer varying degree of success, they are also associated with serious limitations. Consequently, scientists have focused their efforts toward the development of self-assembled peptide and polymeric gels/hydrogels, as antibacterial biomaterials, to address the challenge of antibiotic resistance in bacteria. This chapter provides a critical review of the developments in the field of antibacterial self-assembled peptides and polymeric gels/hydrogels for treating biomaterial-related infections.
Keywords
- Antibacterial
- Antibiotic resistance
- Bacterial infection
- Biomaterial-related infection
- Polymeric hydrogel
- Self-assembled peptide gel
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsAbbreviations
- SiCl4:
-
Silicon tetrachloride
- A. baumannii :
-
Acinetobacter baumannii
- AG:
-
Agarose
- AgNPs:
-
Silver nanoparticles
- A-lys:
-
Acryloyl-lysine
- AMPs:
-
Antimicrobial peptides
- BMA:
-
n-butyl methacrylate
- BP:
-
Bacterial polysaccharide
- C. albicans :
-
Candida albicans
- cfu/dm2:
-
Colony-forming units/decimeter square
- cfu/mL:
-
Colony-forming units per milliliter
- CH:
-
Chlorhexidine
- CMC/ODex:
-
Carboxymethyl chitosan/oxidized dextran
- CNF:
-
Carboxylated cellulose nanofiber
- CTX:
-
Ceftriaxone sodium
- DMSO:
-
Dimethyl sulfoxide
- E. coli :
-
Escherichia coli
- E. faecalis :
-
Enterococcus faecalis
- EAK 16-II:
-
AEAEAKAKAEAEAKAK
- EPL-MA:
-
Epsilon-poly-l-lysine-graft-methacrylamide
- EPS:
-
Extracellular polymeric substances
- F. solani :
-
Fusarium solani
- FDA:
-
Food and Drug Administration USA
- G:
-
Gelatin
- GO:
-
Graphene oxide
- h:
-
Hour
- hMSCs:
-
Human mesenchymal stem cells
- hRBCs:
-
Human red blood cells
- HRTEM:
-
High-resolution transmission electron microscopy
- K. pneumonia :
-
Klebsiella pneumonia
- KLD-12:
-
Ac-KLDLKLDLKLDL-NH2
- L. ivanovii :
-
Listeria ivanovii
- M. smegmatis :
-
Mycobacterium smegmatis
- M. tuberculosis :
-
Mycobacterium tuberculosis
- MAX-1:
-
VKVKVKVKVDPPTKVKVKVKV-NH2
- MDR:
-
Multidrug resistance
- MRSA:
-
Methicillin-resistant S. aureus
- MWNTs:
-
Multiwalled carbon nanotubes
- NCG:
-
Natural cashew gum
- NH007:
-
Boc-D-Phe-γ4-L-Phe-PEA
- NH009:
-
Boc-L-Phe-γ4-L-Phe-PEA
- NVP:
-
N-vinylpyrrolidone
- P. aeruginosa :
-
Pseudomonas aeruginosa
- P. gingivalis :
-
Porphyromonas gingivalis
- P1:
-
Boc-AUDA-Phe-COOH
- P2:
-
Boc-AUDA-Phg-COOH
- pCBOH1:
-
Poly(2-((2-hydroxyethyl) (2-(methacryloyloxy) ethyl) (methyl) ammonio) acetate
- pCBOH2:
-
Poly(2-(bis(2-hydroxyethyl) (2-(methacryloyloxy)ethyl) ammonio) acetate)
- PDMAEMA:
-
Poly(2-dimethylamino) ethylmethacrylate
- PDR:
-
Pandrug resistance
- PEG:
-
Polyethylene glycol
- PEGDA:
-
Poly(ethylene glycol) diacrylate
- PES:
-
Poly(ether sulfone)
- PET:
-
Polyethylene terephthalate
- PF 127:
-
Pluronic F-127
- PHMB:
-
Polyhexamethylene biguanide
- PLLA-PEG-PLLA:
-
Poly(l-lactide)-b-poly(ethylene glycol)-b-poly(lactide)
- PNIPAAm:
-
Poly(N-isopropylacrylamide)
- QAC:
-
Quaternary ammonium compounds
- QCS:
-
Quaternized chitosan
- RBCs:
-
Red blood cells
- rBMSC:
-
Rat bone mesenchymal stem cell
- rGO:
-
Reduced graphene oxide
- ROS:
-
Reactive oxygen species
- S. aureus :
-
Staphylococcus aureus
- S. epidermidis :
-
Staphylococcus epidermidis
- S. mutans :
-
Streptococcus mutans
- S. pyogenes :
-
Streptococcus pyogenes
- SEM:
-
Scanning electron microscopy
- SPAAC:
-
Strain-promoted alkyne–azide cycloaddition
- SWCNTs:
-
Single-wall carbon nanotubes
- UV:
-
Ultraviolet
- WHO:
-
World Health Organization
- XRD:
-
Extensively drug resistant
References
(2008) The global burden of disease: 2004 update. World Health Organization, Geneva, Switzerland
Laxminarayan R, Chaudhury RR (2016) Antibiotic resistance in India: drivers and opportunities for action. PLoS Med 13(3):e1001974
Kumar SG, Adithan C, Harish B, Roy G, Malini A, Sujatha S (2013) Antimicrobial resistance in India: a review. J Nat Sci Biol Med 4(2):286
Ventola CL (2015) The antibiotic resistance crisis. P&T 40(4):277–283
Gupta A, Mumtaz S, Li C-H, Hussain I, Rotello VM (2019) Combatting antibiotic-resistant bacteria using nanomaterials. Chem Soc Rev 48(2):415–427
Cooper IR (2015) Introduction to biomaterials and medical device-associated infections. In: Barnes L, Cooper IR (Eds) Biomaterials and Medical Device – Associated Infections. pp 3–17
Busscher HJ, van der Mei HC, Subbiahdoss G, Jutte PC, van den Dungen JJ, Zaat SA et al (2012) Biomaterial-associated infection: locating the finish line in the race for the surface. Sci Transl Med 4:153rv10
Wolfmeier H, Pletzer D, Mansour SC, Hancock REW (2018) New perspectives in biofilm eradication. ACS Infect Dis 4:93–106
Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633
Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199
Roilides E, Walsh TJ, Simitsopoulou M, Katragkou A (2015) How biofilms evade host defenses. In: Mukherjee PK, Ghannoum M, Whiteley M, Parsek M (eds) Microbial biofilms, 2nd edn. American Society of Microbiology, pp 287–300
Boucher HW, Talbot GH, Bradley JS et al (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48(1):1–12
Paramythiotou E, Routsi C (2016) Association between infections caused by multidrug-resistant gram-negative bacteria and mortality in critically ill patients. World J Crit Care Med 5(2):111
Ciofu O, Rojo-Molinero E, Macià MD, Oliver A (2017) Antibiotic treatment of biofilm infections. APMIS 125(4):304–319
Deresinski S (2009) Vancomycin in combination with other antibiotics for the treatment of serious methicillin-resistant Staphylococcus aureus infections. Clin Infect Dis 49(7):1072–1079
Gaynes R (2017) The discovery of Penicillin—new insights after more than 75 years of clinical use. Emerg Infect Dis 23(5):849–853
Kapoor G, Saigal S, Elongavan A (2017) Action and resistance mechanisms of antibiotics: a guide for clinicians. J Anaesthesiol Clin Pharmacol 33(3):300
Petchiappan A, Chatterji D (2017) Antibiotic resistance: current perspectives. ACS Omega 2(10):7400–7409
Elbossaty WF (2017) Antibiotic drugs and multidrug resistance bacteria. Int J Pub Health Safe 2(3):3
Tangcharoensathien V, Sattayawutthipong W, Kanjanapimai S et al. (2017) Antimicrobial resistance: from global agenda to national strategic plan. Thailand Bull World Health Organ 95(8):599–603
Magiorakos A-P, Srinivasan A, Carey RB et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281
Fleming A (1929) On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol 10(3):226–236
Walsh W (2005) Introduction: antibiotic resistance. Chem Rev 105(2):391–394
Gimeno M, Pinczowski P, Pérez M et al (2015) A controlled antibiotic release system to prevent orthopedic-implant associated infections: an in vitro study. Eur J Pharm Biopharm 96:264–271
Albright V, Zhuk I, Wang Y et al (2017) Self-defensive antibiotic-loaded layer-by-layer coatings: imaging of localized bacterial acidification and pH-triggering of antibiotic release. Acta Biomater 61:66–74
(2007) Premarket notification [510(k)] submissions for medical devices that include antimicrobial agents—draft guidance for industry and FDA staff. 510:1–18
Science History Institute. (2017). Gerhard Domagk. https://www.sciencehistory.org/historical-profile/gerhard-domagk
Mcdonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:33
Iqbal A (2012) Antimicrobial irrigants in the endodontic therapy. Int J Health Sci 6(2):1–7
Gadea R, Glibota N, Pérez Pulido R, Gálvez A, Ortega E (2017) Adaptation to biocides cetrimide and chlorhexidine in Bacteria from organic foods: association with tolerance to other antimicrobials and physical stresses. J Agric Food Chem 65(8):1758–1770
Ong YL, Razatos A, Georgiou G, Sharma MM (1999) Adhesion forces between E. coli Bacteria and biomaterial surfaces. Langmuir 15(8):2719–2725
Thebault P, Jouenne T (2015) The battle against microbial pathogens: basic science, technological advances and educational programs. ISBN-13 Vol. 1: 978-84-942134-6-5
Dong B, Manolache S, Wong ACL, Denes FS (2011) Antifouling ability of polyethylene glycol of different molecular weights grafted onto polyester surfaces by cold plasma. Polym Bull 66(4):517–528
Rendueles O, Kaplan JB, Ghigo J-M (2013) Antibiofilm polysaccharides. Environ Microbiol 15(2):334–346
Muszanska AK, Rochford ETJ, Gruszka A et al (2014) Antiadhesive polymer brush coating functionalized with antimicrobial and RGD peptides to reduce biofilm formation and enhance tissue integration. Biomacromolecules 15(6):2019–2026
Jiang P, Li J, Han F, Duan G, Lu X, Gu Y et al (2011) Antibiofilm activity of an exopolysaccharide from marine bacterium Vibrio sp. QY101. PLoS One 6:e18514
Rendueles O, Travier L, Latour-Lambert P, Fontaine T, Magnus J, Denamur E et al (2011) Screening of Escherichia coli species biodiversity reveals new biofilm-associated antiadhesion polysaccharides. mBio 2:e00043–e00011
Qin Z, Yang L, Qu D, Molin S, Tolker-Nielsen T (2009) Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth, and disrupt established biofilms produced by Staphylococcus epidermidis. Microbiology 155:2148–2156
Chernousova S, Epple M (2013) Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed 52(6):1636–1653
Rupp ME, Fitzgerald T, Marion N et al (2004) Effect of silver-coated urinary catheters: efficacy, cost-effectiveness, and antimicrobial resistance. Am J Infect Control 32(8):445–450
Rigo C, Ferroni L, Tocco I et al (2013) Active silver nanoparticles for wound healing. Int J Mol Sci 14(3):4817–4840
Stevens KNJ, Croes S, Boersma RS et al (2011) Hydrophilic surface coatings with embedded biocidal silver nanoparticles and sodium heparin for central venous catheters. Biomaterials 32(5):1264–1269
Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2(1):32
Matsumura Y, Yoshikata K, Kunisaki S-I, Tsuchido T (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69(7):4278–4281
Panáček A, Kvítek L, Smékalová M et al (2018) Bacterial resistance to silver nanoparticles and how to overcome it. Nat Nanotechnol 13(1):65–71
Greulich C, Braun D, Peetsch A et al (2012) The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range. RSC Adv 2(17):6981
Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 44:278–284
Ballo MKS, Rtimi S, Pulgarin C et al (2016) In vitro and in vivo effectiveness of an innovative silver-copper nanoparticle coating of catheters to prevent methicillin-resistant Staphylococcus aureus infection. Antimicrob Agents Chemother 60(9):5349–5356
Liu R, Memarzadeh K, Chang B et al (2016) Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis. Sci Rep 6(1):29985
Chatterjee AK, Chakraborty R, Basu T (2014) Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 25(13):135101
Casey AL, Adams D, Karpanen TJ et al (2010) Role of copper in reducing hospital environment contamination. J Hosp Infect 74(1):72–77
Guo J, Gao S-H, Lu J, Bond PL, Verstraete W, Yuan Z (2017) Copper oxide nanoparticles induce lysogenic bacteriophage and metal-resistance genes in Pseudomonas aeruginosa PAO1. ACS Appl Mater Interfaces 9(27):22298–22307
Pati R, Mehta RK, Mohanty S et al (2014) Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomedicine 10(6):1195–1208
Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against campylobacter jejuni. Appl Environ Microbiol 77(7):2325–2331
Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A 41(12):2699–2711
Siddiqi KS, Ur Rahman A, Tajuddin, Husen A (2018) Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res Lett 13:141
Li N, Su X, Lu Y (2015) Nanomaterial-based biosensors using dual transducing elements for solution phase detection. Analyst 140(9):2916–2943
Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23(17):8670–8673
Hirschfeld J, Akinoglu EM, Wirtz DC et al (2017) Long-term release of antibiotics by carbon nanotube-coated titanium alloy surfaces diminish biofilm formation by Staphylococcus epidermidis. Nanomedicine 13(4):1587–1593
Zardini HZ, Amiri A, Shanbedi M, Maghrebi M, Baniadam M (2012) Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method. Colloids Surf B: Biointerfaces 92:196–202
Liu S, Wei L, Hao L et al (2009) Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3(12):3891–3902
Yang F, Jiang Q, Xie W, Zhang Y (2017) Effects of multi-walled carbon nanotubes with various diameters on bacterial cellular membranes: cytotoxicity and adaptive mechanisms. Chemosphere 185:162–170
Kang S, Herzberg M, Rodrigues DF, Elimelech M (2008) Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24(13):6409–6413
Jia G, Wang H, Yan L et al (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39(5):1378–1383
Hu W, Peng C, Luo W et al (2010) Graphene-based antibacterial paper. ACS Nano 4(7):4317–4323
Li K, Wang C, Yan J et al (2018) Evaluation of the osteogenesis and osseointegration of titanium alloys coated with graphene: an in vivo study. Sci Rep 8(1):1843
Yadav N, Dubey A, Shukla S et al (2017) Graphene oxide-coated surface: inhibition of bacterial biofilm formation due to specific surface–interface interactions. ACS Omega 2(7):3070–3082
Akhavan O, Ghaderi E, Akhavan A (2012) Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials 33(32):8017–8025
Pelin M, Fusco L, León V et al (2017) Differential cytotoxic effects of graphene and graphene oxide on skin keratinocytes. Sci Rep 7:40572
Hancock REW, Sahl H-G (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24(12):1551–1557
Mahlapuu M, Håkansson J, Ringstad L, Björn C (2016) Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 6:194
Dean SN, Bishop BM, van Hoek ML (2011) Natural and synthetic cathelicidin peptides with anti-microbial and anti-biofilm activity against Staphylococcus aureus. BMC Microbiol 11(1):114
Yoshinari M, Kato T, Matsuzaka K, Hayakawa T, Shiba K (2010) Prevention of biofilm formation on titanium surfaces modified with conjugated molecules comprised of antimicrobial and titanium-binding peptides. Biofouling 26(1):103–110
Gopal R, Kim YG, Lee JH et al (2014) Synergistic effects and antibiofilm properties of chimeric peptides against multidrug-resistant Acinetobacter baumannii strains. Antimicrob Agents Chemother 58(3):1622–1629
Lombana A, Raja Z, Casale S et al (2014) Temporin-SHa peptides grafted on gold surfaces display antibacterial activity. J Pept Sci 20(7):563–569
Godoy-Gallardo M, Mas-Moruno C, Fernández-Calderón MC et al (2014) Covalent immobilization of hLf1-11 peptide on a titanium surface reduces bacterial adhesion and biofilm formation. Acta Biomater 10(8):3522–3534
Glinel K, Jonas AM, Jouenne T, Leprince J, Galas L, Huck WTS (2009) Antibacterial and antifouling polymer brushes incorporating antimicrobial peptide. Bioconjug Chem 20(1):71–77
Etienne O, Picart C, Taddei C et al (2004) Multilayer polyelectrolyte films functionalized by insertion of defensin: a new approach to protection of implants from bacterial colonization. Antimicrob Agents Chemother 48(10):3662–3669
Guyomard A, Dé E, Jouenne T, Malandain J-J, Muller G, Glinel K (2008) Incorporation of a hydrophobic antibacterial peptide into amphiphilic polyelectrolyte multilayers: a bioinspired approach to prepare biocidal thin coatings. Adv Funct Mater 18(5):758–765
Shukla A, Fleming KE, Chuang HF et al (2010) Controlling the release of peptide antimicrobial agents from surfaces. Biomaterials 31(8):2348–2357
Andrade CA (2016) Chemical immobilization of antimicrobial peptides on biomaterial surfaces. Front Biosci 8(1):129–142
Gao G, Lange D, Hilpert K et al (2011) The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials 32(16):3899–3909
Humblot V, Yala J-F, Thebault P et al (2009) The antibacterial activity of Magainin I immobilized onto mixed thiols self-assembled monolayers. Biomaterials 30(21):3503–3512
Yala J-F, Thebault P, Héquet A, Humblot V, Pradier C-M, Berjeaud J-M (2011) Elaboration of antibiofilm materials by chemical grafting of an antimicrobial peptide. Appl Microbiol Biotechnol 89(3):623–634
Hilpert K, Elliott M, Jenssen H et al (2009) Screening and characterization of surface-tethered cationic peptides for antimicrobial activity. Chem Biol 16(1):58–69
Onaizi SA, Leong SSJ (2011) Tethering antimicrobial peptides: current status and potential challenges. Biotechnol Adv 29(1):67–74
Pal K, Banthia AK, Majumdar DK (2009) Polymeric hydrogels: characterization and biomedical applications. Des Monomers Polym 12(3):197–220
Siedenbiedel F, Tiller JC (2012) Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers 4(1):46–71
Cornell RJ, Donaruma LG (1965) 2-Methacryloxytropones. Intermediates for the synthesis of biologically active polymers. J Med Chem 8(3):388–390
Panarin EF, Solovskii MV, Ekzemplyarov ON (1971) Synthesis and antimicrobial properties of polymers containing quaternary ammonium groups. Pharm Chem J 5(7):406–408
Kuroda K (2005) Amphiphilic polymethacrylate derivatives as antimicrobial agents. J Am Chem Soc 125(12):4128–4129
Kuroki A, Sangwan P, Qu Y et al (2017) Sequence control as a powerful tool for improving the selectivity of antimicrobial polymers. ACS Appl Mater Interfaces 9(46):40117–40126
Lin J, Chen X, Chen C et al (2018) Durably antibacterial and bacterially antiadhesive cotton fabrics coated by cationic fluorinated polymers. ACS Appl Mater Interfaces 10(7):6124–6136
Huang K-S, Yang C-H, Huang S-L, Chen C-Y, Lu Y-Y, Lin Y-S (2016) Recent advances in antimicrobial polymers: a mini-review. Int J Mol Sci 17(9):1578
Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23
Ng VWL, Chan JMW, Sardon H et al (2014) Antimicrobial hydrogels: a new weapon in the arsenal against multidrug-resistant infections. Adv Drug Deliv Rev 78:46–62
Eslahi N, Abdorahim M, Simchi A (2016) Smart polymeric hydrogels for cartilage tissue engineering: a review on the chemistry and biological functions. Biomacromolecules 17(11):3441–3463
De Giglio E, Cometa S, Ricci MA et al (2011) Ciprofloxacin-modified electrosynthesized hydrogel coatings to prevent titanium-implant-associated infections. Acta Biomater 7(2):882–891
Lakes AL, Peyyala R, Ebersole JL, Puleo DA, Hilt JZ, Dziubla TD (2014) Synthesis and characterization of an antibacterial hydrogel containing covalently bound vancomycin. Biomacromolecules 15(8):3009–3018
Wu F, Meng G, He J, Wu Y, Wu F, Gu Z (2014) Antibiotic-loaded chitosan hydrogel with superior dual functions: antibacterial efficacy and osteoblastic cell responses. ACS Appl Mater Interfaces 6(13):10005–10013
Qi X, Wei W, Li J et al (2017) Design of Salecan-containing semi-IPN hydrogel for amoxicillin delivery. Mater Sci Eng C 75:487–494
Zhang Y, Zhang J, Chen M, Gong H, Thamphiwatana S, Eckmann L, Gao W, Zhnag L (2016) A bioadhesive nanoparticle−hydrogel hybrid system for localized antimicrobial drug delivery. ACS Appl Mater Interfaces 8:18367–18374
Ng VWL, Ke X, Lee ALZ, Hedrick JL, Yang YY (2013) Synergistic co-delivery of membrane-disrupting polymers with commercial antibiotics against highly opportunistic bacteria. Adv Mater 25(46):6730–6736
Shi Y, Truong VX, Kulkarni K et al (2015) Light-triggered release of ciprofloxacin from an in situ forming click hydrogel for antibacterial wound dressings. J Mater Chem B 3(45):8771–8774
ter Boo G-JA, Arens D, Metsemakers W-J et al (2016) Injectable gentamicin-loaded thermo-responsive hyaluronic acid derivative prevents infection in a rabbit model. Acta Biomater 43:185–194
Li Z, He C, Yuan B, Dong X, Chen X (2017) Injectable polysaccharide hydrogels as biocompatible platforms for localized and sustained delivery of antibiotics for preventing local infections. Macromol Biosci 17(4):1600347
Hu J, Quan Y, Lai Y et al (2017) A smart aminoglycoside hydrogel with tunable gel degradation, on-demand drug release, and high antibacterial activity. J Control Release 247:145–152
Hoque J, Bhattacharjee B, Prakash RG, Paramanandham K, Haldar J (2018) Dual function injectable hydrogel for controlled release of antibiotic and local antibacterial therapy. Biomacromolecules 19(2):267–278
Varaprasad K, Mohan YM, Vimala K, Mohana Raju K (2011) Synthesis and characterization of hydrogel-silver nanoparticle-curcumin composites for wound dressing and antibacterial application. J Appl Polym Sci 121(2):784–796
González-Sánchez MI, Perni S, Tommasi G et al (2015) Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications. Mater Sci Eng C 50:332–340
Noimark S, Weiner J, Noor N et al (2015) Dual-mechanism antimicrobial polymer-ZnO nanoparticle and crystal violet-encapsulated silicone. Adv Funct Mater 25(9):1367–1373
GhavamiNejad A, Park CH, Kim CS (2016) In situ synthesis of antimicrobial silver nanoparticles within antifouling Zwitterionic hydrogels by Catecholic Redox chemistry for wound healing application. Biomacromolecules 17(3):1213–1223
Lustosa A, de Jesus Oliveira A, Quelemes P et al (2017) In situ synthesis of silver nanoparticles in a hydrogel of Carboxymethyl cellulose with Phthalated-cashew gum as a promising antibacterial and healing agent. Int J Mol Sci 18(11):2399
He M, Wang Q, Wang R, Xie Y, Zhao W, Zhao C (2017) Design of antibacterial poly(ether sulfone) membranes via covalently attaching hydrogel thin layers loaded with Ag nanoparticles. ACS Appl Mater Interfaces 9(19):15962–15974
Yang W, Fortunati E, Bertoglio F et al (2018) Polyvinyl alcohol/chitosan hydrogels with enhanced antioxidant and antibacterial properties induced by lignin nanoparticles. Carbohydr Polym 181:275–284
Liu R, Dai L, Si C, Zeng Z (2018) Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers. Carbohydr Polym 195:63–70
Richards S-J, Isufi K, Wilkins LE, Lipecki J, Fullam E, Gibson MI (2018) Multivalent antimicrobial polymer nanoparticles target mycobacteria and Gram-negative Bacteria by distinct mechanisms. Biomacromolecules 19(1):256–264
Jiang B, Larson JC, Drapala PW, Pérez-Luna VH, Kang-Mieler JJ, Brey EM (2012) Investigation of lysine acrylate containing poly(N-isopropylacrylamide) hydrogels as wound dressings in normal and infected wounds. J Biomed Mater Res B Appl Biomater 100B(3):668–676
Laverty G, Gorman SP, Gilmore BF (2012) Antimicrobial peptide incorporated poly(2-hydroxyethyl methacrylate) hydrogels for the prevention of Staphylococcus epidermidis-associated biomaterial infections. J Biomed Mater Res A 100A(7):1803–1814
Buhrman JS, Cook LC, Rayahin JE, Federle MJ, Gemeinhart RA (2013) Proteolytically activated antibacterial hydrogel microspheres. J Control Release 171(3):288–295
Du H, Wang Y, Yao X et al (2016) Injectable cationic hydrogels with high antibacterial activity and low toxicity. Polym Chem 7(36):5620–5624
Aziz MA, Cabral JD, Brooks HJL, Moratti SC, Hanton LR (2012) Antimicrobial properties of a chitosan dextran-based hydrogel for surgical use. Antimicrob Agents Chemother 56(1):280–287
Li P, Poon YF, Li W et al (2011) A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat Mater 10(2):149–156
Tsao CT, Chang CH, Lin YY et al (2011) Evaluation of chitosan/γ-poly (glutamic acid) polyelectrolyte complex for wound dressing materials. Carbohydr Polym 84(2):812–819
Li M, Mitra D, Kang E-T, Lau T, Chiong E, Neoh KG (2017) Thiol-ol chemistry for grafting of natural polymers to form highly stable and efficacious antibacterial coatings. ACS Appl Mater Interfaces 9(2):1847–1857
Mukherjee I, Ghosh A, Bhadury P, De P (2017) Side-chain amino acid-based cationic antibacterial polymers: investigating the morphological switching of a polymer-treated bacterial cell. ACS Omega 2(4):1633–1644
Mukherjee I, Ghosh A, Bhadury P, De P (2018) Leucine-based polymer architecture-induced antimicrobial properties and bacterial cell morphology switching. ACS Omega 3(1):769–780
Liu SQ, Yang C, Huang Y et al (2012) Antimicrobial and antifouling hydrogels formed in situ from polycarbonate and poly (ethylene glycol) via Michael addition. Adv Mater 24(48):6484–6489
Li Y, Fukushima K, Coady DJ et al (2013) Broad-spectrum antimicrobial and biofilm-disrupting hydrogels: stereocomplex-driven supramolecular assemblies. Angew Chem Int Ed 52(2):674–678
Cao B, Tang Q, Li L et al (2013) Switchable antimicrobial and antifouling hydrogels with enhanced mechanical properties. Adv Healthc Mater 2(8):1096–1102
Gaetano G, Giuseppe P, Salvatore PF, Susanna M, Sara S, Luca RC (2018) Hyaluronic-based antibacterial hydrogel coating for implantable biomaterials in orthopedics and trauma: from basic research to clinical applications. In: Haider S, Haider A (eds) Hydrogels. InTech
Habibi N, Kamaly N, Memic A, Shafiee H (2016) Self-assembled peptide-based nanostructures: smart nanomaterials toward targeted drug delivery. Nano Today 11(1):41–60
Zhang S, Lockshin C, Herbert A, Winter E, Rich A (1992) Zuotin, a putative Z-DNA binding protein in Saccharomyces cerevisiae. EMBO J 11(10):3787–3796
Holmest T, Lockshin C, Rich A (1993) Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci U S A 90(8):3334–3338
Zhang S, Holmes TC, DiPersio CM, Hynes RO, Su X, Rich A (1995) Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials 16(18):1385–1393
Zhang S, Lockshin C, Cook R, Rich A (1994) Unusually stable β-sheet formation in an ionic self-complementary oligopeptide. Biopolymers 34(5):663–672
Kisiday J, Jin M, Kurz B et al (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci 99(15):9996–10001
Salick DA, Kretsinger JK, Pochan DJ, Schneider JP (2007) Inherent antibacterial activity of a peptide-based β-hairpin hydrogel. J Am Chem Soc 129(47):14793–14799
Salick DA, Pochan DJ, Schneider JP (2009) Design of an Injectable β-hairpin peptide hydrogel that kills methicillin-resistant Staphylococcus aureus. Adv Mater 21(41):4120–4123
Veiga AS, Sinthuvanich C, Gaspar D, Franquelim HG, Castanho MARB, Schneider JP (2012) Arginine-rich self-assembling peptides as potent antibacterial gels. Biomaterials 33(35):8907–8916
Zhou C, Li P, Qi X et al (2011) A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-l-lysine. Biomaterials 32(11):2704–2712
Liu Y, Yang Y, Wang C, Zhao X (2013) Stimuli-responsive self-assembling peptides made from antibacterial peptides. Nanoscale 5(14):6413
Wan Y, Liu L, Yuan S, Sun J, Li Z (2017) pH-responsive peptide supramolecular hydrogels with antibacterial activity. Langmuir 33(13):3234–3240
Debnath S, Shome A, Das D, Das PK (2010) Hydrogelation through self-assembly of Fmoc-peptide functionalized cationic amphiphiles: potent antibacterial agent. J Phys Chem B 114(13):4407–4415
Laverty G, McCloskey AP, Gilmore BF, Jones DS, Zhou J, Xu B (2014) Ultrashort cationic naphthalene-derived self-assembled peptides as antimicrobial nanomaterials. Biomacromolecules 15(9):3429–3439
McCloskey AP, Draper ER, Gilmore BF, Laverty G (2017) Ultrashort self-assembling Fmoc-peptide gelators for anti-infective biomaterial applications: Fmoc-peptides demonstrate selective activity against biofilms. J Pept Sci 23(2):131–140
Baral A, Roy S, Ghosh S, Hermida-Merino D, Hamley IW, Banerjee A (2016) A peptide-based mechano-sensitive, proteolytically stable hydrogel with remarkable antibacterial properties. Langmuir 32(7):1836–1845
Wani NA, Singh G, Shankar S, Sharma A, Katoch M, Rai R (2017) Short hybrid peptides incorporating β- and γ-amino acids as antimicrobial agents. Peptides 97:46–53
Malhotra K, Shankar S, Rai R, Singh Y (2018) Broad-spectrum antibacterial activity of proteolytically stable self-assembled αγ-hybrid peptide gels. Biomacromolecules 19:782–792
Malhotra K, Shankar S, Rai R, Singh Y. Design, characterization, and evaluation of antibacterial gels, Boc-D-Phe-γ4-L-Phe-PEA/chitosan and Boc-L-Phe-γ4-L-Phe-PEA/chitosan, for biomaterial-related infections. Unpublished work
Adak A, Ghosh S, Gupta V, Ghosh S (2019) Biocompatible lipopeptide-based antibacterial hydrogel. Biomacromolecules 20(5):1889–1898
Gahane AY, Ranjan P, Singh V et al (2018) Fmoc-phenylalanine displays antibacterial activity against Gram-positive bacteria in gel and solution phases. Soft Matter 14(12):2234–2244
Romanò CL, Tsuchiya H, Morelli I, Battaglia AG, Drago L (2019) Antibacterial coating of implants: are we missing something? Bone Joint Res 8:199–206
Santos M, Fonseca A, Mendonça P, Branco R, Serra A, Morais P et al (2016) Recent developments in antimicrobial polymers: a review. Materials 9:599
Huang R, Qi W, Feng L, Su R, He Z (2011) Self-assembling peptide–polysaccharide hybrid hydrogel as a potential carrier for drug delivery. Soft Matter 7:6222
Acknowledgements
We gratefully acknowledge our students (PhD, MSc, and MTech) and colleagues who contributed to this work and the financial support to YS from the CSIR, New Delhi (grant # 02(0245)/15/EMR-II) and SERB, New Delhi (grant # EMR/2017/000045).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Malhotra, K., Singh, Y. (2020). Antibacterial Polymeric and Peptide Gels/Hydrogels to Prevent Biomaterial-Related Infections. In: Li, B., Moriarty, T., Webster, T., Xing, M. (eds) Racing for the Surface. Springer, Cham. https://doi.org/10.1007/978-3-030-34475-7_23
Download citation
DOI: https://doi.org/10.1007/978-3-030-34475-7_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34474-0
Online ISBN: 978-3-030-34475-7
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)