Advertisement

Bimetallic Nanoparticles for Biomedical Applications: A Review

  • David Medina-Cruz
  • Bahram Saleh
  • Ada Vernet-Crua
  • Alfonso Nieto-Argüello
  • Diana Lomelí-Marroquín
  • Lydia Yerid Vélez-Escamilla
  • Jorge L. Cholula-Díaz
  • José Miguel García-Martín
  • Thomas WebsterEmail author
Chapter
  • 141 Downloads

Abstract

Bimetallic nanoparticles, or BMNPs, are nanosized structures that are of growing interest in biomedical applications. Although their production shares aspects with physicochemical approaches for the synthesis of their monometallic counterparts, they can show a large variety of new properties and applications as a consequence of the synergetic effect between the two components. These applications can be as diverse as antibacterial treatments or anticancer or biological imaging approaches, as well as drug delivery. Nevertheless, utilization of BMNPs in such fields has received limited attention because of the severe lack of knowledge and concerns regarding the use of other nanomaterials, such as stability and biodegradability over time, tendency to form clusters, chemical reactivity, and biocompatibility. In this review, a close look at bimetallic systems is presented, focusing on their biomedical applications as antibacterial, anticancer, drug delivery, and imaging agents, showing significant enhancement of their features compared to their monometallic counterparts and other current used nanomaterials for biomedical applications.

Keywords

Biomaterials Anti-biofouling Anti-microbial Biofilm Infections Polyethylene glycol (PEG) Zwitterionic Releasing-based Contact-based Medical implants Tissue engineering 

References

  1. 1.
    Olsman N, Goentoro L (2018) There’s (still) plenty of room at the bottom. Curr Opin Biotechnol 54:72–79.  https://doi.org/10.1016/j.copbio.2018.01.029CrossRefPubMedGoogle Scholar
  2. 2.
    Taniguchi N (1974) On the basic concept of nano-technology. In: Proc. intl. conf. prod. London. https://ci.nii.ac.jp/naid/20000654683
  3. 3.
    Pearce JM (2012) Make nanotechnology research open-source. Nature 491(7425):519–521.  https://doi.org/10.1038/491519aCrossRefPubMedGoogle Scholar
  4. 4.
    Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2(1):3.  https://doi.org/10.1186/1477-3155-2-3CrossRefGoogle Scholar
  5. 5.
    Seeman NC (2003) Biochemistry and structural DNA nanotechnology: an evolving symbiotic relationship. Biochemistry 42(24):7259–7269.  https://doi.org/10.1021/bi030079vCrossRefPubMedGoogle Scholar
  6. 6.
    Whitesides GM (2005) Nanoscience, nanotechnology, and chemistry. Small 1(2):172–179.  https://doi.org/10.1002/smll.200400130CrossRefPubMedGoogle Scholar
  7. 7.
    Andrew AM (2000) An introduction to support vector machines and other kernel-based learning methods by Nello Christianini and John Shawe-Taylor, Cambridge University Press, Cambridge, 2000, Xiii+189 pp., ISBN 0-521-78019-5. Robotica 18(6):687–689.  https://doi.org/10.1017/S0263574700232827CrossRefGoogle Scholar
  8. 8.
    Webster TJ, Seil I (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine 7:2767.  https://doi.org/10.2147/IJN.S24805CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kamal MA, Jabir NR, Tabrez S, Ashraf GM, Shakil S, Damanhouri GA (2012) Nanotechnology-based approaches in anticancer research. Int J Nanomedicine 7:4391.  https://doi.org/10.2147/IJN.S33838CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Shi J, Votruba AR, Farokhzad OC, Langer R (2010) Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 10(9):3223–3230.  https://doi.org/10.1021/nl102184cCrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cormode DP, Skajaa T, Fayad ZA, Mulder WJM (2009) Nanotechnology in medical imaging. Arterioscler Thromb Vasc Biol 29(7):992–1000.  https://doi.org/10.1161/ATVBAHA.108.165506CrossRefPubMedGoogle Scholar
  12. 12.
    Bekyarova E, Ni Y, Malarkey EB, Montana V, McWilliams JL, Haddon RC, Parpura V (2005) Applications of carbon nanotubes in biotechnology and biomedicine. J Biomed Nanotechnol 1(1):3–17.  https://doi.org/10.1166/jbn.2005.004CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Shi S, Chen F, Cai W (2013) Biomedical applications of functionalized hollow mesoporous silica nanoparticles: focusing on molecular imaging. Nanomedicine 8(12):2027–2039.  https://doi.org/10.2217/nnm.13.177CrossRefPubMedGoogle Scholar
  14. 14.
    Ramos AP, Cruz MAE, Tovani CB, Ciancaglini P (2017) Biomedical applications of nanotechnology. Biophys Rev 9(2):79–89.  https://doi.org/10.1007/s12551-016-0246-2CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mody VV, Siwale R, Singh A, Mody HR (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2(4):282–289.  https://doi.org/10.4103/0975-7406.72127CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Raliya R, Singh Chadha T, Haddad K, Biswas P (2016) Perspective on nanoparticle technology for biomedical use. Curr Pharm Des 22(17):2481–2490. http://www.ncbi.nlm.nih.gov/pubmed/26951098CrossRefGoogle Scholar
  17. 17.
    Vernon RE (2013) Which elements are metalloids? J Chem Educ 90(12):1703–1707.  https://doi.org/10.1021/ed3008457CrossRefGoogle Scholar
  18. 18.
    Dutz S, Müller R, Eberbeck D, Hilger I, Zeisberger M (2015) Magnetic nanoparticles adapted for specific biomedical applications. Biomed Tech (Berl) 60(5):405–416.  https://doi.org/10.1515/bmt-2015-0044CrossRefGoogle Scholar
  19. 19.
    Kralj S, Makovec D, Čampelj S, Drofenik M (2010) Producing ultra-thin silica coatings on iron-oxide nanoparticles to improve their surface reactivity. J Magn Magn Mater 322(13):1847–1853.  https://doi.org/10.1016/J.JMMM.2009.12.038CrossRefGoogle Scholar
  20. 20.
    Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S (2018) Advances in magnetic nanoparticles for biomedical applications. Adv Healthc Mater 7(5):1700845.  https://doi.org/10.1002/adhm.201700845CrossRefGoogle Scholar
  21. 21.
    Tokajuk G, Niemirowicz K, Deptuła P, Piktel E, Cieśluk M, Wilczewska A, Dąbrowski J, Bucki R (2017) Use of magnetic nanoparticles as a drug delivery system to improve chlorhexidine antimicrobial activity. Int J Nanomedicine 12:7833–7846.  https://doi.org/10.2147/IJN.S140661CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Jain S, Hirst DG, O’Sullivan JM (2012) Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 85(1010):101–113.  https://doi.org/10.1259/bjr/59448833CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Qing Y’a, Cheng L, Li R, Liu G, Zhang Y, Tang X, Wang J, Liu H, Qin Y (2018) Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomed 13:3311–3327.  https://doi.org/10.2147/IJN.S165125
  24. 24.
    Medina Cruz D, Mi G, Webster TJ (2018) Synthesis and characterization of biogenic selenium nanoparticles with antimicrobial properties made by Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa. J Biomed Mater Res A 106(5):1400–1412.  https://doi.org/10.1002/jbm.a.36347CrossRefPubMedGoogle Scholar
  25. 25.
    Amiri M, Etemadifar Z, Daneshkazemi A, Nateghi M (2017) Antimicrobial effect of copper oxide nanoparticles on some oral bacteria and Candida species. J Dent Biomater 4(1):347–352. http://www.ncbi.nlm.nih.gov/pubmed/28959764PubMedPubMedCentralGoogle Scholar
  26. 26.
    Chen Y, Wan Y, Wang Y, Zhang H, Jiao Z (2011) Anticancer efficacy enhancement and attenuation of side effects of doxorubicin with titanium dioxide nanoparticles. Int J Nanomedicine 6:2321–2326.  https://doi.org/10.2147/IJN.S25460CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ding X, Yuan P, Gao N, Zhu H, Yang YY, Xu Q-H (2017) Au-Ag core-shell nanoparticles for simultaneous bacterial imaging and synergistic antibacterial activity. Nanomedicine 13(1):297–305.  https://doi.org/10.1016/j.nano.2016.09.003CrossRefPubMedGoogle Scholar
  28. 28.
    Allaedini G, Tasirin SM, Aminayi P (2016) The effects of cerium doping concentration on the properties and photocatalytic activity of bimetallic Mo/Ce catalyst. Russ J Phys Chem A 90(10):2080–2088.  https://doi.org/10.1134/S0036024416080094CrossRefGoogle Scholar
  29. 29.
    Jiang H-L, Xu Q (2011) Recent progress in synergistic catalysis over heterometallic nanoparticles. J Mater Chem 21(36):13705.  https://doi.org/10.1039/c1jm12020dCrossRefGoogle Scholar
  30. 30.
    Sun Y, Lei C (2009) Synthesis of out-of-substrate Au-Ag nanoplates with enhanced stability for catalysis. Angew Chem Int Ed 48(37):6824–6827.  https://doi.org/10.1002/anie.200902305CrossRefGoogle Scholar
  31. 31.
    Cho J, Wang M, Gonzalez-Lepera C, Mawlawi O, Cho SH (2016) Development of bimetallic (Zn@Au) nanoparticles as potential PET-imageable radiosensitizers. Med Phys 43(8 Part1):4775–4788.  https://doi.org/10.1118/1.4958961CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Li JL, Tian B, Li T, Dai S, Weng YL, Lu JJ, Xu XL, Jin Y, Pang RJ, Hua YJ (2018a) Biosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using protein extracts of Deinococcus radiodurans and evaluation of their cytotoxicity. Int J Nanomedicine 13:1411–1424.  https://doi.org/10.2147/IJN.S149079CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Li X, Odoom-Wubah T, Huang J (2018b) Biosynthesis of Ag–Pd bimetallic alloy nanoparticles through hydrolysis of cellulose triggered by silver sulfate. RSC Adv 8(53):30340–30345.  https://doi.org/10.1039/C8RA04301ACrossRefGoogle Scholar
  34. 34.
    Li H, Jo JK, Zhang LD, Ha C-S, Suh H, Kim I (2010a) Hyperbranched polyglycidol assisted green synthetic protocols for the preparation of multifunctional metal nanoparticles. Langmuir 26(23):18442–18453.  https://doi.org/10.1021/la103483cCrossRefPubMedGoogle Scholar
  35. 35.
    Li T, Albee B, Alemayehu M, Diaz R, Ingham L, Kamal S, Rodriguez M, Whaley Bishnoi S (2010b) Comparative toxicity study of Ag, Au, and Ag–Au bimetallic nanoparticles on Daphnia magna. Anal Bioanal Chem 398(2):689–700.  https://doi.org/10.1007/s00216-010-3915-1CrossRefPubMedGoogle Scholar
  36. 36.
    Anu Mary Ealia S, Saravanakumar MP (2017) A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser Mater Sci Eng 263(3):032019.  https://doi.org/10.1088/1757-899X/263/3/032019CrossRefGoogle Scholar
  37. 37.
    Thiruvengadathan R, Korampally V, Ghosh A, Chanda N, Gangopadhyay K, Gangopadhyay S (2013) Nanomaterial processing using self-assembly-bottom-up chemical and biological approaches. Rep Prog Phys 76(6):066501.  https://doi.org/10.1088/0034-4885/76/6/066501CrossRefPubMedGoogle Scholar
  38. 38.
    Merkel TJ, Herlihy KP, Nunes J, Orgel RM, Rolland JP, DeSimone JM (2010) Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles. Langmuir 26(16):13086–13096.  https://doi.org/10.1021/la903890hCrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lee Y-H, Chuang S-M, Huang S-C, Tan X, Liang R-Y, Yang GCC, Chueh PJ (2017) Biocompatibility assessment of nanomaterials for environmental safety screening. Environ Toxicol 32(4):1170–1182.  https://doi.org/10.1002/tox.22313CrossRefPubMedGoogle Scholar
  40. 40.
  41. 41.
    Nanocluster Deposition Source (2019). http://www.oaresearch.co.uk/oaresearch/cluster/
  42. 42.
    Lin P-C, Lin S, Wang PC, Sridhar R (2014) Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 32(4):711–726.  https://doi.org/10.1016/j.biotechadv.2013.11.006CrossRefPubMedGoogle Scholar
  43. 43.
    Xiao Q, Yao Z, Liu J, Hai R, Oderji HY, Ding H (2011) Synthesis and characterization of Ag–Ni bimetallic nanoparticles by laser-induced plasma. Thin Solid Films 519(20):7116–7119.  https://doi.org/10.1016/J.TSF.2011.04.201CrossRefGoogle Scholar
  44. 44.
    Liu J, Ma X, Yang L, Liu X, Han A, Lv H, Zhang C, Xu S (2018) In situ green oxidation synthesis of Ti 3+ and N self-doped SrTiOx Ny nanoparticles with enhanced photocatalytic activity under visible light. RSC Adv 8(13):7142–7151.  https://doi.org/10.1039/C7RA13523HCrossRefGoogle Scholar
  45. 45.
    Barnett GH, Chen CC, Gross RE, Sloan AE (2016) Introduction: laser ablation techniques. Neurosurg Focus 41(4):E1.  https://doi.org/10.3171/2016.8.FOCUS16319CrossRefPubMedGoogle Scholar
  46. 46.
    Tajdidzadeh M, Azmi BZ, Yunus WMM, Talib ZA, Sadrolhosseini AR, Karimzadeh K, Gene SA, Dorraj M (2014) Synthesis of silver nanoparticles dispersed in various aqueous media using laser ablation. ScientificWorldJournal 2014:324921.  https://doi.org/10.1155/2014/324921CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Sportelli MC, Izzi M, Volpe A, Clemente M, Picca RA, Ancona A, Lugarà PM, Palazzo G, Cioffi N (2018) The pros and cons of the use of laser ablation synthesis for the production of silver nano-antimicrobials. Antibiotics (Basel) 7(3):E67.  https://doi.org/10.3390/antibiotics7030067CrossRefGoogle Scholar
  48. 48.
    Amendola V, Meneghetti M, Bakr OM, Riello P, Polizzi S, Anjum DH, Fiameni S et al (2013) Coexistence of plasmonic and magnetic properties in Au89Fe11 nanoalloys. Nanoscale 5(12):5611.  https://doi.org/10.1039/c3nr01119dCrossRefPubMedGoogle Scholar
  49. 49.
    Peng S, Lei C, Ren Y, Cook RE, Sun Y (2011) Plasmonic/magnetic bifunctional nanoparticles. Angew Chem Int Ed 50(14):3158–3163.  https://doi.org/10.1002/anie.201007794CrossRefGoogle Scholar
  50. 50.
    Wang X, Sun S, Huang Z, Zhang H, Zhang S (2014) Preparation and catalytic activity of PVP-protected Au/Ni bimetallic nanoparticles for hydrogen generation from hydrolysis of basic NaBH4 solution. Int J Hydrog Energy 39(2):905–916.  https://doi.org/10.1016/J.IJHYDENE.2013.10.122CrossRefGoogle Scholar
  51. 51.
    Mukha I, Vityuk N, Grodzyuk G, Shcherbakov S, Lyberopoulou A, Efstathopoulos EP, Gazouli M (2017) Anticancer effect of Ag, Au, and Ag/Au bimetallic nanoparticles prepared in the presence of tryptophan. J Nanosci Nanotechnol 17(12):8987–8994.  https://doi.org/10.1166/jnn.2017.14106CrossRefGoogle Scholar
  52. 52.
    Shmarakov IO, Mukha IP, Karavan VV, Chunikhin OY, Marchenko MM, Smirnova NP, Eremenko AM (2014) Tryptophan-assisted synthesis reduces bimetallic gold/silver nanoparticle cytotoxicity and improves biological activity. Nanobiomedicine 1:6.  https://doi.org/10.5772/59684CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Pal A, Shah S, Devi S (2007) Preparation of silver, gold and silver–gold bimetallic nanoparticles in w/o microemulsion containing TritonX-100. Colloids Surf A Physicochem Eng Asp 302(1–3):483–487.  https://doi.org/10.1016/j.colsurfa.2007.03.032CrossRefGoogle Scholar
  54. 54.
    Nakamura T, Sato S (2015) Green and facile synthesis of Pd-Pt alloy nanoparticles by laser irradiation of aqueous solution. J Nanosci Nanotechnol 15(1):426–432. http://www.ncbi.nlm.nih.gov/pubmed/26328375CrossRefGoogle Scholar
  55. 55.
    Mottaghi N, Ranjbar M, Farrokhpour H, Khoshouei M, Khoshouei A, Kameli P, Salamati H, Tabrizchi M, Jalilian-Nosrati M (2014) Ag/Pd core-shell nanoparticles by a successive method: pulsed laser ablation of Ag in water and reduction reaction of PdCl2. Appl Surf Sci 292:892–897. https://www.sciencedirect.com/science/article/pii/S0169433213023465CrossRefGoogle Scholar
  56. 56.
    Zielińska-Jurek A, Zaleska A (2014) Ag/Pt-modified TiO2 nanoparticles for toluene photooxidation in the gas phase. Catal Today 230:104–111. https://www.sciencedirect.com/science/article/pii/S0920586113006494CrossRefGoogle Scholar
  57. 57.
    Hierso J-C, Feurer R, Poujardieu J, Kihn Y, Kalck P (1998) Metal-organic chemical vapor deposition in a fluidized bed as a versatile method to prepare layered bimetallic nanoparticles. J Mol Catal A Chem 135(3):321–325.  https://doi.org/10.1016/S1381-1169(98)00125-3CrossRefGoogle Scholar
  58. 58.
    Choi DS, Robertson AW, Warner JH, Kim SO, Kim H (2016) Low-temperature chemical vapor deposition synthesis of Pt-Co alloyed nanoparticles with enhanced oxygen reduction reaction catalysis. Adv Mater 28(33):7115–7122.  https://doi.org/10.1002/adma.201600469CrossRefPubMedGoogle Scholar
  59. 59.
    Hermannsdörfer J, Friedrich M, Miyajima N, Albuquerque RQ, Kümmel S, Kempe R (2012) Ni/Pd@MIL-101: synergistic catalysis with cavity-conform Ni/Pd nanoparticles. Angew Chem Int Ed 51(46):11473–11477.  https://doi.org/10.1002/anie.201205078CrossRefGoogle Scholar
  60. 60.
    Lee Y-J, Barrera D, Luo K, Hsu JWP (2012) In situ chemical oxidation of ultrasmall MoOx nanoparticles in suspensions. J Nanotechnol 2012:1–5.  https://doi.org/10.1155/2012/195761CrossRefGoogle Scholar
  61. 61.
    Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145(1–2):83–96. https://www.sciencedirect.com/science/article/pii/S0001868608001449CrossRefGoogle Scholar
  62. 62.
    Zain NM, Stapley AGF, Shama G (2014) Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications. Carbohydr Polym 112:195–202.  https://doi.org/10.1016/J.CARBPOL.2014.05.081CrossRefPubMedGoogle Scholar
  63. 63.
    Rac-Rumijowska O, Fiedot M, Suchorska-Wozniak P, Teterycz H (2017) Synthesis of gold nanoparticles with different kinds of stabilizing agents. In: 2017 40th international spring seminar on electronics technology (ISSE). IEEE, pp 1–6.  https://doi.org/10.1109/ISSE.2017.8000972
  64. 64.
    Zaytsev SY, Plyusnin PE, Slavinskaya EM, Shubin YV (2017) Synthesis of bimetallic nanocompositions AuxPd1-x/γ-Al2O3 for catalytic CO oxidation. J Nanopart Res 19(11):367.  https://doi.org/10.1007/s11051-017-4061-xCrossRefGoogle Scholar
  65. 65.
    Yu J, Li J, Zhang W, Chang H (2015) Synthesis of high quality two-dimensional materials via chemical vapor deposition. Chem Sci 6(12):6705–6716.  https://doi.org/10.1039/c5sc01941aCrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Saedy S, Palagin D, Safonova O, van Bokhoven JA, Khodadadi AA, Mortazavi Y (2017) Understanding the mechanism of synthesis of Pt3 Co intermetallic nanoparticles via preferential chemical vapor deposition. J Mater Chem A 5(46):24396–24406.  https://doi.org/10.1039/C7TA06737BCrossRefGoogle Scholar
  67. 67.
    Devarajan S, Bera P, Sampath S (2005) Bimetallic nanoparticles: a single step synthesis, stabilization, and characterization of Au–Ag, Au–Pd, and Au–Pt in sol–gel derived silicates. J Colloid Interface Sci 290(1):117–129.  https://doi.org/10.1016/J.JCIS.2005.04.034CrossRefPubMedGoogle Scholar
  68. 68.
    Huttel Y (2017) Gas-phase synthesis of nanoparticles. Edited by Yves Huttel. ISBN: 978-3-527-34060-6. p.416Google Scholar
  69. 69.
    Llamosa Pérez D, Espinosa A, Martínez L, Román E, Ballesteros C, Mayoral A, García-Hernández M, Huttel Y (2013) Thermal diffusion at nanoscale: from CoAu alloy nanoparticles to Co@Au core/shell structures. J Phys Chem C 117(6):3101–3108.  https://doi.org/10.1021/jp310971fCrossRefGoogle Scholar
  70. 70.
    Oprea B, Martínez L, Román E, Vanea E, Simon S, Huttel Y (2015) Dispersion and functionalization of nanoparticles synthesized by gas aggregation source: opening new routes toward the fabrication of nanoparticles for biomedicine. Langmuir 31(51):13813–13820.  https://doi.org/10.1021/acs.langmuir.5b03399CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Oprea B, Martínez L, Román E, Espinosa A, Ruano M, Llamosa D, García-Hernández M, Ballesteros C, Huttel Y (2014) Growth and characterization of FeB nanoparticles for potential application as magnetic resonance imaging contrast agent. Mater Res Express 1(2):025008.  https://doi.org/10.1088/2053-1591/1/2/025008CrossRefGoogle Scholar
  72. 72.
    Mayoral A, Martínez L et al (2019) Tuning the size, composition and structure of Au and Co50 Au50 nanoparticles by high-power impulse magnetron sputtering in gas-phase synthesis. Nanotechnology 30(6):065606CrossRefGoogle Scholar
  73. 73.
    Martínez L, Díaz M, Román E, Ruano M, Llamosa PD, Huttel Y (2012) Generation of nanoparticles with adjustable size and controlled stoichiometry: recent advances. Langmuir 28(30):11241–11249.  https://doi.org/10.1021/la3022134CrossRefPubMedGoogle Scholar
  74. 74.
    Llamosa D, Ruano M, Martínez L, Mayoral A, Roman E, García-Hernández M, Huttel Y (2014) The ultimate step towards a tailored engineering of core@shell and core@shell@shell nanoparticles. Nanoscale 6(22):13483–13486.  https://doi.org/10.1039/c4nr02913eCrossRefPubMedGoogle Scholar
  75. 75.
    Martínez L, Mayoral A, Espiñeira M, Roman E, Palomares FJ, Huttel Y (2017) Core@shell, Au@TiOx nanoparticles by gas phase synthesis. Nanoscale 9(19):6463–6470.  https://doi.org/10.1039/c7nr01148bCrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO (2014) “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat 6(1):35–44. http://www.ncbi.nlm.nih.gov/pubmed/24772325CrossRefGoogle Scholar
  77. 77.
    Kadzinski M, Cinelli M, Ciomek K, Coles SR, Nadagouda MN, Varma RS, Kirwan K (2018) Co-constructive development of a green chemistry-based model for the assessment of nanoparticles synthesis. Eur J Oper Res 264(2):472–490.  https://doi.org/10.1016/j.ejor.2016.10.019CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2(4):293–298. https://pubs.acs.org/doi/10.1021/cg0255164CrossRefGoogle Scholar
  79. 79.
    Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B: Biointerfaces 83(1):42–48.  https://doi.org/10.1016/j.colsurfb.2010.10.035CrossRefPubMedGoogle Scholar
  80. 80.
    Patra N, Taviti AC, Sahoo A, Pal A, Beuria TK, Behera A, Patra S (2017) Green synthesis of multi-metallic nanocubes. RSC Adv 7(56):35111–35118.  https://doi.org/10.1039/C7RA05493ACrossRefGoogle Scholar
  81. 81.
    Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6(2):257–262.  https://doi.org/10.1016/J.NANO.2009.07.002CrossRefPubMedGoogle Scholar
  82. 82.
    Mubarakali D, Gopinath V, Rameshbabu N, Thajuddin N (2012) Synthesis and characterization of CdS nanoparticles using C-phycoerythrin from the marine cyanobacteria. Mater Lett 74:8–11. https://www.sciencedirect.com/science/article/pii/S0167577X1200047XCrossRefGoogle Scholar
  83. 83.
    Xu H, Xiao Y, Xu M, Cui H, Tan L, Feng N, Liu X, Qiu G, Dong H, Xie J (2019) Microbial synthesis of Pd–Pt alloy nanoparticles using Shewanella oneidensis MR-1 with enhanced catalytic activity for nitrophenol and azo dyes reduction. Nanotechnology 30(6):065607.  https://doi.org/10.1088/1361-6528/aaf2a6CrossRefPubMedGoogle Scholar
  84. 84.
    Deplanche K, Merroun ML, Casadesus M, Tran DT, Mikheenko IP, Bennett JA, Zhu J et al (2012) Microbial synthesis of core/shell gold/palladium nanoparticles for applications in green chemistry. J R Soc Interface 9(72):1705–1712.  https://doi.org/10.1098/rsif.2012.0003CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Hosseinkhani B, Søbjerg LS, Rotaru A-E, Emtiazi G, Skrydstrup T, Meyer RL (2012) Microbially supported synthesis of catalytically active bimetallic Pd-Au nanoparticles. Biotechnol Bioeng 109(1):45–52.  https://doi.org/10.1002/bit.23293CrossRefPubMedGoogle Scholar
  86. 86.
    Govindaraju K, Basha SK, Kumar VG, Singaravelu G (2008) Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. 43(15):5115–5122.  https://doi.org/10.1007/s10853-008-2745-4
  87. 87.
    Zhao X, Zhou L, Rajoka MSR, Yan L, Jiang C, Shao D, Zhu J et al (2018) Fungal silver nanoparticles: synthesis, application and challenges. Crit Rev Biotechnol 38(6):817–835.  https://doi.org/10.1080/07388551.2017.1414141CrossRefPubMedGoogle Scholar
  88. 88.
    Siddiqi KS, Husen A (2016) Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nanoscale Res Lett 11(1):98.  https://doi.org/10.1186/s11671-016-1311-2CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Taherzadeh MJ, Fox M, Hjorth H, Edebo L (2003) Production of mycelium biomass and ethanol from paper pulp sulfite liquor by Rhizopus oryzae. Bioresour Technol 88(3):167–177. http://www.ncbi.nlm.nih.gov/pubmed/12618037CrossRefGoogle Scholar
  90. 90.
    Pantidos N (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol 5(5).  https://doi.org/10.4172/2157-7439.1000233
  91. 91.
    Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124(41):12108–12109.  https://doi.org/10.1021/JA027296OCrossRefPubMedGoogle Scholar
  92. 92.
    Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. Small 1(5):517–520.  https://doi.org/10.1002/smll.200400053CrossRefPubMedGoogle Scholar
  93. 93.
    Dasaratrao Sawle B, Salimath B, Deshpande R, Dhondojirao Bedre M, Krishnamurthy Prabhakar B, Venkataraman A (2008) Biosynthesis and stabilization of Au and Au-Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci Technol Adv Mater 9(3):035012.  https://doi.org/10.1088/1468-6996/9/3/035012CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Philip D (2009) Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim Acta A Mol Biomol Spectrosc 73(2):374–381.  https://doi.org/10.1016/J.SAA.2009.02.037CrossRefPubMedGoogle Scholar
  95. 95.
    Zheng D, Hu C, Gan T, Dang X, Hu S (2010) Preparation and application of a novel vanillin sensor based on biosynthesis of Au–Ag alloy nanoparticles. Sensors Actuators B Chem 148(1):247–252.  https://doi.org/10.1016/J.SNB.2010.04.031CrossRefGoogle Scholar
  96. 96.
    Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ (2015) Green synthesis of metallic nanoparticles via biological entities. Materials (Basel) 8(11):7278–7308.  https://doi.org/10.3390/ma8115377CrossRefGoogle Scholar
  97. 97.
    Lu F, Sun D, Huang J, Du M, Yang F, Chen H, Hong Y, Li Q (2014) Plant-mediated synthesis of Ag–Pd alloy nanoparticles and their application as catalyst toward selective hydrogenation. ACS Sustain Chem Eng 2(5):1212–1218.  https://doi.org/10.1021/sc500034rCrossRefGoogle Scholar
  98. 98.
    Phan CM, Nguyen HM (2017) Role of capping agent in wet synthesis of nanoparticles. 121(17):3213–3219.  https://doi.org/10.1021/acs.jpca.7b02186
  99. 99.
    Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications—an updated report. Saudi Pharm J 24(4):473–484.  https://doi.org/10.1016/j.jsps.2014.11.013CrossRefPubMedGoogle Scholar
  100. 100.
    Singh P, Kim Y-J, Zhang D, Yang D-C (2016a) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599.  https://doi.org/10.1016/j.tibtech.2016.02.006CrossRefPubMedGoogle Scholar
  101. 101.
    Singh R, Nawale L, Arkile M, Wadhwani S, Shedbalkar U, Chopade S, Sarkar D, Chopade BA (2016b) Phytogenic silver, gold, and bimetallic nanoparticles as novel antitubercular agents. Int J Nanomedicine 11:1889–1897.  https://doi.org/10.2147/IJN.S102488CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Velusamy P, Kumar GV, Jeyanthi V, Das J, Pachaiappan R (2016) Bio-inspired green nanoparticles: synthesis, mechanism, and antibacterial application. Toxicol Res 32(2):95–102.  https://doi.org/10.5487/TR.2016.32.2.095CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Sun D, Zhang G, Huang J, Wang H, Li Q (2014) Plant-mediated fabrication and surface enhanced Raman property of flower-like Au@Pd nanoparticles. Materials 7(2):1360–1369.  https://doi.org/10.3390/ma7021360CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Zhan G, Huang J, Du M, Abdul-Rauf I, Ma Y, Li Q (2011) Green synthesis of Au–Pd bimetallic nanoparticles: single-step bioreduction method with plant extract. Mater Lett 65(19–20):2989–2991.  https://doi.org/10.1016/J.MATLET.2011.06.079CrossRefGoogle Scholar
  105. 105.
    Ganaie SU, Abbasi T, Abbasi SA (2016) Rapid and green synthesis of bimetallic Au–Ag nanoparticles using an otherwise worthless weed Antigonon leptopus. J Exp Nanosci 11(6):395–417.  https://doi.org/10.1080/17458080.2015.1070311CrossRefGoogle Scholar
  106. 106.
    Chopade B, Ghosh S, Nitnavare R, Dewle A, Tomar GB, Chippalkatti R, More P, Kitture R, Kale S, Bellare J (2015) Novel platinum-palladium bimetallic nanoparticles synthesized by Dioscorea Bulbifera: anticancer and antioxidant activities. Int J Nanomedicine 10:7477.  https://doi.org/10.2147/IJN.S91579CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Malapermal V, Mbatha JN, Gengan RM, Anand K (2015) Biosynthesis of bimetallic Au-Ag nanoparticles using Ocimum basilicum (L.) with antidiabetic and antimicrobial properties. Adv Mater Lett 6(12):1050–1057.  https://doi.org/10.5185/amlett.2015.5997CrossRefGoogle Scholar
  108. 108.
    Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au Core–Ag Shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275(2):496–502.  https://doi.org/10.1016/j.jcis.2004.03.003CrossRefPubMedGoogle Scholar
  109. 109.
    Dobrucka R, Dlugaszewska J (2018) Antimicrobial activity of the biogenically synthesized core-shell Cu@Pt nanoparticles. Saudi Pharm J 26(5):643–650.  https://doi.org/10.1016/J.JSPS.2018.02.028CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Xia B, He F, Li L (2013) Preparation of bimetallic nanoparticles using a facile green synthesis method and their application. Langmuir 29(15):4901–4907.  https://doi.org/10.1021/la400355uCrossRefPubMedGoogle Scholar
  111. 111.
    Valodkar M, Modi S, Pal A, Thakore S (2011) Synthesis and anti-bacterial activity of Cu, Ag and Cu–Ag alloy nanoparticles: a green approach. Mater Res Bull 46(3):384–389.  https://doi.org/10.1016/J.MATERRESBULL.2010.12.001CrossRefGoogle Scholar
  112. 112.
    Alarfaj NA, El-Tohamy MF (2016) Eco-friendly synthesis of gelatin-capped bimetallic Au-Ag nanoparticles for chemiluminescence detection of anticancer raloxifene hydrochloride. Luminescence 31(6):1194–1200.  https://doi.org/10.1002/bio.3089CrossRefPubMedGoogle Scholar
  113. 113.
    Hebbalalu D, Lalley J, Nadagouda MN, Varma RS (2013) Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves. ACS Sustain Chem Eng 1(7):703–712.  https://doi.org/10.1021/sc4000362CrossRefGoogle Scholar
  114. 114.
    Khatami M, Sharifi I, Nobre MAL, Zafarnia N, Aflatoonian MR (2018) Waste-grass-mediated green synthesis of silver nanoparticles and evaluation of their anticancer, antifungal and antibacterial activity. Green Chem Lett Rev 11(2):125–134.  https://doi.org/10.1080/17518253.2018.1444797CrossRefGoogle Scholar
  115. 115.
    Shankar S, Jaiswal L, Aparna RSL, Prasad RGSV (2014) Synthesis, characterization, in vitro biocompatibility, and antimicrobial activity of gold, silver and gold silver alloy nanoparticles prepared from Lansium domesticum fruit peel extract. Mater Lett 137:75–78. https://www.sciencedirect.com/science/article/abs/pii/S0167577X14015997CrossRefGoogle Scholar
  116. 116.
    Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. P T 40(4):277–283. http://www.ncbi.nlm.nih.gov/pubmed/25859123PubMedPubMedCentralGoogle Scholar
  117. 117.
    Zaman SB, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain N (2017) A review on antibiotic resistance: alarm bells are ringing. Cureus 9(6):e1403.  https://doi.org/10.7759/cureus.1403CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Salomoni R, Léo P, Montemor A, Rinaldi B, Rodrigues M (2017) Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol Sci Appl 10:115–121.  https://doi.org/10.2147/NSA.S133415CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Shamaila S, Zafar N, Riaz S, Sharif R, Nazir J, Naseem S (2016) Gold nanoparticles: an efficient antimicrobial agent against enteric bacterial human pathogen. Nanomaterials (Basel) 6(4).  https://doi.org/10.3390/nano6040071
  120. 120.
    Panáček A, Kvítek L, Smékalová M, Večeřová R, Kolář M, Röderová M, Dyčka F et al (2018) Bacterial resistance to silver nanoparticles and how to overcome it. Nat Nanotechnol 13(1):65–71.  https://doi.org/10.1038/s41565-017-0013-yCrossRefGoogle Scholar
  121. 121.
    Chou K-S, Chen C-C (2007) Fabrication and characterization of silver core and porous silica shell nanocomposite particles. Microporous Mesoporous Mater 98(1–3):208–213.  https://doi.org/10.1016/J.MICROMESO.2006.09.006CrossRefGoogle Scholar
  122. 122.
    Mittal AK, Kumar S, Banerjee UC (2014) Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential. J Colloid Interface Sci 431:194–199. http://www.ncbi.nlm.nih.gov/pubmed/25000181CrossRefGoogle Scholar
  123. 123.
    Zhao Y, Ye C, Liu W, Chen R, Jiang X (2014) Tuning the composition of AuPt bimetallic nanoparticles for antibacterial application. Angew Chem Int Ed 53(31):8127–8131.  https://doi.org/10.1002/anie.201401035CrossRefGoogle Scholar
  124. 124.
    Banerjee M, Sharma S, Chattopadhyay A, Ghosh SS (2011) Enhanced antibacterial activity of bimetallic gold-silver core–shell nanoparticles at low silver concentration. Nanoscale 3(12):5120.  https://doi.org/10.1039/c1nr10703hCrossRefPubMedGoogle Scholar
  125. 125.
    Holden MS, Black J, Lewis A, Boutrin M-C, Walemba E, Sabir TS, Boskovic DS, Wilson A, Fletcher HM, Perry CC (2016) Antibacterial activity of partially oxidized Ag/Au nanoparticles against the oral pathogen Porphyromonas gingivalis W83. J Nanomater 2016:1–11.  https://doi.org/10.1155/2016/9605906CrossRefGoogle Scholar
  126. 126.
    Antonoglou O, Giannousi K, Arvanitidis J, Mourdikoudis S, Pantazaki A, Dendrinou-Samara C (2017) Elucidation of one step synthesis of PEGylated CuFe bimetallic nanoparticles. Antimicrobial activity of CuFe@PEG vs Cu@PEG. J Inorg Biochem 177:159–170.  https://doi.org/10.1016/j.jinorgbio.2017.09.014CrossRefPubMedGoogle Scholar
  127. 127.
    Fakhri A, Tahami S, Naji M (2017) Synthesis and characterization of core-shell bimetallic nanoparticles for synergistic antimicrobial effect studies in combination with doxycycline on burn specific pathogens. J Photochem Photobiol B Biol 169:21–26.  https://doi.org/10.1016/j.jphotobiol.2017.02.014CrossRefGoogle Scholar
  128. 128.
    Akinsiku AA, Dare EO, Ajanaku KO, Ajani OO, Olugbuyiro JAO, Siyanbola TO, Ejilude O, Emetere ME (2018) Modeling and synthesis of Ag and Ag/Ni allied bimetallic nanoparticles by green method: optical and biological properties. Int J Biomater 2018:1–17.  https://doi.org/10.1155/2018/9658080CrossRefGoogle Scholar
  129. 129.
    Cooper GM (2000) The development and causes of cancer. https://www.ncbi.nlm.nih.gov/books/NBK9963/
  130. 130.
    Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68(1):7–30.  https://doi.org/10.3322/caac.21442CrossRefGoogle Scholar
  131. 131.
    Mariotto AB, Robin Yabroff K, Shao Y, Feuer EJ, Brown ML (2011) Projections of the cost of cancer care in the United States: 2010-2020. J Natl Cancer Inst 103(2):117–128.  https://doi.org/10.1093/jnci/djq495CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Arruebo M, Vilaboa N, Sáez-Gutierrez B, Lambea J, Tres A, Valladares M, González-Fernández A (2011) Assessment of the evolution of cancer treatment therapies. Cancers 3(3):3279–3330.  https://doi.org/10.3390/cancers3033279CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Institute for Quality and Efficiency in Health Care: Executive Summaries (2005) Institute for Quality and Efficiency in Health Care: Executive. Institute for Quality and Efficiency in Health Care (IQWiG), Cologne. http://www.ncbi.nlm.nih.gov/pubmed/23101074Google Scholar
  134. 134.
    Gelband H, Jha P, Sankaranarayanan R, et al (2016) Cancer: disease control priorities, vol 3, 3rd edn. The International Bank for Reconstruction and Development/The World Bank, Washington, DC, p 2016.  https://doi.org/10.1596/978-1-4648-0349-9
  135. 135.
    Ramirez LY, Huestis SE, Yap TY, Zyzanski S, Drotar D, Kodish E (2009) Potential chemotherapy side effects: what do oncologists tell parents? Pediatr Blood Cancer 52(4):497–502.  https://doi.org/10.1002/pbc.21835CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell. Garland Science, New YorkGoogle Scholar
  137. 137.
  138. 138.
    Gmeiner WH, Ghosh S (2015) Nanotechnology for cancer treatment. Nanotechnol Rev 3(2):111–122.  https://doi.org/10.1515/ntrev-2013-0013CrossRefPubMedGoogle Scholar
  139. 139.
    Yuan Y-G, Peng Q-L, Gurunathan S (2017) Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment. Int J Nanomed 12:6487–6502.  https://doi.org/10.2147/IJN.S135482CrossRefGoogle Scholar
  140. 140.
    De Matteis V, Cascione M, Toma C, Leporatti S (2018) Silver nanoparticles: synthetic routes, in vitro toxicity and theranostic applications for cancer disease. Nanomaterials 8(5):319.  https://doi.org/10.3390/nano8050319CrossRefPubMedCentralGoogle Scholar
  141. 141.
    Shmarakov I, Mukha I, Vityuk N, Borschovetska V, Zhyshchynska N, Grodzyuk G, Eremenko A (2017) Antitumor activity of alloy and core-shell-type bimetallic AgAu nanoparticles. Nanoscale Res Lett 12(1):333.  https://doi.org/10.1186/s11671-017-2112-yCrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Mishra SK, Kannan S (2017) A bimetallic silver–neodymium theranostic nanoparticle with multimodal NIR/MRI/CT imaging and combined chemo-photothermal therapy. Inorg Chem 56(19):12054–12066.  https://doi.org/10.1021/acs.inorgchem.7b02103CrossRefPubMedGoogle Scholar
  143. 143.
    Kumar R, Gokulakrishnan N, Kumar R, Krishna VM, Saravanan A, Supriya S, Somanathan T (2015) Can be a bimetal oxide ZnO-MgO nanoparticles anticancer drug carrier and deliver? Doxorubicin adsorption/release study. J Nanosci Nanotechnol 15(2):1543–1553. http://www.ncbi.nlm.nih.gov/pubmed/26353689CrossRefGoogle Scholar
  144. 144.
    Sathya K, Saravanathamizhan R, Baskar G (2018) Ultrasonic assisted green synthesis of Fe and Fe/Zn bimetallic nanoparticles for in vitro cytotoxicity study against HeLa cancer cell line. Mol Biol Rep 45(5):1397–1404.  https://doi.org/10.1007/s11033-018-4302-9CrossRefPubMedGoogle Scholar
  145. 145.
    Estelrich J, Sánchez-Martín MJ, Busquets MA (2015) Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int J Nanomedicine 10:1727–1741.  https://doi.org/10.2147/IJN.S76501CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Nune SK, Gunda P, Thallapally PK, Lin Y-Y, Laird Forrest M, Berkland CJ (2009) Nanoparticles for biomedical imaging. Expert Opin Drug Deliv 6(11):1175–1194.  https://doi.org/10.1517/17425240903229031CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Lindner JR, Link J (2018) Molecular imaging in drug discovery and development. Circ Cardiovasc Imaging 11(2):e005355.  https://doi.org/10.1161/CIRCIMAGING.117.005355CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Hacker M, Beyer T, Baum RP, Kalemis A, Lammertsma AA, Lewington V, Talbot J-N, Verzijlbergen F (2015) Nuclear medicine innovations help (drive) healthcare (benefits). Eur J Nucl Med Mol Imaging 42(2):173–175.  https://doi.org/10.1007/s00259-014-2957-6CrossRefPubMedGoogle Scholar
  149. 149.
    Shukla AK, Kumar U (2006) Positron emission tomography: an overview. J Med Phys 31(1):13–21.  https://doi.org/10.4103/0971-6203.25665CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Rahmim A, Zaidi H (2008) PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun 29(3):193–207.  https://doi.org/10.1097/MNM.0b013e3282f3a515CrossRefPubMedGoogle Scholar
  151. 151.
    Pang B, Zhao Y, Luehmann H, Yang X, Detering L, You M, Zhang C et al (2016) 64Cu-Doped PdCu@Au Tripods: a multifunctional nanomaterial for positron emission tomography and image-guided photothermal cancer treatment. ACS Nano 10(3):3121–3131.  https://doi.org/10.1021/ACSNANO.5B07968CrossRefPubMedGoogle Scholar
  152. 152.
    Histed SN, Lindenberg ML, Mena E, Turkbey B, Choyke PL, Kurdziel KA (2012) Review of functional/anatomical imaging in oncology. Nucl Med Commun 33(4):349–361.  https://doi.org/10.1097/MNM.0b013e32834ec8a5CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Reuveni T, Motiei M, Romman Z, Popovtzer A, Popovtzer R (2011) Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int J Nanomedicine 6:2859–2864.  https://doi.org/10.2147/IJN.S25446CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Li B, Ye K, Zhang Y, Qin J, Zou R, Xu K, Huang X et al (2015a) Photothermal theragnosis synergistic therapy based on bimetal sulphide nanocrystals rather than nanocomposites. Adv Mater 27(8):1339–1345.  https://doi.org/10.1002/adma.201404257CrossRefPubMedGoogle Scholar
  155. 155.
    Li Q, Wu L, Wu G, Su D, Lv H, Zhang S, Zhu W et al (2015b) New approach to fully ordered Fct-FePt nanoparticles for much enhanced electrocatalysis in acid. Nano Lett 15(4):2468–2473.  https://doi.org/10.1021/acs.nanolett.5b00320CrossRefPubMedGoogle Scholar
  156. 156.
    Maney V, Singh M (2017) An in vitro assessment of novel chitosan/bimetallic PtAu nanocomposites as delivery vehicles for doxorubicin. Nanomedicine 12(21):2625–2640.  https://doi.org/10.2217/nnm-2017-0228CrossRefPubMedGoogle Scholar
  157. 157.
    Senpan A, Caruthers SD, Rhee I, Mauro NA, Pan D, Hu G, Scott MJ et al (2009) Conquering the dark side: colloidal iron oxide nanoparticles. ACS Nano 3(12):3917–3926.  https://doi.org/10.1021/nn900819yCrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Choi J-s, Lee J-H, Shin T-H, Song H-T, Kim EY, Cheon J (2010) Self-confirming ‘AND’ logic nanoparticles for fault-free MRI. J Am Chem Soc 132(32):11015–11017.  https://doi.org/10.1021/ja104503gCrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Chavhan GB, Babyn PS, Thomas B, Shroff MM, Haacke EM (2009) Principles, techniques, and applications of T2∗-based MR imaging and its special applications. RadioGraphics 29(5):1433–1449.  https://doi.org/10.1148/rg.295095034CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    McNamara K, Tofail SAM (2015) Nanosystems: the use of nanoalloys, metallic, bimetallic, and magnetic nanoparticles in biomedical applications. Phys Chem Chem Phys 17(42):27981–27995.  https://doi.org/10.1039/C5CP00831JCrossRefPubMedGoogle Scholar
  161. 161.
    Sun C, Lee J, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery☆. Adv Drug Deliv Rev 60(11):1252–1265.  https://doi.org/10.1016/j.addr.2008.03.018CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Kumal RR, Abu-Laban M, Hamal P, Kruger B, Smith HT, Hayes DJ, Haber LH (2018) Near-infrared photothermal release of SiRNA from the surface of colloidal gold–silver–gold core–shell–shell nanoparticles studied with second-harmonic generation. J Phys Chem C 122(34):19699–19704.  https://doi.org/10.1021/acs.jpcc.8b06117CrossRefGoogle Scholar
  163. 163.
    Taylor EN, Kummer KM, Durmus NG, Leuba K, Tarquinio KM, Webster TJ (2012) Superparamagnetic iron oxide nanoparticles (SPION) for the treatment of antibiotic-resistant biofilms. Small 8(19):3016–3027.  https://doi.org/10.1002/smll.201200575CrossRefPubMedGoogle Scholar
  164. 164.
    Rozanova N, Zhang JZ (2009) Photothermal ablation therapy for cancer based on metal nanostructures. Sci China Ser B Chem 52(10):1559–1575.  https://doi.org/10.1007/s11426-009-0247-0CrossRefGoogle Scholar
  165. 165.
    Sharma H, Mishra PK, Talegaonkar S, Vaidya B (2015) Metal nanoparticles: a theranostic nanotool against cancer. Drug Discov Today 20(9):1143–1151.  https://doi.org/10.1016/j.drudis.2015.05.009CrossRefPubMedGoogle Scholar
  166. 166.
    Liu X, Zhang X, Zhu M, Lin G, Liu J, Zhou Z, Tian X, Pan Y (2017) PEGylated Au@Pt nanodendrites as novel theranostic agents for computed tomography imaging and photothermal/radiation synergistic therapy. ACS Appl Mater Interfaces 9(1):279–285.  https://doi.org/10.1021/acsami.6b15183CrossRefPubMedGoogle Scholar
  167. 167.
    Gan N, Xiong P, Wang J, Li T, Hu F, Cao Y, Zheng L (2013) A novel signal-amplified immunoassay for the detection of C-reactive protein using HRP-doped magnetic nanoparticles as labels with the electrochemical quartz crystal microbalance as a detector. J Anal Methods Chem 2013:1–8.  https://doi.org/10.1155/2013/482316CrossRefGoogle Scholar
  168. 168.
    Wang C, Chen J, Talavage T, Irudayaraj J (2009) Gold nanorod/Fe 3 O 4 nanoparticle ‘nano-pearl-necklaces’ for simultaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells. Angew Chem Int Ed 48(15):2759–2763.  https://doi.org/10.1002/anie.200805282CrossRefGoogle Scholar
  169. 169.
    Fan Z, Senapati D, Khan SA, Singh AK, Hamme A, Yust B, Sardar D, Ray PC (2013) Popcorn-shaped magnetic core-plasmonic shell multifunctional nanoparticles for the targeted magnetic separation and enrichment, label-free SERS imaging, and photothermal destruction of multidrug-resistant bacteria. Chem Eur J 19(8):2839–2847.  https://doi.org/10.1002/chem.201202948CrossRefPubMedGoogle Scholar
  170. 170.
    Yamada M, Foote M, Prow TW (2015) Therapeutic gold, silver, and platinum nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7(3):428–445.  https://doi.org/10.1002/wnan.1322CrossRefPubMedGoogle Scholar
  171. 171.
    Cheng L-C, Huang J-H, Chen HM, Lai T-C, Yang K-Y, Liu R-S, Hsiao M, Chen C-H, Her L-J, Tsai DP (2012) Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent. J Mater Chem 22(5):2244–2253.  https://doi.org/10.1039/C1JM13937ACrossRefGoogle Scholar
  172. 172.
    Yadi M, Mostafavi E, Saleh B, Davaran S, Aliyeva I, Khalilov R, Nikzamir M et al (2018) Current developments in green synthesis of metallic nanoparticles using plant extracts: a review. Artif Cells Nanomed Biotechnol 46(Suppl 3):S336–S343.  https://doi.org/10.1080/21691401.2018.1492931CrossRefPubMedGoogle Scholar
  173. 173.
    Salvo P, Dini V, Kirchhain A, Janowska A, Oranges T, Chiricozzi A, Lomonaco T, Di Francesco F, Romanelli M (2017) Sensors and biosensors for C-reactive protein, temperature and PH, and their applications for monitoring wound healing: a review. Sensors 17(12):2952.  https://doi.org/10.3390/s17122952CrossRefGoogle Scholar
  174. 174.
    Chin SF, Iyer KS, Raston CL (2010) Superparamagnetic core-shell nanoparticles for biomedical applications. In: 2010 international conference on enabling science and nanotechnology (ESciNano). IEEE, p 1.  https://doi.org/10.1109/ESCINANO.2010.5700936
  175. 175.
    Zhou T, Wu B, Xing D (2012) Bio-modified Fe3 O4 core/Au shell nanoparticles for targeting and multimodal imaging of cancer cells. J Mater Chem 22(2):470–477.  https://doi.org/10.1039/C1JM13692ECrossRefGoogle Scholar
  176. 176.
    Chang E, Miller JS, Sun J, Yu WW, Colvin VL, Drezek R, West JL (2005) Protease-activated quantum dot probes. Biochem Biophys Res Commun 334(4):1317–1321.  https://doi.org/10.1016/j.bbrc.2005.07.028CrossRefPubMedGoogle Scholar
  177. 177.
    Welser K, Adsley R, Moore BM, Chan WC, Aylott JW (2011) Protease sensing with nanoparticle based platforms. Analyst 136(1):29–41.  https://doi.org/10.1039/c0an00429dCrossRefPubMedGoogle Scholar
  178. 178.
    Medintz IL, Clapp AR, Brunel FM, Tiefenbrunn T, Tetsuo Uyeda H, Chang EL, Deschamps JR, Dawson PE, Mattoussi H (2006) Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot–peptide conjugates. Nat Mater 5(7):581–589.  https://doi.org/10.1038/nmat1676CrossRefPubMedGoogle Scholar
  179. 179.
    Choi JH, Chen KH, Strano MS (2006) Aptamer-capped nanocrystal quantum dots: a new method for label-free protein detection. J Am Chem Soc 128(49):15584–15585.  https://doi.org/10.1021/JA066506KCrossRefPubMedGoogle Scholar
  180. 180.
    Chiriac H, Tibu M, Moga A-E, Herea DD (2005) Magnetic GMI sensor for detection of biomolecules. J Magn Magn Mater 293(1):671–676.  https://doi.org/10.1016/J.JMMM.2005.02.043CrossRefGoogle Scholar
  181. 181.
    Lin D, Wu J, Wang M, Yan F, Ju H (2012) Triple signal amplification of graphene film, polybead carried gold nanoparticles as tracing tag and silver deposition for ultrasensitive electrochemical immunosensing. Anal Chem 84(8):3662–3668.  https://doi.org/10.1021/ac3001435CrossRefPubMedGoogle Scholar
  182. 182.
    Gliga AR, Skoglund S, Odnevall Wallinder I, Fadeel B, Karlsson HL (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11(1):11.  https://doi.org/10.1186/1743-8977-11-11CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3(11):1941–1949.  https://doi.org/10.1002/smll.200700378CrossRefPubMedGoogle Scholar
  184. 184.
    Moise S, Céspedes E, Soukup D, Byrne JM, El Haj AJ, Telling ND (2017) The cellular magnetic response and biocompatibility of biogenic zinc- and cobalt-doped magnetite nanoparticles. Sci Rep 7(1):39922.  https://doi.org/10.1038/srep39922CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • David Medina-Cruz
    • 1
    • 2
  • Bahram Saleh
    • 1
    • 2
  • Ada Vernet-Crua
    • 1
    • 2
  • Alfonso Nieto-Argüello
    • 3
  • Diana Lomelí-Marroquín
    • 3
  • Lydia Yerid Vélez-Escamilla
    • 3
  • Jorge L. Cholula-Díaz
    • 3
  • José Miguel García-Martín
    • 4
  • Thomas Webster
    • 1
    • 2
    Email author
  1. 1.Department of Chemical EngineeringNortheastern UniversityBostonUSA
  2. 2.Nanomedicine Science and Technology Center, Northeastern UniversityBostonUSA
  3. 3.School of Engineering and Sciences, Tecnologico de MonterreyMonterreyMexico
  4. 4.Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM + CSIC)Tres CantosSpain

Personalised recommendations