Inorganic Dissolvable Bioelectronics

  • Huanyu ChengEmail author


Although physically invariant performance remains as a hallmark of the modern silicon electronics, certain opportunities emerge when part or entire device system can dissolve in biologically relevant fluids or water. This class of transient electronic devices allows them to function for a programmable timeframe and then to harmlessly dissolve in the environment or human body. The former minimizes or eliminates the waste stream from consumer gadgets, whereas the latter enables the biomedical implant as a diagnostic and/or therapeutic tool that obviates the need for removal after the function. Constructing high-performance dissolvable devices hinges on a realistic set of functional biodegradable materials for substrates, encapsulation layers, dielectrics, electrical connections, and electronic devices especially those involve the use of semiconductors. In this book chapter, we will first review the complete set of functional materials commonly used in high-performance inorganic dissolvable bioelectronics. Next, we will discuss various processing and manufacturing approaches for fabricating the dissolvable bioelectronics. After introducing several strategies to the power supply as a key component for the device system, we will then provide application opportunities from functional transformation and biomedical implants to green electronics and physically destructive devices for data security.


Inorganic dissolvable bioelectronics Functional biodegradable materials Manufacturing processes Device components and systems 


  1. 1.
    Hwang, S.-W., et al. (2012). A physically transient form of silicon electronics. Science, 337(6102), 1640–1644.CrossRefGoogle Scholar
  2. 2.
    Hwang, S. W., et al. (2014). 25th anniversary article: Materials for high-performance biodegradable semiconductor devices. Advanced Materials, 26(13), 1992–2000.CrossRefGoogle Scholar
  3. 3.
    Darouiche, R. O. (2004). Treatment of infections associated with surgical implants. New England Journal of Medicine, 350(14), 1422–1429.CrossRefGoogle Scholar
  4. 4.
    Jung, Y. H., et al. (2015). High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nature Communications, 6.Google Scholar
  5. 5.
    Hwang, S. W., et al. (2014). High-performance biodegradable/transient electronics on biodegradable polymers. Advanced Materials, 26(23), 3905–3911.CrossRefGoogle Scholar
  6. 6.
    Irimia-Vladu, M., et al. (2012). Green and biodegradable electronics. Materials Today, 15(7), 340–346.CrossRefGoogle Scholar
  7. 7.
    Lee, C. H., et al. (2015). Materials and wireless microfluidic systems for electronics capable of chemical dissolution on demand. Advanced Functional Materials, 25(9), 1338–1343.CrossRefGoogle Scholar
  8. 8.
    Irimia-Vladu, M. (2014). “Green” electronics: Biodegradable and biocompatible materials and devices for sustainable future. Chemical Society Reviews, 43(2), 588–610.CrossRefGoogle Scholar
  9. 9.
    Tan, M. J., et al. (2016). Biodegradable electronics: Cornerstone for sustainable electronics and transient applications. Journal of Materials Chemistry C, 4(24), 5531–5558.CrossRefGoogle Scholar
  10. 10.
    Hwang, S. W., et al. (2013). Materials for bioresorbable radio frequency electronics. Advanced Materials, 25(26), 3526–3531.CrossRefGoogle Scholar
  11. 11.
    Yin, L., et al. (2014). Dissolvable metals for transient electronics. Advanced Functional Materials, 24(5), 645–658.CrossRefGoogle Scholar
  12. 12.
    Hwang, S. W., et al. (2013). Materials and fabrication processes for transient and bioresorbable high-performance electronics. Advanced Functional Materials, 23(33), 4087–4093.CrossRefGoogle Scholar
  13. 13.
    Hwang, S. W., et al. (2015). Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors. Nano Letters, 15(5), 2801–2808.CrossRefGoogle Scholar
  14. 14.
    Jamshidi, R., et al. (2015). Transient bioelectronics: Electronic properties of silver microparticle-based circuits on polymeric substrates subjected to mechanical load. Journal of Polymer Science Part B: Polymer Physics, 53(22), 1603–1610.CrossRefGoogle Scholar
  15. 15.
    Boutry, C. M., et al. (2015). A sensitive and biodegradable pressure sensor array for cardiovascular monitoring. Advanced Materials, 27(43), 6954–6961.CrossRefGoogle Scholar
  16. 16.
    Luo, M., et al. (2014). A microfabricated wireless RF pressure sensor made completely of biodegradable materials. Journal of Microelectromechanical Systems, 23(1), 4–13.CrossRefGoogle Scholar
  17. 17.
    Kang, S. K., et al. (2018). Advanced materials and devices for bioresorbable electronics. Accounts of Chemical Research, 51(5), 988–998.CrossRefGoogle Scholar
  18. 18.
    Cheng, H., & Yi, N. (2017). Dissolvable tattoo sensors: From science fiction to a viable technology. Physica Scripta, 92(1), 013001.CrossRefGoogle Scholar
  19. 19.
    Cheng, H. (2016). Inorganic dissolvable electronics: Materials and devices for biomedicine and environment. Journal of Materials Research, 31(17), 2549–2570.CrossRefGoogle Scholar
  20. 20.
    Fu, K. K., et al. (2016). Transient electronics: Materials and devices. Chemistry of Materials, 28(11), 3527–3539.CrossRefGoogle Scholar
  21. 21.
    Seidel, H., et al. (1990). Anisotropic etching of crystalline silicon in alkaline-solutions. 1. Orientation dependence and behavior of passivation layers. Journal of the Electrochemical Society, 137(11), 3612–3626.CrossRefGoogle Scholar
  22. 22.
    Sawada, Y., Tsujino, K., & Matsumura, M. (2006). Hydrogen evolution from atomically flat Si (111) surfaces exposed to 40% NH4F, oxygen-free water, or wet gas. Journal of the Electrochemical Society, 153(12), C854–C857.CrossRefGoogle Scholar
  23. 23.
    Yin, L., et al. (2015). Mechanisms for hydrolysis of silicon nanomembranes as used in bioresorbable electronics. Advanced Materials, 27(11), 1857–1864.CrossRefGoogle Scholar
  24. 24.
    Hwang, S. W., et al. (2014). Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics. ACS Nano, 8(6), 5843–5851.CrossRefGoogle Scholar
  25. 25.
    Lee, Y. K., et al. (2017). Dissolution of monocrystalline silicon nanomembranes and their use as encapsulation layers and electrical interfaces in water-soluble electronics. ACS Nano, 11(12), 12562–12572.CrossRefGoogle Scholar
  26. 26.
    Seidel, H., et al. (1990). Anisotropic etching of crystalline silicon in alkaline-solutions. 2. Influence of dopants. Journal of the Electrochemical Society, 137(11), 3626–3632.CrossRefGoogle Scholar
  27. 27.
    Kang, S. K., et al. (2015). Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics. ACS Applied Materials & Interfaces, 7(17), 9297–9305.CrossRefGoogle Scholar
  28. 28.
    Dagdeviren, C., et al. (2013). Transient, biocompatible electronics and energy harvesters based on ZnO. Small, 9(20), 3398–3404.CrossRefGoogle Scholar
  29. 29.
    Jin, S. H., et al. (2015). Water-soluble thin film transistors and circuits based on amorphous indium–gallium–zinc oxide. ACS Applied Materials & Interfaces, 7(15), 8268–8274.CrossRefGoogle Scholar
  30. 30.
    Trumbo, P., et al. (2001). Dietary reference intakes: Vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Journal of the American Dietetic Association, 101(3), 294–301.CrossRefGoogle Scholar
  31. 31.
    Zheng, Y., Gu, X., & Witte, F. (2014). Biodegradable metals. Materials Science and Engineering: R: Reports, 77, 1–34.CrossRefGoogle Scholar
  32. 32.
    Anik, M., & Osseo-Asare, K. (2002). Effect of pH on the anodic behavior of tungsten. Journal of the Electrochemical Society, 149(6), B224–B233.CrossRefGoogle Scholar
  33. 33.
    Kang, S. K., et al. (2015). Biodegradable thin metal foils and spin-on glass materials for transient electronics. Advanced Functional Materials, 25(12), 1789–1797.CrossRefGoogle Scholar
  34. 34.
    Danckwerts, P. V. (1950). Absorption by simultaneous diffusion and chemical reaction. Transactions of the Faraday Society, 46(4–5), 300–304.MathSciNetCrossRefGoogle Scholar
  35. 35.
    Nair, L. S., & Laurencin, C. T. (2007). Biodegradable polymers as biomaterials. Progress in Polymer Science, 32(8–9), 762–798.CrossRefGoogle Scholar
  36. 36.
    Tian, H. Y., et al. (2012). Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Progress in Polymer Science, 37(2), 237–280.CrossRefGoogle Scholar
  37. 37.
    Khanra, S., et al. (2015). Self-assembled peptide–Polyfluorene nanocomposites for biodegradable organic electronics. Advanced Materials Interfaces, 2(14), 1500265.CrossRefGoogle Scholar
  38. 38.
    Bettinger, C. J., & Bao, Z. (2010). Organic thin-film transistors fabricated on resorbable biomaterial substrates. Advanced Materials, 22(5), 651–655.CrossRefGoogle Scholar
  39. 39.
    Anderson, J. M., & Shive, M. S. (2012). Biodegradation and biocompatibility of PLA and PLGA microspheres. Advanced Drug Delivery Reviews, 64, 72–82.CrossRefGoogle Scholar
  40. 40.
    Middleton, J. C., & Tipton, A. J. (2000). Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21(23), 2335–2346.CrossRefGoogle Scholar
  41. 41.
    Kim, D.-H., et al. (2009). Silicon electronics on silk as a path to bioresorbable, implantable devices. Applied Physics Letters, 95(13), 133701.CrossRefGoogle Scholar
  42. 42.
    Kim, Y. J., et al. (2013). Self-deployable current sources fabricated from edible materials. Journal of Materials Chemistry B, 1(31), 3781–3788.CrossRefGoogle Scholar
  43. 43.
    Brady, P. V., & Walther, J. V. (1990). Kinetics of quartz dissolution at low-temperatures. Chemical Geology, 82(3–4), 253–264.CrossRefGoogle Scholar
  44. 44.
    Bergstrom, L., & Bostedt, E. (1990). Surface-chemistry of silicon-nitride powders – Electrokinetic behavior and esca studies. Colloids and Surfaces, 49(3–4), 183–197.CrossRefGoogle Scholar
  45. 45.
    Dameron, A. A., et al. (2008). Gas diffusion barriers on polymers using multilayers fabricated by Al2O3 and rapid SiO2 atomic layer deposition. Journal of Physical Chemistry C, 112(12), 4573–4580.CrossRefGoogle Scholar
  46. 46.
    Brenckle, M. A., et al. (2015). Modulated degradation of transient electronic devices through multilayer silk fibroin pockets. ACS Applied Materials & Interfaces, 7(36), 19870–19875.CrossRefGoogle Scholar
  47. 47.
    Acar, H., et al. (2014). Study of physically transient insulating materials as a potential platform for transient electronics and bioelectronics. Advanced Functional Materials, 24(26), 4135–4143.CrossRefGoogle Scholar
  48. 48.
    Fang, H., et al. (2016). Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems. Proceedings of the National Academy of Sciences, 113(42), 11682–11687.CrossRefGoogle Scholar
  49. 49.
    Lee, Y. K., et al. (2017). Kinetics and chemistry of hydrolysis of ultrathin, thermally grown layers of silicon oxide as biofluid barriers in flexible electronic systems. ACS Applied Materials & Interfaces, 9(49), 42633–42638.CrossRefGoogle Scholar
  50. 50.
    Song, E., et al. (2018). Transferred, ultrathin oxide bilayers as biofluid barriers for flexible electronic implants. Advanced Functional Materials, 28(12), 1702284.CrossRefGoogle Scholar
  51. 51.
    Song, E., et al. (2018). Ultrathin trilayer assemblies as long-lived barriers against water and ion penetration in flexible bioelectronic systems. ACS Nano, 12(10), 10317–10326.CrossRefGoogle Scholar
  52. 52.
    Song, E., et al. (2017). Thin, transferred layers of silicon dioxide and silicon nitride as water and IoN barriers for implantable flexible electronic systems. Advanced Electronic Materials, 3(8), 1700077.CrossRefGoogle Scholar
  53. 53.
    Yu, X., et al. (2018). Materials, processes, and facile manufacturing for bioresorbable electronics: A review. Advanced Materials, 30(28), 1707624.CrossRefGoogle Scholar
  54. 54.
    Kim, D. H., et al. (2008). Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proceedings of the National Academy of Sciences of the United States of America, 105(48), 18675–18680.CrossRefGoogle Scholar
  55. 55.
    Kim, D. H., et al. (2008). Stretchable and foldable silicon integrated circuits. Science, 320(5875), 507–511.CrossRefGoogle Scholar
  56. 56.
    Ying, M., et al. (2012). Silicon nanomembranes for fingertip electronics. Nanotechnology, 23(34), 344004.CrossRefGoogle Scholar
  57. 57.
    Huang, X., et al. (2014). Biodegradable materials for multilayer transient printed circuit boards. Advanced Materials, 26(43), 7371–7377.CrossRefGoogle Scholar
  58. 58.
    Lee, S., et al. (2018). Metal microparticle–polymer composites as printable, bio/ecoresorbable conductive inks. Materials Today, 21(3), 207–215.CrossRefGoogle Scholar
  59. 59.
    Mahajan, B. K., et al. (2017). Mechanically milled irregular zinc nanoparticles for printable bioresorbable electronics. Small, 13(17), 8.Google Scholar
  60. 60.
    Li, J., et al. (2018). Processing techniques for bioresorbable nanoparticles in fabricating flexible conductive interconnects. Materials (Basel), 11(7), 1102.CrossRefGoogle Scholar
  61. 61.
    Lee, Y. K., et al. (2017). Room temperature electrochemical sintering of Zn microparticles and its use in printable conducting inks for bioresorbable electronics. Advanced Materials, 29(38), 1702665.CrossRefGoogle Scholar
  62. 62.
    Mahajan, B. K., et al. (2018). Aerosol printing and photonic sintering of bioresorbable zinc nanoparticle ink for transient electronics manufacturing. SCIENCE CHINA Information Sciences, 61, 1–10.CrossRefGoogle Scholar
  63. 63.
    Shou, W., et al. (2017). Low-cost manufacturing of bioresorbable conductors by evaporation–condensation-mediated laser printing and sintering of Zn nanoparticles. Advanced Materials, 29(26), 1700172.CrossRefGoogle Scholar
  64. 64.
    Daniele, M. A., et al. (2015). Sweet substrate: A polysaccharide nanocomposite for conformal electronic decals. Advanced Materials, 27(9), 1600–1606.CrossRefGoogle Scholar
  65. 65.
    Yin, L., et al. (2015). Materials and fabrication sequences for water soluble silicon integrated circuits at the 90 nm node. Applied Physics Letters, 106(1), 014105.CrossRefGoogle Scholar
  66. 66.
    Chang, J. K., et al. (2017). Materials and processing approaches for foundry-compatible transient electronics. Proceedings of the National Academy of Sciences of the United States of America, 114(28), E5522–E5529.CrossRefGoogle Scholar
  67. 67.
    Chang, J. K., et al. (2018). Biodegradable electronic systems in 3D, heterogeneously integrated formats. Advanced Materials, 30(11), 1704955.CrossRefGoogle Scholar
  68. 68.
    Sammoura, F., Lee, K. B., & Lin, L. W. (2004). Water-activated disposable and long shelf life microbatteries. Sensors and Actuators a-Physical, 111(1), 79–86.CrossRefGoogle Scholar
  69. 69.
    Tsang, M., et al. (2014). A MEMS-enabled biodegradable battery for powering transient implantable devices. 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS) IEEE, Piscataway, New Jersey, US.Google Scholar
  70. 70.
    Chen, Y., et al. (2016). Physical–chemical hybrid transiency: A fully transient li-ion battery based on insoluble active materials. Journal of Polymer Science Part B: Polymer Physics, 54(20), 2021–2027.CrossRefGoogle Scholar
  71. 71.
    Lu, L., et al. (2018). Biodegradable monocrystalline silicon photovoltaic microcells as power supplies for transient biomedical implants. Advanced Energy Materials, 8(16), 1703035.CrossRefGoogle Scholar
  72. 72.
    Yin, L., et al. (2014). Materials, designs, and operational characteristics for fully biodegradable primary batteries. Advanced Materials, 26(23), 3879–3884.CrossRefGoogle Scholar
  73. 73.
    Tsang, M., et al. (2015). Biodegradable magnesium/iron batteries with polycaprolactone encapsulation: A microfabricated power source for transient implantable devices. Microsystems & Nanoengineering, 1, 15024.CrossRefGoogle Scholar
  74. 74.
    Fu, K., et al. (2015). Transient rechargeable batteries triggered by cascade reactions. Nano Letters, 15(7), 4664–4671.CrossRefGoogle Scholar
  75. 75.
    Lee, G., et al. (2017). Fully biodegradable microsupercapacitor for power storage in transient electronics. Advanced Energy Materials, 7(18), 1700157.CrossRefGoogle Scholar
  76. 76.
    Hwang, S. W., et al. (2015). Materials for programmed, functional transformation in transient electronic systems. Advanced Materials, 27(1), 47–52.CrossRefGoogle Scholar
  77. 77.
    Lee, C. H., et al. (2015). Wireless microfluidic systems for programmed, functional transformation of transient electronic devices. Advanced Functional Materials, 25(32), 5100–5106.CrossRefGoogle Scholar
  78. 78.
    Cınar, S., et al. (2016). Study of mechanics of physically transient electronics: A step toward controlled transiency. Journal of Polymer Science Part B: Polymer Physics, 54(4), 517–524.CrossRefGoogle Scholar
  79. 79.
    Seo, W., & Phillips, S. T. (2010). Patterned plastics that change physical structure in response to applied chemical signals. Journal of the American Chemical Society, 132(27), 9234–9235.CrossRefGoogle Scholar
  80. 80.
    Gao, Y., et al. (2017). Moisture-triggered physically transient electronics. Science Advances, 3(9), e1701222.CrossRefGoogle Scholar
  81. 81.
    Hernandez, H. L., et al. (2014). Triggered transience of metastable poly(phthalaldehyde) for transient electronics. Advanced Materials, 26(45), 7637–7642.CrossRefGoogle Scholar
  82. 82.
    Zhong, S., et al. (2018). Enabling transient electronics with degradation on demand via light-responsive encapsulation of hydrogel/oxide bi-layer. ACS Applied Materials & Interfaces, 10(42), 36171–36176.CrossRefGoogle Scholar
  83. 83.
    Park, C. W., et al. (2015). Thermally triggered degradation of transient electronic devices. Advanced Materials, 27(25), 3783–3788.CrossRefGoogle Scholar
  84. 84.
    Pohlers, G., et al. (1997). Mechanistic studies of photoacid generation from substituted 4, 6-bis (trichloromethyl)-1, 3, 5-triazines. Chemistry of Materials, 9(6), 1353–1361.CrossRefGoogle Scholar
  85. 85.
    Lee, K. M., et al. (2018). Phototriggered depolymerization of flexible poly(phthalaldehyde) substrates by integrated organic light-emitting diodes. ACS Applied Materials & Interfaces, 10(33), 28062–28068.CrossRefGoogle Scholar
  86. 86.
    Chang, J. K., et al. (2018). Cytotoxicity and in vitro degradation kinetics of foundry-compatible semiconductor nanomembranes and electronic microcomponents. ACS Nano, 12(10), 9721–9732.CrossRefGoogle Scholar
  87. 87.
    Mueller, P. P., et al. (2012). Histological and molecular evaluation of iron as degradable medical implant material in a murine animal model. Journal of Biomedical Materials Research Part A, 100(11), 2881–2889.CrossRefGoogle Scholar
  88. 88.
    Bai, W., et al. (2018). Flexible transient optical waveguides and surface-wave biosensors constructed from monocrystalline silicon. Advanced Materials, 30(32), 1801584.CrossRefGoogle Scholar
  89. 89.
    Yu, K. J., et al. (2016). Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nature Materials, 15(7), 782–791.CrossRefGoogle Scholar
  90. 90.
    Kang, S. K., et al. (2016). Bioresorbable silicon electronic sensors for the brain. Nature, 530(7588), 71–76.CrossRefGoogle Scholar
  91. 91.
    Koo, J., et al. (2018). Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nature Medicine, 24, 1830–1836.CrossRefGoogle Scholar
  92. 92.
    Tao, H., et al. (2014). Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proceedings of the National Academy of Sciences of the United States of America, 111(49), 17385–17389.CrossRefGoogle Scholar
  93. 93.
    Lee, C. H., et al. (2015). Biological lipid membranes for on-demand, wireless drug delivery from thin, bioresorbable electronic implants. NPG Asia Materials, 7(11), e227.CrossRefGoogle Scholar
  94. 94.
    Grayson, A. C. R., et al. (2003). Multi-pulse drug delivery from a resorbable polymeric microchip device. Nature Materials, 2(11), 767–772.CrossRefGoogle Scholar
  95. 95.
    Acar, H., et al. (2016). Transient biocompatible polymeric platforms for long-term controlled release of therapeutic proteins and vaccines. Materials, 9(5), 321.CrossRefGoogle Scholar
  96. 96.
    Miller, R. D., et al. (2015). Water soluble, biodegradable amphiphilic polymeric nanoparticles and the molecular environment of hydrophobic encapsulates: Consistency between simulation and experiment. Polymer, 79, 255–261.CrossRefGoogle Scholar
  97. 97.
    Son, D., et al. (2015). Bioresorbable electronic stent integrated with therapeutic nanoparticles for endovascular diseases. ACS Nano, 9(6), 5937–5946.CrossRefGoogle Scholar
  98. 98.
    Rogers, J. A., Someya, T., & Huang, Y. (2010). Materials and mechanics for stretchable electronics. Science, 327(5973), 1603–1607.CrossRefGoogle Scholar
  99. 99.
    Kim, D. H., et al. (2011). Epidermal electronics. Science, 333(6044), 838–843.CrossRefGoogle Scholar
  100. 100.
    Yang, J., Webb, A. R., & Ameer, G. A. (2004). Novel citric acid-based biodegradable elastomers for tissue engineering. Advanced Materials, 16(6), 511–516.CrossRefGoogle Scholar
  101. 101.
    Jeong, J. W., et al. (2014). Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements. Advanced Healthcare Materials, 3(5), 642–648.CrossRefGoogle Scholar
  102. 102.
    Won, S. M., et al. (2018). Natural wax for transient electronics. Advanced Functional Materials, 28(32), 1801819.CrossRefGoogle Scholar
  103. 103.
    Jin, S. H., et al. (2014). Solution-processed single-walled carbon nanotube field effect transistors and bootstrapped inverters for disintegratable, transient electronics. Applied Physics Letters, 105(1), 013506.CrossRefGoogle Scholar
  104. 104.
    Lin, S.-Y., et al. (2018). Transient and flexible photodetectors. ACS Applied Nano Materials, 1(9), 5092–5100.CrossRefGoogle Scholar
  105. 105.
    Lei, T., et al. (2017). Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics. Proceedings of the National Academy of Sciences of the United States of America, 114(20), 5107–5112.CrossRefGoogle Scholar
  106. 106.
    Kim, B. H., et al. (2017). Dry transient electronic systems by use of materials that sublime. Advanced Functional Materials, 27(12), 1606008.CrossRefGoogle Scholar
  107. 107.
    Yoon, J., et al. (2017). Flammable carbon nanotube transistors on a nitrocellulose paper substrate for transient electronics. Nano Research, 10(1), 87–96.CrossRefGoogle Scholar
  108. 108.
    Yi, N., et al. (2018). Fully water-soluble, high-performance transient sensors on a versatile galactomannan substrate derived from the endosperm. ACS Applied Materials & Interfaces, 10(43), 36664–36674.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Materials Research InstituteThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations