Finite Determinacy

Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 357)


We prove Mather’s theorem that germs with finite \(\mathscr {A}\)-codimension are finitely determined (determined up to \(\mathscr {A}\)-equivalence by a finite Taylor polynomial) along with later improvements due to Gaffney, du Plessis, Bruce and Wall. We give a brief discussion of unipotent algebraic groups in preparation for the theorem of Bruce, du Plessis and Wall on finite determinacy relative to unipotent subgroups of the group \(\mathscr {A}\). The chapter ends with a section on the method of complete transversals for classifying map-germs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Mathematics InstituteUniversity of WarwickCoventryUK
  2. 2.Departament de MatemàtiquesUniversitat de ValènciaBurjassotSpain

Personalised recommendations