Skip to main content

High-Frequency Ultrasonic Transducers to Uncover Cardiac Dynamics

  • Chapter
  • First Online:
Interfacing Bioelectronics and Biomedical Sensing

Abstract

In order to improve medical ultrasound image resolution, ultrasound imaging is being pushed to higher and higher frequencies. High-frequency (higher than 30 MHz) ultrasound provides a noninvasive imaging method for many clinical and preclinical applications requiring improved spatial resolution. There are a number of clinical problems that may benefit from high-frequency ultrasound imaging. Significant progress in the development of high-frequency single-element and array transducers has been achieved in the past few years. Single-element ultrasound transducers have been exclusively used in high-frequency ultrasound imaging for many years. They have been able to provide an adequate solution in a number of clinical and preclinical applications including small animal imaging. These single-element transducers however are less than ideal due to their single geometrical focus and must be mechanically scanned to form an image. Dynamic focusing is a distinct advantage that array transducers possess over single-element transducers. Array systems use electronic scanning to form an image slice and therefore can achieve higher frame rates. Also, ultrasound beam can be steered and dynamically focused in the image plane. In this chapter, the high-frequency transducer/array for small animal heart imaging will be reported, and pulsed-wave Doppler for blood flow detection will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shung, K. K. (2006). Diagnostic ultrasound: Imaging and blood flow measurements. Boca Raton: CRC Press.

    Google Scholar 

  2. Lockwood, G. R., Turnball, D. H., Christopher, D. A., & Foster, F. S. (1996). Beyond 30 MHz: Applications of high-frequency ultrasound imaging. Engineering in Medicine and Biology Magazine, 15, 60–71.

    Article  Google Scholar 

  3. Cannata, J. M., Ritter, T. A., Chen, W. H., Silverman, R. H., & Shung, K. K. (2003). Design of efficient, broadband single-element (20–80 MHz) ultrasonic transducers for medical imaging applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 50, 1548–1557.

    Article  Google Scholar 

  4. Ritter, T. A., Shrout, T. R., Tutwiler, R., & Shung, K. K. (Feb 2002). A 30-MHz piezo-composite ultrasound array for medical imaging applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 49, 217–230.

    Article  Google Scholar 

  5. Cannata, J. M., Williams, J. A., Zhou, Q., Ritter, T. A., & Shung, K. K. (2006). Development of a 35-MHz piezo-composite ultrasound array for medical imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 53, 224–236.

    Article  Google Scholar 

  6. Ma, T., Yu, M., Li, J., Munding, C. E., Chen, Z., Fei, C., et al. (2015). Multi-frequency intravascular ultrasound (IVUS) imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 62, 97–107.

    Article  Google Scholar 

  7. Yoon, S., Williams, J., Kang, B. J., Yoon, C., Cabrera-Munoz, N., Jeong, J. S., et al. (Jun 2015). Angled-focused 45 MHz PMN-PT single element transducer for intravascular ultrasound imaging. Sensors and Actuators A: Physical, 228, 16–22.

    Article  Google Scholar 

  8. Li, X., Wu, W., Chung, Y., Shih, W. Y., Shih, W. H., Zhou, Q., et al. (2011). 80-MHz intravascular ultrasound transducer using PMN-PT free-standing film. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 58, 2281–2288.

    Article  Google Scholar 

  9. Li, X., Ma, T., Tian, J., Han, P., Zhou, Q., & Shung, K. K. (2014). Micromachined PIN-PMN-PT crystal composite transducer for high-frequency intravascular ultrasound (IVUS) imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 61, 1171–1178.

    Article  Google Scholar 

  10. Chen, R., Cabrera-Munoz, N. E., Lam, K. H., Hsu, H. S., Zheng, F., Zhou, Q., et al. (2014). PMN-PT single-crystal high-frequency kerfless phased array. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 61, 1033–1041.

    Article  Google Scholar 

  11. Cannata, J. M., Williams, J. A., Zhang, L., Hu, C. H., & Shung, K. K. (2011). A high-frequency linear ultrasonic array utilizing an interdigitally bonded 2-2 piezo-composite. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 58, 2202–2212.

    Article  Google Scholar 

  12. Turnbull, D. H., Bloomfield, T. S., Baldwin, H. S., Foster, F. S., & Joyner, A. L. (1995). Ultrasound backscatter microscope analysis of early mouse embryonic brain development. Proceedings of the National Academy of Sciences of the United States of America, 92, 2239–2243.

    Article  Google Scholar 

  13. Foster, F. S., Pavlin, C. J., Harasiewicz, K. A., Christopher, D. A., & Turnbull, D. H. (2000). Advances in ultrasound biomicroscopy. Ultrasound in Medicine & Biology, 26, 1–27.

    Article  Google Scholar 

  14. Foster, F. S., Zhang, M. Y., Zhou, Y. Q., Liu, G., Mehi, J., Cherin, E., et al. (2002). A new ultrasound instrument for in vivo microimaging of mice. Ultrasound in Medicine & Biology, 28, 1165–1172.

    Article  Google Scholar 

  15. Kaufmann, B. A., Lankford, M., Behm, C. Z., French, B. A., Klibanov, A. L., Xu, Y., et al. (2007). High-resolution myocardial perfusion imaging in mice with high-frequency echocardiographic detection of a depot contrast agent. Journal of the American Society of Echocardiography, 20, 136–143.

    Article  Google Scholar 

  16. Zhou, Y. Q., Foster, F. S., Nieman, B. J., Davidson, L., Chen, X. J., & Henkelman, R. M. (2004). Comprehensive transthoracic cardiac imaging in mice using ultrasound biomicroscopy with anatomical confirmation by magnetic resonance imaging. Physiological Genomics, 18, 232–244.

    Article  Google Scholar 

  17. Christopher, D. A., Burns, P. N., Starkoski, B. G., & Foster, F. S. (1997). A high-frequency pulsed-wave Doppler ultrasound system for the detection and imaging of blood flow in the microcirculation. Ultrasound in Medicine & Biology, 23, 997–1015.

    Article  Google Scholar 

  18. Kruse, D. E., Silverman, R. H., Fornaris, R. J., Coleman, D. J., & Ferrara, K. W. (1998). A swept-scanning mode for estimation of blood velocity in the microvasculature. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 45, 1437–1440.

    Article  Google Scholar 

  19. Phoon, C. K., Aristizabal, O., & Turnbull, D. H. (Oct 2000). 40 MHz Doppler characterization of umbilical and dorsal aortic blood flow in the early mouse embryo. Ultrasound in Medicine & Biology, 26, 1275–1283.

    Article  Google Scholar 

  20. Reddy, A. K., Jones, A. D., Martono, C., Caro, W. A., Madala, S., & Hartley, C. J. (2005). Pulsed Doppler signal processing for use in mice: Design and evaluation. IEEE Transactions on Biomedical Engineering, 52, 1764–1770.

    Article  Google Scholar 

  21. Reddy, A. K., Taffet, G. E., Li, Y. H., Lim, S. W., Pham, T. T., Pocius, J. S., et al. (2005). Pulsed Doppler signal processing for use in mice: Applications. IEEE Transactions on Biomedical Engineering, 52, 1771–1783.

    Article  Google Scholar 

  22. Chérin, E., Williams, R., Needles, A., Liu, G., White, C., Brown, A. S., et al. (2006). Ultrahigh frame rate retrospective ultrasound microimaging and blood flow visualization in mice in vivo. Ultrasound in Medicine & Biology, 32, 683–691.

    Article  Google Scholar 

  23. Goertz, D. E., Christopher, D. A., Yu, J. L., Kerbel, R. S., Burns, P. N., & Foster, F. S. (2000). High-frequency color flow imaging of the microcirculation. Ultrasound in Medicine & Biology, 26, 63–71.

    Article  Google Scholar 

  24. Goertz, D. E., Yu, J. L., Kerbel, R. S., Burns, P. N., & Foster, F. S. (2003). High-frequency 3-D color-flow imaging of the microcirculation. Ultrasound in Medicine & Biology, 29, 39–51.

    Article  Google Scholar 

  25. Sun, L., Xu, X., Richard, W. D., Feng, C., Johnson, J. A., & Shung, K. K. (2008). A high-frame rate duplex ultrasound biomicroscopy for small animal imaging in vivo. IEEE Transactions on Biomedical Engineering, 55, 2039–2049.

    Article  Google Scholar 

  26. Sun, L., Richard, W. D., Cannata, J. M., Feng, C. C., Johnson, J. A., Yen, J. T., et al. (2007). A high-frame rate high-frequency ultrasonic system for cardiac imaging in mice. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 54, 1648–1655.

    Article  Google Scholar 

  27. Lukacs, M., Yin, J., Pang, G., Garcia, R. C., Cherin, E., Williams, R., et al. (2006). Performance and characterization of new micromachined high-frequency linear arrays. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 53, 1719–1729.

    Article  Google Scholar 

  28. Brown, J. A., Foster, F. S., Needles, A., Cherin, E., & Lockwood, G. R. (2007). Fabrication and performance of a 40-MHz linear array based on a 1-3 composite with geometric elevation focusing. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 54, 1888–1894.

    Article  Google Scholar 

  29. Zhang, L., Xu, X., Hu, C., Sun, L., Yen, J. T., Cannata, J. M., et al. (2010). A high-frequency, high frame rate duplex ultrasound linear array imaging system for small animal imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 57, 1548–1557.

    Article  Google Scholar 

  30. Chen, J. N., Haffter, P., Odenthal, J., Vogelsang, E., Brand, M., van Eeden, F. J., et al. (1996). Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development, 123, 293–302.

    Google Scholar 

  31. Serbedzija, G. N., Chen, J. N., & Fishman, M. C. (1998). Regulation in the heart field of zebrafish. Development, 125, 1095–1101.

    Google Scholar 

  32. Thisse, C., & Zon, L. I. (2002). Organogenesis – heart and blood formation from the zebrafish point of view. Science, 295, 457–462.

    Article  Google Scholar 

  33. Hu, N., Sedmera, D., Yost, H. J., & Clark, E. B. (2000). Structure and function of the developing zebrafish heart. The Anatomical Record, 260, 148–157.

    Article  Google Scholar 

  34. Hu, N., Yost, H. J., & Clark, E. B. (2001). Cardiac morphology and blood pressure in the adult zebrafish. The Anatomical Record, 264, 1–12.

    Article  Google Scholar 

  35. Kabli, S., Alia, A., Spaink, H. P., Verbeek, F. J., & De Groot, H. J. (2006). Magnetic resonance microscopy of the adult zebrafish. Zebrafish, 3, 431–439.

    Article  Google Scholar 

  36. Ho, Y. L., Shau, Y. W., Tsai, H. J., Lin, L. C., Huang, P. J., & Hsieh, F. J. (2002). Assessment of zebrafish cardiac performance using Doppler echocardiography and power angiography. Ultrasound in Medicine & Biology, 28, 1137–1143.

    Article  Google Scholar 

  37. Sun, L., Lien, C. L., Xu, X., & Shung, K. K. (2008). In vivo cardiac imaging of adult zebrafish using high frequency ultrasound (45–75 MHz). Ultrasound in Medicine & Biology, 34, 31–39.

    Article  Google Scholar 

  38. Hu, C., Zhang, L., Cannata, J. M., Yen, J., & Shung, K. K. (2011). Development of a 64 channel ultrasonic high frequency linear array imaging system. Ultrasonics, 51, 953–959.

    Article  Google Scholar 

  39. Lee, J., Cao, H., Kang, B. J., Jen, N., Yu, F., Lee, C. A., et al. (2014). Hemodynamics and ventricular function in a zebrafish model of injury and repair. Zebrafish, 11, 447–454.

    Article  Google Scholar 

  40. Grego-Bessa, J., Luna-Zurita, L., del Monte, G., Bolós, V., Melgar, P., Arandilla, A., et al. (2007). Notch signaling is essential for ventricular chamber development. Developmental Cell, 12, 415–429.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qifa Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kang, B.J., Zhou, Q., Shung, K.K. (2020). High-Frequency Ultrasonic Transducers to Uncover Cardiac Dynamics. In: Cao, H., Coleman, T., Hsiai, T., Khademhosseini, A. (eds) Interfacing Bioelectronics and Biomedical Sensing. Springer, Cham. https://doi.org/10.1007/978-3-030-34467-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34467-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34466-5

  • Online ISBN: 978-3-030-34467-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics