Skip to main content

Notch Signalling: The Multitask Manager of Inner Ear Development and Regeneration

  • Chapter
  • First Online:
Notch Signaling in Embryology and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1218))

Abstract

Notch signalling is a major regulator of cell fate decisions and tissue patterning in metazoans. It is best known for its role in lateral inhibition, whereby Notch mediates competitive interactions between cells to limit adoption of a given developmental fate. However, it can also function by lateral induction, a cooperative mode of action that was originally described during the patterning of the Drosophila wing disc and creates boundaries or domains of cells of the same character. In this chapter, we introduce these two signalling modes and explain how they contribute to distinct aspects of the development and regeneration of the vertebrate inner ear, the organ responsible for the perception of sound and head movements. We discuss some of the factors that could influence the context-specific outcomes of Notch signalling in the inner ear and the ongoing efforts to target this pathway for the treatment of hearing loss and vestibular dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdolazimi Y, Stojanova Z, Segil N (2016) Selection of cell fate in the organ of Corti involves the integration of Hes/Hey signaling at the Atoh1 promoter. Development 143:841–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abelló G, Khatri S, Giráldez F, Alsina B (2007) Early regionalization of the otic placode and its regulation by the Notch signaling pathway. Mech Dev 124:631–645

    Article  PubMed  CAS  Google Scholar 

  • Adam J, Myat A, Le Roux I, Eddison M, Henrique D, Ish-Horowicz D, Lewis J (1998) Cell fate choices and the expression of Notch, Delta and Serrate homologues in the chick inner ear: parallels with Drosophila sense-organ development. Development 125:4645–4654

    CAS  PubMed  Google Scholar 

  • Alsina B, Whitfield TT (2017) Sculpting the labyrinth: morphogenesis of the developing inner ear. Semin Cell Dev Biol 65:47

    Article  PubMed  Google Scholar 

  • Alsina B, Abelló G, Ulloa E, Henrique D, Pujades C, Giraldez F (2004) FGF signaling is required for determination of otic neuroblasts in the chick embryo. Dev Biol 267:119–134

    Article  CAS  PubMed  Google Scholar 

  • Ambler CA, Watt FM (2010) Adult epidermal Notch activity induces dermal accumulation of T cells and neural crest derivatives through upregulation of jagged 1. Development 137:3569–3579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrawes MB, Xu X, Liu H, Ficarro SB, Marto JA, Aster JC, Blacklow SC (2013) Intrinsic Selectivity of Notch 1 for Delta-like 4 Over Delta-like 1. J Biol Chem 288:25477–25489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barolo S, Stone T, Bang AG, Posakony JW (2002) Default repression and Notch signaling: Hairless acts as an adaptor to recruit the corepressors Groucho and dCtBP to Suppressor of Hairless. Genes Dev 16:1964–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basch ML, Ohyama T, Segil N, Groves AK (2011) Canonical Notch signaling is not necessary for prosensory induction in the mouse cochlea: insights from a conditional mutant of RBPj. J Neurosci 31:8046–8058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basch ML, Brown RM, Jen H-I, Groves AK (2016a) Where hearing starts: the development of the mammalian cochlea. J Anat 228:233–254

    Article  PubMed  Google Scholar 

  • Basch ML, Ii RMB, Jen H-I, Semerci F, Depreux F, Edlund RK, Zhang H, Norton CR, Gridley T, Cole SE et al (2016b) Fine-tuning of Notch signaling sets the boundary of the organ of Corti and establishes sensory cell fates. elife 5:e19921

    Article  PubMed  PubMed Central  Google Scholar 

  • Benito-Gonzalez A, Doetzlhofer A (2014) Hey1 and Hey2 control the spatial and temporal pattern of mammalian auditory hair cell differentiation downstream of hedgehog signaling. J Neurosci 34:12865–12876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben-Arie N, Eatock RA, Bellen HJ, Lysakowski A, Zoghbi HY (1999) Math1: an essential gene for the generation of inner ear hair cells. Science 284:1837–1841

    Article  CAS  PubMed  Google Scholar 

  • Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7:678–689

    Article  CAS  PubMed  Google Scholar 

  • Brooker R (2006) Notch ligands with contrasting functions: Jagged1 and Delta1 in the mouse inner ear. Development 133:1277–1286

    Article  CAS  PubMed  Google Scholar 

  • Bucks SA, Cox BC, Vlosich BA, Manning JP, Nguyen TB, Stone JS (2017) Supporting cells remove and replace sensory receptor hair cells in a balance organ of adult mice. elife 6:e18128

    Article  PubMed  PubMed Central  Google Scholar 

  • Burns JC, On D, Baker W, Collado MS, Corwin JT (2012) Over half the hair cells in the mouse utricle first appear after birth, with significant numbers originating from early postnatal mitotic production in peripheral and striolar growth zones. JARO 13:609–627

    Article  PubMed  PubMed Central  Google Scholar 

  • Cafaro J, Lee GS, Stone JS (2007) Atoh1 expression defines activated progenitors and differentiating hair cells during avian hair cell regeneration. Dev Dyn 236:156–170

    Article  CAS  PubMed  Google Scholar 

  • Cai T, Seymour ML, Zhang H, Pereira FA, Groves AK (2013) Conditional deletion of Atoh1 reveals distinct critical periods for survival and function of hair cells in the organ of Corti. J Neurosci 33:10110–10122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Streit A (2013) Induction of the inner ear: stepwise specification of otic fate from multipotent progenitors. Hear Res 297:3–12

    Article  PubMed  Google Scholar 

  • Chen P, Johnson JE, Zoghbi HY, Segil N (2002) The role of Math1 in inner ear development: uncoupling the establishment of the sensory primordium from hair cell fate determination. Development 129:2495–2505

    Article  CAS  PubMed  Google Scholar 

  • Chrysostomou E, Gale JE, Daudet N (2012) Delta-like 1 and lateral inhibition during hair cell formation in the chicken inner ear: evidence against cis-inhibition. Development 139:3764–3774

    Article  CAS  PubMed  Google Scholar 

  • Cole LK, Le Roux I, Nunes F, Laufer E, Lewis J, Wu DK (2000) Sensory organ generation in the chicken inner ear: contributions of bone morphogenetic protein 4, serrate1, and lunatic fringe. J Comp Neurol 424:509–520

    Article  CAS  PubMed  Google Scholar 

  • Collado MS, Thiede BR, Baker W, Askew C, Igbani LM, Corwin JT (2011) The postnatal accumulation of junctional E-cadherin is inversely correlated with the capacity for supporting cells to convert directly into sensory hair cells in mammalian balance organs. J Neurosci 31:11855–11866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collier JR, Monk NA, Maini PK, Lewis JH (1996) Pattern formation by lateral inhibition with feedback: a mathematical model of delta-notch intercellular signalling. J Theor Biol 183:429–446

    Article  CAS  PubMed  Google Scholar 

  • Cornell RA, Eisen JS (2005) Notch in the pathway: the roles of Notch signaling in neural crest development. Semin Cell Dev Biol 16:663–672

    Article  CAS  PubMed  Google Scholar 

  • Couturier L, Mazouni K, Schweisguth F (2013) Inhibition of Notch recycling by numb: relevance and mechanism(s). Cell Cycle 12:1647–1648

    Article  CAS  PubMed  Google Scholar 

  • Dahmann C, Oates AC, Brand M (2011) Boundary formation and maintenance in tissue development. Nat Rev Genet 12:43–55

    Article  CAS  PubMed  Google Scholar 

  • Daudet N, Lewis JH (2005) Two contrasting roles for Notch activity in chick inner ear development: specification of prosensory patches and lateral inhibition of hair-cell differentiation. Development 132:541–551

    Article  CAS  PubMed  Google Scholar 

  • Daudet N, Ariza-McNaughton L, Lewis J (2007) Notch signalling is needed to maintain, but not to initiate, the formation of prosensory patches in the chick inner ear. Development 134:2369–2378

    Article  CAS  PubMed  Google Scholar 

  • Daudet N, Gibson R, Shang J, Bernard A, Lewis J, Stone J (2009) Notch regulation of progenitor cell behavior in quiescent and regenerating auditory epithelium of mature birds. Dev Biol 326:86–100

    Article  CAS  PubMed  Google Scholar 

  • de Celis JF, Bray S (1997) Feed-back mechanisms affecting Notch activation at the dorsoventral boundary in the Drosophila wing. Development 124:3241–3251

    PubMed  Google Scholar 

  • de Celis JF, Garcia-Bellido A, Bray SJ (1996) Activation and function of Notch at the dorsal-ventral boundary of the wing imaginal disc. Development 122:359–369

    PubMed  Google Scholar 

  • del Álamo D, Rouault H, Schweisguth F (2011) Mechanism and significance of cis-inhibition in Notch signalling. Curr Biol 21:R40–R47

    Article  PubMed  CAS  Google Scholar 

  • Doetzlhofer A, Avraham KB (2017) Insights into inner ear-specific gene regulation: epigenetics and non-coding RNAs in inner ear development and regeneration. Semin Cell Dev Biol 65:69–79

    Article  CAS  PubMed  Google Scholar 

  • Doetzlhofer A, Basch ML, Ohyama T, Gessler M, Groves AK, Segil N (2009) Hey2 regulation by FGF provides a notch-independent mechanism for maintaining pillar cell fate in the organ of Corti. Dev Cell 16:58–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Driver EC, Sillers L, Coate TM, Rose MF, Kelley MW (2013) The Atoh1-lineage gives rise to hair cells and supporting cells within the mammalian cochlea. Dev Biol 376:86–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eddison M, Le Roux I, Lewis J (2000) Notch signaling in the development of the inner ear: lessons from Drosophila. Proc Natl Acad Sci 97:11692–11699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eddison M, Weber SJ, Ariza-McNaughton L, Lewis J, Daudet N (2015) Numb is not a critical regulator of Notch-mediated cell fate decisions in the developing chick inner ear. Front Cell Neurosci 9:74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forge A, Li L, Corwin JT, Nevill G (1993) Ultrastructural evidence for hair cell regeneration in the mammalian inner ear. Science 259:1616–1619

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B, Beisel KW (2001) Evolution and development of the vertebrate ear. Brain Res Bull 55:711–721

    Article  CAS  PubMed  Google Scholar 

  • Fukuda T, Kominami K, Wang S, Togashi H, Hirata K -i, Mizoguchi A, Rikitake Y, Takai Y (2014) Aberrant cochlear hair cell attachments caused by Nectin-3 deficiency result in hair bundle abnormalities. Development 141:399–409

    Article  CAS  PubMed  Google Scholar 

  • Gálvez H, Abelló G, Giraldez F (2017) Signaling and transcription factors during inner ear development: the generation of hair cells and Otic neurons. Front Cell Dev Biol 5

    Google Scholar 

  • Géléoc GSG, Holt JR (2014) Sound strategies for hearing restoration. Science 344:1241062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goodyear R, Richardson G (1997) Pattern formation in the basilar papilla: evidence for cell rearrangement. J Neurosci 17:6289–6301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodyear RJ, Gates R, Lukashkin AN, Richardson GP (1999) Hair-cell numbers continue to increase in the utricular macula of the early posthatch chick. J Neurocytol 28:851–861

    Article  CAS  PubMed  Google Scholar 

  • Groves AK, Bronner-Fraser M (2000) Competence, specification and commitment in otic placode induction. Development 127:3489–3499

    CAS  PubMed  Google Scholar 

  • Gu R, Brown RM II, Hsu C-W, Cai T, Crowder AL, Piazza VG, Vadakkan TJ, Dickinson ME, Groves AK (2016) Lineage tracing of Sox2-expressing progenitor cells in the mouse inner ear reveals a broad contribution to non-sensory tissues and insights into the origin of the organ of Corti. Dev Biol 414:72–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haddon C, Jiang Y-J, Smithers L, Lewis J (1998) Delta-Notch signalling and the patterning of sensory cell differentiation in the zebrafish ear: evidence from the mind bomb mutant. Development 125:4637–4644

    CAS  PubMed  Google Scholar 

  • Hao J, Koesters R, Bouchard M, Gridley T, Pfannenstiel S, Plinkert PK, Zhang L, Praetorius M (2012) Jagged1-mediated Notch signaling regulates mammalian inner ear development independent of lateral inhibition. Acta Otolaryngol 132:1028–1035

    Article  CAS  PubMed  Google Scholar 

  • Hartman BH, Hayashi T, Nelson BR, Bermingham-McDonogh O, Reh TA (2007) Dll3 is expressed in developing hair cells in the mammalian cochlea. Dev Dyn 236:2875–2883

    Article  CAS  PubMed  Google Scholar 

  • Hartman BH, Basak O, Nelson BR, Taylor V, Bermingham-McDonogh O, Reh TA (2009) Hes5 expression in the postnatal and adult mouse inner ear and the drug-damaged cochlea. JARO 10:321–340

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartman BH, Reh TA, Bermingham-McDonogh O (2010) Notch signaling specifies prosensory domains via lateral induction in the developing mammalian inner ear. Proc Natl Acad Sci 107:15792–15797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi T, Kokubo H, Hartman BH, Ray CA, Reh TA, Bermingham-McDonogh O (2008) Hesr1 and Hesr2 may act as early effectors of Notch signaling in the developing cochlea. Dev Biol 316:87–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helms AW, Abney AL, Ben-Arie N, Zoghbi HY, Johnson JE (2000) Autoregulation and multiple enhancers control Math1 expression in the developing nervous system. Development 127:1185–1196

    CAS  PubMed  Google Scholar 

  • Henrique D, Schweisguth F (2019) Mechanisms of Notch signaling: a simple logic deployed in time and space. Development 146:dev172148

    Article  PubMed  CAS  Google Scholar 

  • Hurd EA, Poucher HK, Cheng K, Raphael Y, Martin DM (2010) The ATP-dependent chromatin remodeling enzyme CHD7 regulates pro-neural gene expression and neurogenesis in the inner ear. Development 137:3139–3150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurd EA, Micucci JA, Reamer EN, Martin DM (2012) Delayed fusion and altered gene expression contribute to semicircular canal defects in Chd7 deficient mice. Mech Dev 129:308–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh M, Kim C-H, Palardy G, Oda T, Jiang Y-J, Maust D, Yeo S-Y, Lorick K, Wright GJ, Ariza-McNaughton L et al (2003) Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta. Dev Cell 4:67–82

    Article  CAS  PubMed  Google Scholar 

  • Jarman AP, Groves AK (2013) The role of Atonal transcription factors in the development of mechanosensitive cells. Semin Cell Dev Biol 24:438–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayasena CS, Ohyama T, Segil N, Groves AK (2008) Notch signaling augments the canonical Wnt pathway to specify the size of the otic placode. Development 135:2251–2261

    Article  CAS  PubMed  Google Scholar 

  • Jones S (2004) An overview of the basic helix-loop-helix proteins. Genome Biol 5:226–226

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones JM (2006) Inhibitors of differentiation and DNA binding (Ids) regulate Math1 and hair cell formation during the development of the organ of Corti. J Neurosci 26:550–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JM, Montcouquiol M, Dabdoub A, Woods C, Kelley MW (2006) Inhibitors of differentiation and DNA binding (Ids) regulate Math1 and hair cell formation during the development of the organ of Corti. J Neurosci 26:550–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung JY, Avenarius MR, Adamsky S, Alpert E, Feinstein E, Raphael Y (2013) siRNA targeting Hes5 augments hair cell regeneration in aminoglycoside-damaged mouse utricle. Mol Ther 21:834–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamaid A, Neves J, Giraldez F (2010) Id gene regulation and function in the prosensory domains of the chicken inner ear: a link between bmp signaling and Atoh1. J Neurosci 30:11426–11434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly MC, Chang Q, Pan A, Lin X, Chen P (2012) Atoh1 directs the formation of sensory mosaics and induces cell proliferation in the postnatal mammalian cochlea in vivo. J Neurosci 32:6699–6710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiernan AE (2005) The Notch ligands DLL1 and JAG2 act synergistically to regulate hair cell development in the mammalian inner ear. Development 132:4353–4362

    Article  CAS  PubMed  Google Scholar 

  • Kiernan AE, Ahituv N, Fuchs H, Balling R, Avraham KB, Steel KP, de Angelis MH (2001) The Notch ligand Jagged1 is required for inner ear sensory development. Proc Natl Acad Sci 98:3873–3878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiernan AE, Pelling AL, Leung KKH, Tang ASP, Bell DM, Tease C, Lovell-Badge R, Steel KP, Cheah KSE (2005) Sox2 is required for sensory organ development in the mammalian inner ear. Nature 434:1031–1035

    Article  CAS  PubMed  Google Scholar 

  • Kiernan AE, Xu J, Gridley T (2006) The Notch ligand JAG1 is required for sensory progenitor development in the mammalian inner ear. PLoS Genet 2:e4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim WY, Fritzsch B, Serls A, Bakel LA, Huang EJ, Reichardt LF, Barth DS, Lee JE (2001) NeuroD-null mice are deaf due to a severe loss of the inner ear sensory neurons during development. Development 128:417–426

    CAS  PubMed  Google Scholar 

  • Koo SK, Hill JK, Hwang CH, Lin ZS, Millen KJ, Wu DK (2009) Lmx1a maintains proper neurogenic, sensory, and non-sensory domains in the mammalian inner ear. Dev Biol 333:14–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koundakjian EJ, Appler JL, Goodrich LV (2007) Auditory neurons make stereotyped wiring decisions before maturation of their targets. J Neurosci 27:14078–14088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanford PJ, Lan Y, Jiang R, Lindsell C, Weinmaster G, Gridley T, Kelley MW (1999) Notch signalling pathway mediates hair cell development in mammalian cochlea. Nat Genet 21:289–292

    Article  CAS  PubMed  Google Scholar 

  • Lanford PJ, Shailam R, Norton CR, Ridley T, Kelley MW (2000) Expression of Math1 and HES5 in the cochleae of wildtype and Jag2 mutant mice. J Assoc Res Otolaryngol 1:161–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeBon L, Lee TV, Sprinzak D, Jafar-Nejad H, Elowitz MB (2014) Fringe proteins modulate Notch-ligand cis and trans interactions to specify signaling states. elife 3:e02950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lewis, J. (1991). Rules for the production of sensory cells. Ciba Foundation Symposium 160 - Regeneration of Vertebrate Sensory Receptor Cells 25–53

    Google Scholar 

  • Lewis RM, Hume CR, Stone JS (2012) Atoh1 expression and function during auditory hair cell regeneration in post-hatch chickens. Hear Res 289:74–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Mark S, Radde-Gallwitz K, Schlisner R, Chin MT, Chen P (2008) Hey2 functions in parallel with Hes1 and Hes5 for mammalian auditory sensory organ development. BMC Dev Biol 8:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin V, Golub JS, Nguyen TB, Hume CR, Oesterle EC, Stone JS (2011) Inhibition of Notch activity promotes nonmitotic regeneration of hair cells in the adult mouse utricles. J Neurosci 31:15329–15339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsell CE, Boulter J, diSibio G, Gossler A, Weinmaster G (1996) Expression patterns of Jagged, Delta1, Notch1, Notch2, and Notch3 genes identify ligand-receptor pairs that may function in neural development. Mol Cell Neurosci 8:14–27

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Pereira FA, Price SD, Chu M, Shope C, Himes D, Eatock RA, Brownell WE, Lysakowski A, Tsai M-J (2000) Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems. Genes Dev 14:2839–2854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Owen T, Fang J, Zuo J (2012a) Overactivation of Notch1 signaling induces ectopic hair cells in the mouse inner ear in an age-dependent manner. PLoS One 7:e34123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Dearman JA, Cox BC, Walters BJ, Zhang L, Ayrault O, Zindy F, Gan L, Roussel MF, Zuo J (2012b) Age-dependent in vivo conversion of mouse Cochlear Pillar and Deiters’ cells to immature hair cells by Atoh1 ectopic expression. J Neurosci 32:6600–6610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Brunskill E, Varnum-Finney B, Zhang C, Zhang A, Jay PY, Bernstein I, Morimoto M, Kopan R (2015) The intracellular domains of Notch1 and Notch2 are functionally equivalent during development and carcinogenesis. Development 142:2452–2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma W-R, Zhang J (2015) Jag1b is essential for patterning inner ear sensory cristae by regulating anterior morphogenetic tissue separation and preventing posterior cell death. Development 142:763–773

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Anderson DJ, Fritzsch B (2000) Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. J Assoc Res Otolaryngol 1:129–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma EY, Rubel EW, Raible DW (2008) Notch signaling regulates the extent of hair cell regeneration in the zebrafish lateral line. J Neurosci 28:2261–2273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maass JC, Gu R, Basch ML, Waldhaus J, Lopez EM, Xia A, Oghalai JS, Heller S, Groves AK (2015) Changes in the regulation of the Notch signaling pathway are temporally correlated with regenerative failure in the mouse cochlea. Front Cell Neurosci 9

    Google Scholar 

  • Maass JC, Gu R, Cai T, Wan Y-W, Cantellano SC, Asprer JST, Zhang H, Jen H-I, Edlund RK, Liu Z et al (2016) Transcriptomic analysis of mouse Cochlear supporting cell maturation reveals large-scale changes in Notch responsiveness prior to the onset of hearing. PLoS One 11:e0167286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manderfield LJ, High FA, Engelka KA, Liu F, Li L, Rentschler S, Epstein JA (2012) Notch activation of Jagged1 contributes to the assembly of the arterial wall. Circulation 125:314–323

    Article  PubMed  Google Scholar 

  • Mann ZF, Gálvez H, Pedreno D, Chen Z, Chrysostomou E, Żak M, Kang M, Canden E, Daudet N (2017) Shaping of inner ear sensory organs through antagonistic interactions between Notch signalling and Lmx1a. elife 6

    Google Scholar 

  • Matei V, Pauley S, Kaing S, Rowitch D, Beisel KW, Morris K, Feng F, Jones K, Lee J, Fritzsch B (2005) Smaller inner ear sensory epithelia in Neurog1 null mice are related to earlier hair cell cycle exit. Dev Dyn 234:633–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millimaki BB, Sweet EM, Dhason MS, Riley BB (2007) Zebrafish atoh1 genes: classic proneural activity in the inner ear and regulation by Fgf and Notch. Development 134:295–305

    Article  CAS  PubMed  Google Scholar 

  • Mizutari K, Fujioka M, Hosoya M, Bramhall N, Okano HJ, Okano H, Edge ASB (2013) Notch inhibition induces Cochlear hair cell regeneration and recovery of hearing after acoustic trauma. Neuron 77:58–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison A, Hodgetts C, Gossler A, Hrabé de Angelis M, Lewis J (1999) Expression of Delta1 and Serrate1 (Jagged1) in the mouse inner ear. Mech Dev 84:169–172

    Article  CAS  PubMed  Google Scholar 

  • Morsli H, Choo D, Ryan A, Johnson R, Wu DK (1998) Development of the mouse inner ear and origin of its sensory organs. J Neurosci 18:3327–3335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munnamalai V, Hayashi T, Bermingham-McDonogh O (2012) Notch prosensory effects in the mammalian cochlea are partially mediated by Fgf20. J Neurosci 32:12876–12884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murata J, Tokunaga A, Okano H, Kubo T (2006) Mapping of notch activation during cochlear development in mice: implications for determination of prosensory domain and cell fate diversification. J Comp Neurol 497:502–518

    Article  CAS  PubMed  Google Scholar 

  • Myat A, Henrique D, Ish-Horowicz D, Lewis J (1996) A chick homologue of< i> Serrate and its relationship with Notch and Delta homologues during central neurogenesis. Dev Biol 174:233–247

    Article  CAS  PubMed  Google Scholar 

  • Nandagopal N, Santat LA, LeBon L, Sprinzak D, Bronner ME, Elowitz MB (2018) Dynamic ligand discrimination in the Notch signaling pathway. Cell 172:869–880.e19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neves J, Kamaid A, Alsina B, Giraldez F (2007) Differential expression of Sox2 and Sox3 in neuronal and sensory progenitors of the developing inner ear of the chick. J Comp Neurol 503:487–500

    Article  CAS  PubMed  Google Scholar 

  • Neves J, Parada C, Chamizo M, Giraldez F (2011) Jagged 1 regulates the restriction of Sox2 expression in the developing chicken inner ear: a mechanism for sensory organ specification. Development 138:735–744

    Article  CAS  PubMed  Google Scholar 

  • Nichols DH, Pauley S, Jahan I, Beisel KW, Millen KJ, Fritzsch B (2008) Lmx1a is required for segregation of sensory epithelia and normal ear histogenesis and morphogenesis. Cell Tissue Res 334:339–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oesterle EC, Campbell S, Taylor RR, Forge A, Hume CR (2008) Sox2 and Jagged1 expression in Normal and drug-damaged adult mouse inner ear. J Assoc Res Otolaryngol 9:65–89

    Article  PubMed  Google Scholar 

  • Ozeki M, Hamajima Y, Feng L, Ondrey FG, Schlentz E, Lin J (2007) Id1 induces the proliferation of cochlear sensory epithelial cells via the nuclear factor-κB/cyclin D1 pathway in vitro. J Neurosci Res 85:515–524

    Article  CAS  PubMed  Google Scholar 

  • Pan W, Jin Y, Stanger B, Kiernan AE (2010) Notch signaling is required for the generation of hair cells and supporting cells in the mammalian inner ear. Proc Natl Acad Sci 107:15798–15803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan W, Jin Y, Chen J, Rottier RJ, Steel KP, Kiernan AE (2013) Ectopic expression of activated Notch or SOX2 reveals similar and unique roles in the development of the sensory cell progenitors in the mammalian inner ear. J Neurosci 33:16146–16157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrovic J, Formosa-Jordan P, Luna-Escalante JC, Abello G, Ibanes M, Neves J, Giraldez F (2014) Ligand-dependent Notch signaling strength orchestrates lateral induction and lateral inhibition in the developing inner ear. Development 141:2313–2324

    Article  CAS  PubMed  Google Scholar 

  • Petrovic J, Gálvez H, Neves J, Abelló G, Giraldez F (2015) Differential regulation of Hes/Hey genes during inner ear development. Devel Neurobio 75:703–720

    Article  CAS  Google Scholar 

  • Pevny LH, Nicolis SK (2010) Sox2 roles in neural stem cells. Int J Biochem Cell Biol 42:421–424

    Article  CAS  PubMed  Google Scholar 

  • Podgorski GJ, Bansal M, Flann NS (2007) Regular mosaic pattern development: a study of the interplay between lateral inhibition, apoptosis and differential adhesion. Theor Biol Med Model 4:43

    Article  PubMed  PubMed Central  Google Scholar 

  • Radosevic M, Robert-Moreno A, Coolen M, Bally-Cuif L, Alsina B (2011) Her9 represses neurogenic fate downstream of Tbx1 and retinoic acid signaling in the inner ear. Development 138:397–408

    Article  CAS  PubMed  Google Scholar 

  • Raft S (2004) Suppression of neural fate and control of inner ear morphogenesis by Tbx1. Development 131:1801–1812

    Article  CAS  PubMed  Google Scholar 

  • Raft S, Groves AK (2014) Segregating neural and mechanosensory fates in the developing ear: patterning, signaling, and transcriptional control. Cell Tissue Res 359:315–332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raft S, Koundakjian EJ, Quinones H, Jayasena CS, Goodrich LV, Johnson JE, Segil N, Groves AK (2007) Cross-regulation of Ngn1 and Math1 coordinates the production of neurons and sensory hair cells during inner ear development. Development 134:4405–4415

    Article  CAS  PubMed  Google Scholar 

  • Rauskolb C, Correia T, Irvine KD (1999) Fringe-dependent separation of dorsal and ventral cells in the Drosophila wing. Nature 401:476

    Article  CAS  PubMed  Google Scholar 

  • Richardson RT, Atkinson PJ (2015) Atoh1 gene therapy in the cochlea for hair cell regeneration. Expert Opin Biol Ther 15:417–430

    Article  CAS  PubMed  Google Scholar 

  • Riley BB, Chiang M, Farmer L, Heck R (1999) The deltaA gene of zebrafish mediates lateral inhibition of hair cells in the inner ear and is regulated by pax2. 1. Development 126:5669–5678

    CAS  PubMed  Google Scholar 

  • Rubel EW, Furrer SA, Stone JS (2013) A brief history of hair cell regeneration research and speculations on the future. Hear Res 297:42–51

    Article  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Guardado LÓ, Puelles L, Hidalgo-Sánchez M (2013) Fgf10 expression patterns in the developing chick inner ear. J Comp Neurol 521:1136–1164

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Guardado LÓ, Puelles L, Hidalgo-Sánchez M (2014) Fate map of the chicken otic placode. Development 141:2302–2312

    Article  PubMed  CAS  Google Scholar 

  • Saravanamuthu SS, Gao CY, Zelenka PS (2009) Notch signaling is required for lateral induction of Jagged1 during FGF-induced lens fiber differentiation. Dev Biol 332:166–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schilder AGM, Su MP, Blackshaw H, Lustig L, Staecker H, Lenarz T, Safieddine S, Gomes-Santos CS, Holme R, Warnecke A (2019) Hearing protection, restoration, and regeneration: an overview of emerging therapeutics for inner ear and central hearing disorders. Otol Neurotol 40:559–570

    Article  PubMed  Google Scholar 

  • Shaya O, Binshtok U, Hersch M, Rivkin D, Weinreb S, Amir-Zilberstein L, Khamaisi B, Oppenheim O, Desai RA, Goodyear RJ et al (2017) Cell-cell contact area affects notch signaling and notch-dependent patterning. Dev Cell 40:505–511.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shida H, Mende M, Takano-Yamamoto T, Osumi N, Streit A, Wakamatsu Y (2015) Otic placode cell specification and proliferation are regulated by Notch signaling in avian development. Dev Dyn 244:839–851

    Article  CAS  PubMed  Google Scholar 

  • Slowik AD, Bermingham-McDonogh O (2013) Hair cell generation by Notch inhibition in the adult mammalian cristae. J Assoc Res Otolaryngol 14:813–828

    Article  PubMed  PubMed Central  Google Scholar 

  • Steevens AR, Sookiasian DL, Glatzer JC, Kiernan AE (2017) SOX2 is required for inner ear neurogenesis. Sci Rep 7:4086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steevens AR, Glatzer JC, Kellogg CC, Low WC, Santi PA, Kiernan AE (2019) SOX2 is required for inner ear growth and cochlear nonsensory formation before sensory development. Development 146:dev170522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stone JS, Cotanche DA (2007) Hair cell regeneration in the avian auditory epithelium. Int J Dev Biol 51:633–647

    Article  CAS  PubMed  Google Scholar 

  • Stone JS, Rubel EW (1999) Delta1 expression during avian hair cell regeneration. Development 126:961–973

    CAS  PubMed  Google Scholar 

  • Streit A (2002) Extensive cell movements accompany formation of the otic placode. Dev Biol 249:237–254

    Article  CAS  PubMed  Google Scholar 

  • Tang LS, Alger HM, Pereira FA (2006) COUP-TFI controls Notch regulation of hair cell and support cell differentiation. Development 133:3683–3693

    Article  CAS  PubMed  Google Scholar 

  • Tateya T, Imayoshi I, Tateya I, Ito J, Kageyama R (2011) Cooperative functions of Hes/Hey genes in auditory hair cell and supporting cell development. Dev Biol 352:329–340

    Article  CAS  PubMed  Google Scholar 

  • Tateya T, Imayoshi I, Tateya I, Hamaguchi K, Torii H, Ito J, Kageyama R (2013) Hedgehog signaling regulates prosensory cell properties during the basal-to-apical wave of hair cell differentiation in the mammalian cochlea. Development 140:3848–3857

    Article  CAS  PubMed  Google Scholar 

  • Taylor RR, Filia A, Paredes U, Asai Y, Holt JR, Lovett M, Forge A (2018) Regenerating hair cells in vestibular sensory epithelia from humans. elife 7:e34817

    Article  PubMed  PubMed Central  Google Scholar 

  • Togashi H, Kominami K, Waseda M, Komura H, Miyoshi J, Takeichi M, Takai Y (2011) Nectins establish a checkerboard-like cellular pattern in the auditory epithelium. Science 333:1144–1147

    Article  CAS  PubMed  Google Scholar 

  • Troost T, Schneider M, Klein T (2015) A re-examination of the selection of the sensory organ precursor of the bristle sensilla of Drosophila melanogaster. PLoS Genet 11:e1004911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsai H, Hardisty RE, Rhodes C, Kiernan AE, Roby P, Tymowska-Lalanne Z, Mburu P, Rastan S, Hunter AJ, Brown SD et al (2001) The mouse slalom mutant demonstrates a role for Jagged1 in neuroepithelial patterning in the organ of Corti. Hum Mol Genet 10:507–512

    Article  CAS  PubMed  Google Scholar 

  • Wang G-P, Chatterjee I, Batts SA, Wong HT, Gong T-W, Gong S-S, Raphael Y (2010) Notch signaling and Atoh1 expression during hair cell regeneration in the mouse utricle. Hear Res 267:61–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warchol ME, Lambert PR, Goldstein BJ, Forge A, Corwin JT (1993) Regenerative proliferation in inner ear sensory epithelia from adult guinea pigs and humans. Science 259:1619–1622

    Article  CAS  PubMed  Google Scholar 

  • Warchol ME, Stone J, Barton M, Ku J, Veile R, Daudet N, Lovett M (2017) ADAM10 and γ-secretase regulate sensory regeneration in the avian vestibular organs. Dev Biol 428:39–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkerson BA, Chitsazan AD, VandenBosch LS, Wilken MS, Reh TA, Bermingham-McDonogh O (2019) Open chromatin dynamics in prosensory cells of the embryonic mouse cochlea. Sci Rep 9:1–15

    Article  CAS  Google Scholar 

  • Woods C, Montcouquiol M, Kelley MW (2004) Math1 regulates development of the sensory epithelium in the mammalian cochlea. Nat Neurosci 7:nn1349

    Article  CAS  Google Scholar 

  • Yamamoto N, Tanigaki K, Tsuji M, Yabe D, Ito J, Honjo T (2006) Inhibition of Notch/RBP-J signaling induces hair cell formation in neonate mouse cochleas. J Mol Med 84:37–45

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto N, Okano T, Ma X, Adelstein RS, Kelley MW (2009) Myosin II regulates extension, growth and patterning in the mammalian cochlear duct. Development 136:1977–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto S, Charng W-L, Bellen HJ (2010) Chapter five - Endocytosis and intracellular trafficking of notch and its ligands. In: Kopan R (ed) Current topics in developmental biology. Academic Press, pp 165–200

    Google Scholar 

  • Yamamoto N, Chang W, Kelley MW (2011) Rbpj regulates development of prosensory cells in the mammalian inner ear. Dev Biol 353:367–379

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Xie X, Deng M, Chen X, Gan L (2010) Generation and characterization of Atoh1-Cre knock-in mouse line. Genesis 48:407–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Żak M, Klis SFL, Grolman W (2015) The Wnt and Notch signalling pathways in the developing cochlea: formation of hair cells and induction of regenerative potential. Int J Dev Neurosci 47:247–258

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Martin GV, Kelley MW, Gridley T (2000) A mutation in the Lunatic fringe gene suppresses the effects of a Jagged2 mutation on inner hair cell development in the cochlea. Curr Biol 10:659–662

    Article  CAS  PubMed  Google Scholar 

  • Zheng JL, Gao W-Q (2000) Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears. Nat Neurosci 3:580–586

    Article  CAS  PubMed  Google Scholar 

  • Zheng JL, Shou J, Guillemot F, Kageyama R, Gao W-Q (2000) Hes1 is a negative regulator of inner ear hair cell differentiation. Development 127:4551–4560

    CAS  PubMed  Google Scholar 

  • Zine A, Aubert A, Qiu J, Therianos S, Guillemot F, Kageyama R, de Ribaupierre F (2001) Hes1 and Hes5 activities are required for the normal development of the hair cells in the mammalian inner ear. J Neurosci 21:4712–4720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Daudet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Daudet, N., Żak, M. (2020). Notch Signalling: The Multitask Manager of Inner Ear Development and Regeneration. In: Reichrath, J., Reichrath, S. (eds) Notch Signaling in Embryology and Cancer. Advances in Experimental Medicine and Biology, vol 1218. Springer, Cham. https://doi.org/10.1007/978-3-030-34436-8_8

Download citation

Publish with us

Policies and ethics