Skip to main content

LCA Application to Chemical Synthesis at Laboratory Scale

Abstract

Although a huge number of Green Chemistry metrics are available and more simply applicable with respect to LCA, their intrinsic less comprehensive nature could in some cases represent a limiting factor for a trustworthy evaluation of the environmental and human health impacts assessment associated to that specific chemical. Therefore, all of the chemical processes not specifically based on a chemical reaction (e.g., the extraction of a particular phytochemical compound from plant matrices) are far from being assessed by most of these metrics. LCA methodology-based evaluations for chemical processes are not limited by a mere chemical reaction equation, being also able to account for time and energy contributions together with all of the possible environmental loads associated to a particular process or product. This chapter will first overview the most widely employed Green Chemistry metrics. The possibility to integrate those metrics with the all-encompassing LCA methodology will be also accurately and critically discussed. This chapter will also furnish important recommendations and guidelines on when and at which extent the application of LCA should be highly suggested at a laboratory scale.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   147.69
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   147.69
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • ACS Green Chemistry Institute pharmaceutical roundtable 2018. https://www.acs.org/content/acs/en/greenchemistry/research-innovation/tools-for-green-chemistry.html#process-mass-intensity-calculator. Accessed 17 Apr 2019

  • Albini A, Protti S (2016) Green metrics, an abridged glossary. In: Paradigms in Green Chemistry and technology, Springer Briefs in Green Chemistry for Sustainability. Springer, p 11

    Google Scholar 

  • Allen DT, Hwang BJ, Licence P et al (2015) Advancing the use of sustainability metrics. ACS Sustain Chem Eng 3:2359–2360

    CrossRef  CAS  Google Scholar 

  • Anastas PT, Warner JC (1998) Green Chemistry: theory and practice. Oxford University Press, New York

    Google Scholar 

  • Anastas PT, Zimmerman JB (2003) Design through the 12 principles of green engineering. Environ Sci Technol 37:94A–101A

    CrossRef  Google Scholar 

  • Andraos J (2005) Unification of reaction metrics for Green Chemistry: application to reaction analysis. Org Process Res Dev 9:149–163

    CrossRef  CAS  Google Scholar 

  • Andraos J (2009) Global Green Chemistry metrics analysis algorithm and spreadsheets: evaluation of the material efficiency performances of synthesis plans for oseltamivir phosphate (Tamiflu) as a test case. Org Process Res Dev 13:161–185

    CrossRef  CAS  Google Scholar 

  • Andraos J (2016) Critical evaluation of published algorithms for determining material efficiency green metrics of chemical reactions and synthesis plans. ACS Sustain Chem Eng 4:1917–1933

    CrossRef  CAS  Google Scholar 

  • Andraos J, Mastronardi ML, Hoch LB et al (2016) Critical evaluation of published algorithms for determining environmental and hazard impact green metrics of chemical reactions and synthesis plans. ACS Sustain Chem Eng 4:1934–1945

    CrossRef  CAS  Google Scholar 

  • Armenta S, Garrigues S, de la Guardia M (2008) Green analytical chemistry. TrAC Trends Anal Chem 27:497–511

    CrossRef  CAS  Google Scholar 

  • Baldi G, Bitossi M, Barzanti A (2008) US Patent 0317959 A1

    Google Scholar 

  • Becker H (2001) Organikum: organisch-chemisches Grundpraktikum. Wiley-VCH, Weinheim

    Google Scholar 

  • Bianchini R, Corsi M, Bonanni M (2014) WO Patent 2014177528A1

    Google Scholar 

  • Caramazana P, Dunne P, Gimeno-Fabra M et al (2017) Assessing the life cycle environmental impacts of titania nanoparticle production by continuous flow solvo/hydrothermal syntheses. Green Chem 19:1536–1547

    CrossRef  Google Scholar 

  • Caramazana P, Dunne P, Gimeno-Fabra M et al (2018) A review of the environmental impact of nanomaterial synthesis using continuous flow hydrothermal synthesis. Curr Opin Green Sustain Chem 12:57–62

    CrossRef  Google Scholar 

  • Cespi D, Passarini F, Vassura I et al (2016) Butadiene from biomass, a life cycle perspective to address sustainability in the chemical industry. Green Chem 18:1625–1638

    CrossRef  CAS  Google Scholar 

  • Chemat F, Vian MA, Cravotto G (2012) Green extraction of natural products: concept and principles. Int J Mol Sci 13:8615–8627

    CrossRef  CAS  Google Scholar 

  • Dallinger D, Kappe CO (2017) Why flow means green—evaluating the merits of continuous processing in the context of sustainability. Curr Opin Green Sustain Chem 7:6–12

    CrossRef  Google Scholar 

  • Do JL, Friscic T (2017) Mechanochemistry: a force of synthesis. ACS Cent Sci 3:13–19

    CrossRef  CAS  Google Scholar 

  • Duarte RC, Ribeiro MGTC, Machado AASC (2015) Using green star metrics to optimize the greenness of literature protocols for syntheses. J Chem Educ 92:1024–1034

    CrossRef  CAS  Google Scholar 

  • Ecoscale calculator website (2006) http://ecoscale.cheminfo.org/calculator. Accessed 17 Apr 2019

  • Eissen M, Metzger JO (2001) EATOS user manual website: http://www.metzger.chemie.uni-oldenburg.de/eatos/eatosmanual.pdf. Accessed 18 Apr 2001

  • Eissen M, Metzger JO (2002) Environmental performance metrics for daily use in synthetic chemistry. Chem Eur J 8:3581–3585

    CrossRef  Google Scholar 

  • Eissen M, Metzger JO (2019) EATOS, environmental assessment tool for organic syntheses, Software website: http://www.metzger.chemie.uni-oldenburg.de/eatos/english.htm. Accessed 18 Apr 2019

  • Ferrari E, Pignedoli F, Imbriano C et al (2011) Newly synthesized curcumin derivatives: crosstalk between chemico–physical properties and biological activity. J Med Chem 54:8066–8077

    CrossRef  CAS  Google Scholar 

  • Ferrari AM, Volpi L, Pini M et al (2019) Building a sustainability benchmarking framework of ceramic tiles based on Life Cycle Sustainability Assessment (LCSA). Resources 8:11

    CrossRef  Google Scholar 

  • Freese U, Heinrich F, Rößner F (1999) Acylation of aromatic compounds on H-Beta zeolites. Catal Today 49:237–244

    CrossRef  CAS  Google Scholar 

  • Hudlicky T, Frey DA, Koroniak L et al (1999) Toward a “reagent-free” synthesis. Green Chem 1:57–59

    CrossRef  CAS  Google Scholar 

  • Hünig S, Märkl G, Sauer J (1979) Integriertes organisches praktikum. Verl Chemie, Weinheim

    Google Scholar 

  • Leonelli C, Mason TJ (2010) Microwave and ultrasonic processing: now a realistic option for industry. Chem Eng Proc 49:885–900

    CrossRef  CAS  Google Scholar 

  • Life+ Ecodefatting project website: http://www.life-ecodefatting.com. Accessed 19 Apr 2019

  • NOP (2019) Website: https://www.oc-praktikum.de/nop/en-article-why. Accessed 17 Apr 2019

  • Pabon HJJ (1964) A synthesis of curcumin and related compounds. Recl Trav Chim Pays-Bas 83:379–386

    CrossRef  CAS  Google Scholar 

  • Pini M, Rosa R, Neri P et al (2015) Environmental assessment of a bottom-up hydrolytic synthesis of TiO2 nanoparticles. Green Chem 17:518–531

    CrossRef  CAS  Google Scholar 

  • Ravelli D, Dondi D, Fagnoni M et al (2010) Titanium dioxide photocatalysis: an assessment of the of the environmental compatibility for the case of the functionalization of heterocyclics. Appl Catal B 99:442–447

    CrossRef  CAS  Google Scholar 

  • Ravelli D, Protti S, Neri P et al (2011) Photochemical technologies assessed: the case of rose oxide. Green Chem 13:1876–1884

    CrossRef  CAS  Google Scholar 

  • Ribeiro MGTC, Machado AASC (2013) Greenness of chemical reactions—limitations of mass metrics. Green Chem Lett Rev 6:1–18

    CrossRef  CAS  Google Scholar 

  • Ribeiro MGTC, Costa DA, Machado AASC (2010) “Green Star”: a holistic Green Chemistry metric for evaluation of teaching laboratory experiments. Green Chem Lett Rev 3:149–159

    CrossRef  CAS  Google Scholar 

  • Rosa R, Pini M, Neri P et al (2017) Environmental sustainability assessment of a new degreasing formulation for the tanning cycle within leather manufacturing. Green Chem 19:4571–4582

    CrossRef  CAS  Google Scholar 

  • Rosa R, Ferrari E, Veronesi P (2018) From field to shelf: how microwave-assisted extraction techniques foster an integrated green approach. In: You KY (ed) Emerging microwave technologies in industrial, agricultural, medical and food processing. IntechOpen, London, pp 179–203

    Google Scholar 

  • Sheldon RA (1992) Organic synthesis; past, present and future. Chem Ind (London): 903–904

    Google Scholar 

  • Sheldon RA (1994) Consider the environmental quotient. ChemTech 24:38–47

    CAS  Google Scholar 

  • Sheldon RA (2007) The E factor: fifteen years on. Green Chem 9:1273–1283

    CrossRef  CAS  Google Scholar 

  • Sheldon RA (2018) Metrics of green chemistry and sustainability: past, present, and future. ACS Sustain Chem Eng 6:32–48

    CrossRef  CAS  Google Scholar 

  • Stankiewicz A, Moulijn JA (2000) Process intensification: transforming chemical engineering. Chem Eng Prog 96:22–34

    CAS  Google Scholar 

  • Vaccaro L, Lanari D, Marrocchi A et al (2014) Flow approaches towards sustainability. Green Chem 16:3680–3704

    CrossRef  CAS  Google Scholar 

  • Van Aken K, Strekowski L, Patiny L (2006) EcoScale, a semi-quantitative tool to select an organic preparation based on economical and ecological parameters. Beilstein J Org Chem 2. https://doi.org/10.1186/1860-5397-2-3

  • Vogel AI (1978) Vogel’s textbook of practical organic chemistry: including qualitative organic analysis. Longman, London

    Google Scholar 

  • Zerazion E, Rosa R, Ferrari E et al (2016) Phytochemical compounds or their synthetic counterparts? A detailed comparison of the quantitative environmental assessment for the synthesis and extraction of curcumin. Green Chem 18:1807–1818

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Maria Ferrari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pini, M., Rosa, R., Neri, P., Ferrari, A.M. (2020). LCA Application to Chemical Synthesis at Laboratory Scale. In: Maranghi, S., Brondi, C. (eds) Life Cycle Assessment in the Chemical Product Chain. Springer, Cham. https://doi.org/10.1007/978-3-030-34424-5_5

Download citation

Publish with us

Policies and ethics