Skip to main content

Flexible Intravascular EIS Sensors for Detecting Metabolically Active Plaque

  • Chapter
  • First Online:
Interfacing Bioelectronics and Biomedical Sensing

Abstract

This chapter presents a comprehensive discussion on the recent development of utilizing electrochemical impedance spectroscopy (EIS) in atherosclerosis diagnosis. We first outline the general characteristics of atherosclerosis and the need for novel intravascular detection technology. The underlying principal of EIS is then reviewed from physical modeling and equivalent circuit perspectives. The focus of this chapter is the implementation of various EIS devices. We compare the typical 4-point electrode with the more compact 2-point configuration. The concentric bipolar electrode design has been discussed from the early in vitro sample testing to the subsequent device implementation based on stretchable materials. We then move to the most recent 2-point symmetric electrode design, based on which a fascinating 6-point 3-D EIS scheme has been developed. We discuss the live animal study being conducted to demonstrate the performance of such EIS design. Finally, this chapter concludes with our vision on future direction of improving the EIS technology, as well as advancing toward clinical adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bentzon, J. F., Otsuka, F., Virmani, R., & Falk, E. (2014). Mechanisms of plaque formation and rupture. Circulation Research, 114, 1852–1866.

    Article  Google Scholar 

  2. Yahagi, K., Kolodgie, F. D., Otsuka, F., Finn, A. V., Davis, H. R., Joner, M., & Virmani, R. (2016). Pathophysiology of native coronary, vein graft, and in-stent atherosclerosis. Nature Reviews Cardiology, 13, 79.

    Article  Google Scholar 

  3. Vengrenyuk, Y., Carlier, S., Xanthos, S., Cardoso, L., Ganatos, P., Virmani, R., Einav, S., Gilchrist, L., & Weinbaum, S. (2006). A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proceedings of the National Academy of Sciences, 103, 14678–14683.

    Article  Google Scholar 

  4. Libby, P., Ridker, P. M., & Hansson, G. K. (2011). Progress and challenges in translating the biology of atherosclerosis. Nature, 473, 317.

    Article  Google Scholar 

  5. Little, W. C., Constantinescu, M., Applegate, R. J., Kutcher, M. A., Burrows, M. T., Kahl, F. R., & Santamore, W. P. (1988). Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation, 78, 1157–1166.

    Article  Google Scholar 

  6. Ambrose, J. A., Tannenbaum, M. A., Alexopoulos, D., Hjemdahl-Monsen, C. E., Leavy, J., Weiss, M., Borrico, S., Gorlin, R., & Fuster, V. (1988). Angiographic progression of coronary artery disease and the development of myocardial infarction. Journal of the American College of Cardiology, 12, 56–62.

    Article  Google Scholar 

  7. Fuster, V., Badimon, L., Badimon, J., & Chesebro, J. (1992). The pathogenesis of coronary artery disease and the acute coronary syndromes (1). The New England Journal of Medicine, 326(4), 242–250. doi: 10.1056, NEJM199201233260406.[Abstract][Cross Ref].

    Article  Google Scholar 

  8. Libby, P. (2013). Mechanisms of acute coronary syndromes and their implications for therapy. New England Journal of Medicine, 368, 2004–2013.

    Article  Google Scholar 

  9. Anderson, J. L., Adams, C. D., Antman, E. M., Bridges, C. R., Califf, R. M., Casey, D. E., Chavey, W. E., Fesmire, F. M., Hochman, J. S., & Levin, T. N. (2007). ACC/AHA 2007 guidelines for the management of patients with unstable angina/non–ST-elevation myocardial infarction—executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines for the Management of Patients With Unstable Angina/Non–ST-Elevation Myocardial Infarction) Developed in Collaboration with the American College of Emergency Physicians, the Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons Endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation and the Society for Academic Emergency Medicine. Journal of the American College of Cardiology, 50, 652–726.

    Article  Google Scholar 

  10. Heistad, D. D. (2003). Unstable coronary-artery plaques. New England Journal of Medicine, 349, 2285–2287.

    Article  Google Scholar 

  11. Galis, Z. S. (2004). Vulnerable plaque: The devil is in the details. Circulation, 110(3), 244–246.

    Article  Google Scholar 

  12. Brown, M. S., & Goldstein, J. L. (1983). Lipoprotein metabolism in the macrophage: Implications for cholesterol deposition in atherosclerosis. Annual Review of Biochemistry, 52, 223–261.

    Article  Google Scholar 

  13. Park, Y. M., Febbraio, M., & Silverstein, R. L. (2009). CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. The Journal of Clinical Investigation, 119, 136–145.

    Google Scholar 

  14. Ehara, S., Ueda, M., Naruko, T., Haze, K., Itoh, A., Otsuka, M., Komatsu, R., Matsuo, T., Itabe, H., & Takano, T. (2001). Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes. Circulation, 103, 1955–1960.

    Article  Google Scholar 

  15. Chinetti-Gbaguidi, G., Baron, M., Bouhlel, M. A., Vanhoutte, J., Copin, C., Sebti, Y., Derudas, B., Mayi, T., Bories, G., & Tailleux, A. (2011). Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARγ and LXRα pathways. Circulation Research. CIRCRESAHA. 110.233775.

    Google Scholar 

  16. Tang, D., Yang, C., Kobayashi, S., Zheng, J., & Vito, R. P. (2003). Effect of stenosis asymmetry on blood flow and artery compression: A three-dimensional fluid-structure interaction model. Annals of Biomedical Engineering, 31, 1182–1193.

    Article  Google Scholar 

  17. Schwartz, S. M., Galis, Z. S., Rosenfeld, M. E., & Falk, E. (2007). Plaque rupture in humans and mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 705–713.

    Article  Google Scholar 

  18. Berliner, J. A., & Heinecke, J. W. (1996). The role of oxidized lipoproteins in atherogenesis. Free Radical Biology and Medicine, 20, 707–727.

    Article  Google Scholar 

  19. Asatryan, L., Hamilton, R. T., Isas, J. M., Hwang, J., Kayed, R., & Sevanian, A. (2005). LDL phospholipid hydrolysis produces modified electronegative particles with an unfolded apoB-100 protein. Journal of Lipid Research, 46, 115–122.

    Article  Google Scholar 

  20. Navab, M., Berliner, J. A., Watson, A. D., Hama, S. Y., Territo, M. C., Lusis, A. J., Shih, D. M., Van Lenten, B. J., Frank, J. S., & Demer, L. L. (1996). The yin and yang of oxidation in the development of the fatty streak: A review based on the 1994 George Lyman Duff Memorial Lecture. Arteriosclerosis, Thrombosis, and Vascular Biology, 16, 831–842.

    Article  Google Scholar 

  21. Ross, R. (1999). Pathogenesis of atherosclerosis-atherosclerosis is an inflammatory disease. American Heart Journal, 138, S419.

    Article  Google Scholar 

  22. Bourantas, C. V., Garcia-Garcia, H. M., Naka, K. K., Sakellarios, A., Athanasiou, L., Fotiadis, D. I., Michalis, L. K., & Serruys, P. W. (2013). Hybrid intravascular imaging: Current applications and prospective potential in the study of coronary atherosclerosis. Journal of the American College of Cardiology, 61, 1369–1378.

    Article  Google Scholar 

  23. Worthley, S. G., Helft, G., Fuster, V., Fayad, Z. A., Shinnar, M., Minkoff, L. A., Schechter, C., Fallon, J. T., & Badimon, J. J. (2003). A novel nonobstructive intravascular MRI coil: In vivo imaging of experimental atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 346–350.

    Article  Google Scholar 

  24. Jaffer, F. A., Vinegoni, C., John, M. C., Aikawa, E., Gold, H. K., Finn, A. V., Ntziachristos, V., Libby, P., & Weissleder, R. (2008). Real-time catheter molecular sensing of inflammation in proteolytically active atherosclerosis. Circulation, 118, 1802–1809.

    Article  Google Scholar 

  25. Marcu, L., Fishbein, M. C., Maarek, J.-M. I., & Grundfest, W. S. (2001). Discrimination of human coronary artery atherosclerotic lipid-rich lesions by time-resolved laser-induced fluorescence spectroscopy. Arteriosclerosis, Thrombosis, and Vascular Biology, 21, 1244–1250.

    Article  Google Scholar 

  26. Castellanos, A., Ramos, A., Gonzalez, A., Green, N. G., & Morgan, H. (2003). Electrohydrodynamics and dielectrophoresis in microsystems: Scaling laws. Journal of Physics D: Applied Physics, 36, 2584.

    Article  Google Scholar 

  27. Lisdat, F., & Schäfer, D. (2008). The use of electrochemical impedance spectroscopy for biosensing. Analytical and Bioanalytical Chemistry, 391, 1555.

    Article  Google Scholar 

  28. Hondroulis, E., Zhang, R., Zhang, C., Chen, C., Ino, K., Matsue, T., & Li, C.-Z. (2014). Immuno nanoparticles integrated electrical control of targeted cancer cell development using whole cell bioelectronic device. Theranostics, 4, 919.

    Article  Google Scholar 

  29. Li, H., Huang, Y., Zhang, B., Yang, D., Zhu, X., & Li, G. (2014). A new method to assay protease based on amyloid misfolding: Application to prostate cancer diagnosis using a panel of proteases biomarkers. Theranostics, 4, 701.

    Article  Google Scholar 

  30. Konings, M., Mali, W. T. M., & Viergever, M. A. (1997). Development of an intravascular impedance catheter for detection of fatty lesions in arteries. IEEE Transactions on Medical Imaging, 16, 439–446.

    Article  Google Scholar 

  31. Meissner, R., Eker, B., Kasi, H., Bertsch, A., & Renaud, P. (2011). Distinguishing drug-induced minor morphological changes from major cellular damage via label-free impedimetric toxicity screening. Lab on a Chip, 11, 2352–2361.

    Article  Google Scholar 

  32. Packard, R. R. S., Luo, Y., Abiri, P., Jen, N., Aksoy, O., Suh, W. M., Tai, Y.-C., & Hsiai, T. K. (2017). 3-D electrochemical impedance spectroscopy mapping of arteries to detect metabolically active but angiographically invisible atherosclerotic lesions. Theranostics, 7, 2431.

    Article  Google Scholar 

  33. Streitner, I., Goldhofer, M., Cho, S., Thielecke, H., Kinscherf, R., Streitner, F., Metz, J., Haase, K. K., Borggrefe, M., & Suselbeck, T. (2009). Electric impedance spectroscopy of human atherosclerotic lesions. Atherosclerosis, 206, 464–468.

    Article  Google Scholar 

  34. Süselbeck, T., Thielecke, H., Köchlin, J., Cho, S., Weinschenk, I., Metz, J., Borggrefe, M., & Haase, K. K. (2005). Intravascular electric impedance spectroscopy of atherosclerotic lesions using a new impedance catheter system. Basic Research in Cardiology, 100, 446–452.

    Article  Google Scholar 

  35. Grimnes, S., & Martinsen, Ø. G. (2006). Sources of error in tetrapolar impedance measurements on biomaterials and other ionic conductors. Journal of Physics D: Applied Physics, 40, 9.

    Article  Google Scholar 

  36. Geselowitz, D. B. (1971). An application of electrocardiographic lead theory to impedance plethysmography. IEEE Transactions on Biomedical Engineering, BME-18, 38–41.

    Article  Google Scholar 

  37. Yu, F., Li, R., Ai, L., Edington, C., Yu, H., Barr, M., Kim, E., & Hsiai, T. K. (2011). Electrochemical impedance spectroscopy to assess vascular oxidative stress. Annals of Biomedical Engineering, 39, 287–296.

    Article  Google Scholar 

  38. Yu, F., Dai, X., Beebe, T., & Hsiai, T. (2011). Electrochemical impedance spectroscopy to characterize inflammatory atherosclerotic plaques. Biosensors and Bioelectronics, 30, 165–173.

    Article  Google Scholar 

  39. Stary, H. C. (2000). Natural history and histological classification of atherosclerotic lesions: An update. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 1177–1178.

    Article  Google Scholar 

  40. Kim, D.-H., Lu, N., Ma, R., Kim, Y.-S., Kim, R.-H., Wang, S., Wu, J., Won, S. M., Tao, H., & Islam, A. (2011). Epidermal electronics. Science, 333, 838–843.

    Article  Google Scholar 

  41. Cao, H., Yu, F., Zhao, Y., Scianmarello, N., Lee, J., Dai, W., Jen, N., Beebe, T., Li, R., & Ebrahimi, R. (2014). Stretchable electrochemical impedance sensors for intravascular detection of lipid-rich lesions in New Zealand White rabbits. Biosensors and Bioelectronics, 54, 610–616.

    Article  Google Scholar 

  42. Grüntzig, A. (1978). Transluminal dilatation of coronary-artery stenosis. The Lancet, 311, 263.

    Article  Google Scholar 

  43. Sigwart, U., Puel, J., Mirkovitch, V., Joffre, F., & Kappenberger, L. (1987). Intravascular stents to prevent occlusion and re-stenosis after transluminal angioplasty. New England Journal of Medicine, 316, 701–706.

    Article  Google Scholar 

  44. Indolfi, C., De Rosa, S., & Colombo, A. (2016). Bioresorbable vascular scaffolds—Basic concepts and clinical outcome. Nature Reviews Cardiology, 13, 719.

    Article  Google Scholar 

  45. Iqbal, J., Chamberlain, J., Francis, S. E., & Gunn, J. (2016). Role of animal models in coronary stenting. Annals of Biomedical Engineering, 44, 453–465.

    Article  Google Scholar 

  46. Levine, G. N., Bates, E. R., Blankenship, J. C., Bailey, S. R., Bittl, J. A., Cercek, B., Chambers, C. E., Ellis, S. G., Guyton, R. A., & Hollenberg, S. M. (2011). 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Journal of the American College of Cardiology, 58, e44–e122.

    Article  Google Scholar 

  47. Packard, R. R. S., Zhang, X., Luo, Y., Ma, T., Jen, N., Ma, J., Demer, L. L., Zhou, Q., Sayre, J. W., & Li, R. (2016). Two-point stretchable electrode array for endoluminal electrochemical impedance spectroscopy measurements of lipid-laden atherosclerotic plaques. Annals of Biomedical Engineering, 44, 2695–2706.

    Article  Google Scholar 

  48. Chang, J. H.-C., Huang, R., & Tai, Y.-C. (2011). High density 256-channel chip integration with flexible parylene pocket. In Solid-state sensors, actuators and microsystems conference (TRANSDUCERS), 2011 16th international (pp. 378–381).

    Chapter  Google Scholar 

  49. Koike, T., Liang, J., Wang, X., Ichikawa, T., Shiomi, M., Sun, H., Watanabe, T., Liu, G., & Fan, J. (2005). Enhanced aortic atherosclerosis in transgenic Watanabe heritable hyperlipidemic rabbits expressing lipoprotein lipase. Cardiovascular Research, 65, 524–534.

    Article  Google Scholar 

  50. Yeo, W. H., Kim, Y. S., Lee, J., Ameen, A., Shi, L., Li, M., Wang, S., Ma, R., Jin, S. H., & Kang, Z. (2013). Multifunctional epidermal electronics printed directly onto the skin. Advanced Materials, 25, 2773–2778.

    Article  Google Scholar 

  51. Chang, J. H.-C., Liu, Y., Kang, D., & Tai, Y.-C. (2013). Reliable packaging for parylene-based flexible retinal implant. In Solid-state sensors, actuators and microsystems (Transducers & Eurosensors XXVII), 2013 Transducers & Eurosensors XXVII: The 17th international conference on (pp. 2612–2615).

    Chapter  Google Scholar 

  52. Fakirov, S., Evstatiev, M., & Petrovich, S. (1993). Microfibrillar reinforced composites from binary and ternary blends of polyesters and nylon 6. Macromolecules, 26, 5219–5226.

    Article  Google Scholar 

  53. Lin, J. C.-H., Lam, G., & Tai, Y.-C. (2012). Viscoplasticity of parylene-C film at body temperature. In Micro electro mechanical systems (MEMS), 2012 IEEE 25th international conference on (pp. 476–479).

    Chapter  Google Scholar 

  54. Ebrahimi, A. P. (2009). Mechanical properties of normal and diseased cerebrovascular system. Journal of Vascular and Interventional Neurology, 2, 155.

    Google Scholar 

  55. Enos, W. F., Holmes, R. H., & Beyer, J. (1953). Coronary disease among United States soldiers killed in action in Korea: Preliminary report. Journal of the American Medical Association, 152, 1090–1093.

    Article  Google Scholar 

  56. Dweck, M. R., Doris, M. K., Motwani, M., Adamson, P. D., Slomka, P., Dey, D., Fayad, Z. A., Newby, D. E., & Berman, D. (2016). Imaging of coronary atherosclerosis—Evolution towards new treatment strategies. Nature Reviews Cardiology, 13, 533.

    Article  Google Scholar 

  57. De Bruyne, B., Pijls, N. H., Kalesan, B., Barbato, E., Tonino, P. A., Piroth, Z., Jagic, N., Möbius-Winkler, S., Rioufol, G., & Witt, N. (2012). Fractional flow reserve–guided PCI versus medical therapy in stable coronary disease. New England Journal of Medicine, 367, 991–1001.

    Article  Google Scholar 

  58. Yamada, R., Okura, H., Miyamoto, Y., Kawamoto, T., Neishi, Y., Hayashida, A., Tsuchiya, T., Nezuo, S., & Yoshida, K. (2011). A newly developed radio frequency signal-based intravascular ultrasound tissue characterization: A comparison between imap and integrated backscatter intravascular ultrasound. Journal of the American College of Cardiology, 57, E1882.

    Article  Google Scholar 

  59. Li, X., Yin, J., Hu, C., Zhou, Q., Shung, K. K., & Chen, Z. (2010). High-resolution coregistered intravascular imaging with integrated ultrasound and optical coherence tomography probe. Applied Physics Letters, 97, 133702.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzung K. Hsiai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, Y., Packard, R., Abiri, P., Tai, Y.C., Hsiai, T.K. (2020). Flexible Intravascular EIS Sensors for Detecting Metabolically Active Plaque. In: Cao, H., Coleman, T., Hsiai, T., Khademhosseini, A. (eds) Interfacing Bioelectronics and Biomedical Sensing. Springer, Cham. https://doi.org/10.1007/978-3-030-34467-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34467-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34466-5

  • Online ISBN: 978-3-030-34467-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics