Skip to main content

LCA Integration Within Sustainability Metrics for Chemical Companies

Abstract

The application of a life-cycle perspective within the industrial sector may help companies in supporting all the planning activities aimed to promote new business opportunities. The usage of LCA is a common practice in corporates working in the field of chemistry. The development and production of fine/bulk chemicals, pharmaceuticals, plastics, personal care products, etc., may be supported by LCA and green metrics. The development of a lower impact and safer chemical industry is encouraged by the adoption of the Green Chemistry principles. Among these the usage of renewables sources of building blocks is one of the most investigated principle. However, the use of biomass as starting precursors needs to be assessed through LCA before considering a bio-based route greener than the traditional fossil pathway. Recently, the social sphere of sustainability has increased its importance also in the chemical industry, because many chemicals could have social repercussions as a consequence of their adoption. The implementation of S-LCA strategies may help enterprises to configure repercussions of their activities in this sense, by achieving SDGs described in the Agenda 2030. This chapter is intended to drive readers through such issues by stimulating their sensibility towards sustainability within the chemical industry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   147.69
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   147.69
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abhari R, Tomlinson HL, Roth G (2013) Biorenewable naphtha. US Patent 8558042B2, Syntroleum

    Google Scholar 

  • Adams JP, Alder CM, Andrews I et al (2013) Development of GSK’s reagent guides—embedding sustainability into reagent selection. Green Chem 15:1542–1549

    CrossRef  CAS  Google Scholar 

  • Aitchison H, Wingad RL, Fass DL (2016) Homogeneous ethanol to butanol catalysis guerbet renewed. ACS Catal 6:7125–7132

    CrossRef  CAS  Google Scholar 

  • Anastas PT, Ferris CA (1994) Benign by design. Alternative synthetic design for pollution prevention, vol 577. American Chemical Society

    Google Scholar 

  • Anastas PT, Lankey RL (2000) Life cycle assessment and green chemistry: the yin and yang of industrial ecology. Green Chem 2:289–295

    CrossRef  CAS  Google Scholar 

  • Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, USA

    Google Scholar 

  • Anastas PT, Zimmerman JB (2003) Peer reviewed: design through the 12 principles of green engineering. Environ Sci Techol 37:94–101

    CrossRef  Google Scholar 

  • Andraos J (2005) Unification of reaction metrics for green chemistry: applications to reaction analysis. Org Process Res Dev 9:149–163

    CrossRef  CAS  Google Scholar 

  • Aresta M, Galatola M (1999) Life cycle analysis applied to the assessment of the environmental impact of alternative synthetic processes. The dimethylcarbonate case: part 1. J Clean Prod 7:181–193

    CrossRef  Google Scholar 

  • Avantium (2019). https://www.avantium.com/yxy/products-applications/. Accessed 28 Feb 2019

  • Bayer AG (2019). http://lifenet.bayer.fr/. Accessed 28 Feb 2019

  • Beiersdorf AG (2019). https://www.beiersdorf.com/sustainability/products/packaging/life-cycle-analyses. Accessed 28 Feb 2019

  • Benetto E, Gericke K, Guiton M (2018), Designing sustainable technologies, products and policies. https://doi.org/10.1007/978-3-319-66981-6_39. Accessed 28 Feb 2019

    CrossRef  Google Scholar 

  • Benoit-Norris C (2012) Social life cycle assessment: a technique providing a new wealth of information to inform sustainability-related decision making. In: Curran MA (ed) Life cycle assessment handbook: a guide for environmentally sustainable products. Wiley, Hoboken, p 433

    CrossRef  Google Scholar 

  • Berger M, van der Ent R, Eisner S, Bach V, Finkbeiner M (2014) Water Accounting and Vulnerability Evaluation (WAVE): considering atmospheric evaporation recycling and the risk of freshwater depletion in water footprinting. Environ Sci Technol 48:4521–4528

    CrossRef  CAS  PubMed  Google Scholar 

  • Cefic (2018). http://www.cefic.org/Documents/RESOURCES/Reports-and-Brochu-re/Cefic_FactsAnd_Figures_2018_Industrial_BROCHURE_TRADE.pdf. Accessed 28 Feb 2019

  • Cespi D, Passarini F, Mastragostino G et al (2015a) Glycerol as feedstock in the synthesis of chemicals: a life cycle analysis for acrolein production. Green Chem 17:343–355

    CrossRef  CAS  Google Scholar 

  • Cespi D, Beach ES, Swarr TE et al (2015b) Life cycle inventory improvement in the pharmaceutical sector: assessment of the sustainability combining PMI and LCA tools. Green Chem 17:3390–3400

    CrossRef  CAS  Google Scholar 

  • Cespi D, Cucciniello R, Ricciardi M et al (2016a) A simplified early stage assessment of process intensification: glycidol as a value-added product from epichlorohydrin industry wastes. Green Chem 18:4559–4570

    CrossRef  CAS  Google Scholar 

  • Cespi D, Passarini F, Vassura I et al (2016b) Butadiene from biomass, a life cycle perspective to address sustainability in the chemical industry. Green Chem 18:1625–1638

    CrossRef  CAS  Google Scholar 

  • Clark JH, Farmer TJ, Hunt AJ et al (2015) Opportunities for bio-based solvents created as petrochemical and fuel products transition towards renewable resources. Int J Mol Sci 16:17101–17159

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Constable DJC, Curzons AD, Cunningham VL (2002) Metrics to ‘green’ chemistry—which are the best? Green Chem 4:521–527

    CrossRef  CAS  Google Scholar 

  • Corona A, Ambye-Jensen M, Vega GC et al (2018) Techno-environmental assessment of the green biorefinery concept: combining process simulation and life cycle assessment at an early design stage. Sci Total Environ 635:100–111

    CrossRef  CAS  PubMed  Google Scholar 

  • Cortright RC, Blommel PG (2013) Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons. US Patent 2013/0185992 A1, assigned to Virent Inc.

    Google Scholar 

  • Covestro AG (2019). https://www.productsafetyfirst.covestro.com/en/assessments/life-cycle-assessment. Accessed 28 Feb 2019

  • Curzons AD, Constable DJC, Mortimer DN et al (1999) Solvent selection guide: a guide to the integration of environmental, health and safety criteria into the selection of solvents. Clean Prod Process 1:82–90

    Google Scholar 

  • Curzons AD, Constable DJC, Mortimer DN et al (2001) So you think your process is green, how do you know? Using principles of sustainability to determine what is green—a corporate perspective. Green Chem 3:1–6

    CrossRef  CAS  Google Scholar 

  • Curzons AD, Jiménez-González C, Duncan AL et al (2007) Fast life cycle assessment of synthetic chemistry (FLASC™) tool. Int J Life Cycle Assess 12:272–280

    CrossRef  CAS  Google Scholar 

  • Deshpande R, Davis P, Pandey V, Kore N (2013) Dehydroxylation of crude alcohol streams using a halogen-based catalyst. WO Patent 2013090076A1, Dow Global

    Google Scholar 

  • Doménech X, Ayllón JA, Peral J (2002) How green is a chemical reaction? Application of LCA to Green Chemistry. Environ Sci Technol 36:5517–5520

    CrossRef  PubMed  CAS  Google Scholar 

  • Dunn PJ, Galvin S, Hettenbach K (2004) The development of an environmentally benign synthesis of sildenafil citrate (Viagra™) and its assessment by Green Chemistry metrics. Green Chem 6:43–48

    CrossRef  CAS  Google Scholar 

  • EN ISO 14025 (2010) Environmental labels and declarations—type III environmental declarations—principles and procedures. International Organization for Standardization, Geneva, Switzerland

    Google Scholar 

  • EN ISO 14064 (2012) Greenhouse gases—part 1: specification with guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals. International Organization for Standardization, Geneva, Switzerland

    Google Scholar 

  • Environmental Protection Agency (EPA) (2017). https://www.epa.gov/ghgreporting/ghgrp-chemicals

  • Erythropel H, Zimmerman JB, de Winter TM et al (2018) The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chem 20:1929–1961

    CrossRef  CAS  Google Scholar 

  • Fontes J, Bolhuis A, Bogaers K et al (2014) Handbook of product social impact assessment. https://product-social-impact-assessment.com/. Accessed 28 Feb 2019

  • Fukumoto M, Kimura A (2013) Process for the manufacture of ethylene by dehydration of ethanol. EP Patent 2594546A1. Solvay S.A.

    Google Scholar 

  • Gilbertson LM, Zimmerman JB, Plata DL (2015) Life cycle inventory improvement in the pharmaceutical sector: assessment of the sustainability combining PMI and LCA tools. Designing nanomaterials to maximize performance and minimize undesirable implications guided by the principles of Green Chemistry. Chem Soc Rev 44:5758–5777

    CrossRef  CAS  PubMed  Google Scholar 

  • Gonzalez MA, Smith RL (2003) A methodology to evaluate process sustainability. Environ Prog 22:269–276

    CrossRef  CAS  Google Scholar 

  • Graedel TE (1999) Green chemistry in an industrial ecology context. Green Chem 1:G126–G128

    CrossRef  Google Scholar 

  • Hellweg S, Fischer U, Scheringer M et al (2004) Environmental assessment of chemicals: methods and application to a case study of organic solvents. Green Chem 6:418–427

    CrossRef  CAS  Google Scholar 

  • Henderson RK, Jiménez-González C, Constable DJC et al (2011) Expanding GSK’s solvent selection guide—embedding sustainability into solvent selection starting at medicinal chemistry. Green Chem 13:854–862

    CrossRef  CAS  Google Scholar 

  • Henkel AG & Co KGaA (2019). https://www.henkel.com/sustainability/positions/impact-measurement-and-valuation#Tab-805422_4. Accessed 28 Feb 2019

  • Huber GW, Gaffney AM, Jae J, Cheng YT (2012) Systems and processes for catalytic pyrolysis of biomass and hydrocarbonaceous materials for production of aromatics with optional olefin recycle, and catalysts having selected particle size for catalytic pyrolysis. US Patent 2012/0203042 A1, assigned to Anellotech Inc., and University of Massachusetts

    Google Scholar 

  • IQ Consortium (2019). https://iqconsortium.org/. Accessed 28 Feb 2019

  • Jiménez-González C, Constable DJC (2011) Green Chemistry and engineering: a practical design approach. Wiley-VCH Verlag Gmbh & CO. KGAA, Weinheim, Germany

    Google Scholar 

  • Jiménez-González C, Curzons AD, Constable DJC et al (2004) Cradle-to-gate life cycle inventory and assessment of pharmaceutical compounds. Int J Life Cycle Assess 9:114–121

    CrossRef  Google Scholar 

  • Jiménez-González C, Poechlauer P, Broxterman QB et al (2011) Key green engineering research areas for sustainable manufacturing: a perspective from pharmaceutical and fine chemicals manufacturers. Org Process Res Dev 15:900–911

    CrossRef  CAS  Google Scholar 

  • Jiménez-González C, Ollech C, Pyrz W et al (2013) Expanding the boundaries: developing a streamlined tool for eco-footprinting of pharmaceuticals. Org Process Res Dev 17:239–246

    CrossRef  CAS  Google Scholar 

  • Jolliet O, Margni M, Charles R et al (2003) Impact 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 6:324–330

    CrossRef  Google Scholar 

  • Kralisch D, Ott D, Gericke D (2015) Rules and benefits of life cycle assessment in green chemical process and synthesis design: a tutorial review. Green Chem 17:123–145

    CrossRef  CAS  Google Scholar 

  • Lanzafame P, Centi G, Perathoner S (2014) Evolving scenarios for biorefineries and the impact on catalysis. Catal Today 234:2–12

    CrossRef  CAS  Google Scholar 

  • Lapkin A, Constable DJC (2009) Green Chemistry metrics: measuring and monitoring sustainable processes. © 2009 Blackwell Publishing Ltd. ISBN 978-1-405-15968-5

    Google Scholar 

  • Lee E, Andrews CJ, Anctil A (2018) An iterative approach to evaluate and guide fine chemical processes: an example from chloroaluminum phthalocyanine for photovoltaic applications. ACS Sustain Chem Eng 6:8230–8237

    CrossRef  CAS  Google Scholar 

  • Leseurre L, Merea C, Duprat de Paule S et al (2014) Eco-footprint: a new tool for the “Made in Chimex” considered approach. Green Chem 16:1139–1148

    CrossRef  CAS  Google Scholar 

  • Lichtlen L, Pochard C (2018) Danone, Nestlé waters and origin materials welcome PepsiCo to the NaturALL Bottle Alliance. https://www.nestle-waters.com/asset-library/documents/press%20releases/2018/pepsico_joins_naturall_alliance.pdf. Accessed 28 Feb 2019

  • Marion P, Bernela B, Piccirilli A et al (2017) Sustainable chemistry: how to produce better from less? Green Chem 19:4973-4989

    Google Scholar 

  • Merck KGaA (2019). http://www.merckmillipore.com/IT/it/responsibility/products/design-innovation/Life-Cycle-Assessment/pBeb.qB.U58AAAFD8ldZXujz,nav. Accessed 28 Feb 2019

  • Minoux D, Nesterenko N, Vermeiren W et al (2009) WO Patent 2009098268A1, Dehydration of alcohols in the presence of an inert component. Total Petrochemicals Research Feluy

    Google Scholar 

  • Muñoz I (2012) LCA in green chemistry: a new subject area and call for papers. Int J Life Cycle Ass 17:517–519

    CrossRef  Google Scholar 

  • Novamont (2019). https://www.novamont.com/eng/. Accessed 28 Feb 2019

  • P&G—The Procter & Gamble Company (2019). https://us.pg.com/environmental-sustainability/. Accessed 28 Feb 2019

  • Patel AD, Meesters K, Den Uil H et al (2012) Sustainability assessment of novel chemical processes at early stage: application to biobased processes. Energ Environ Sci 5:8430–8444

    CrossRef  CAS  Google Scholar 

  • Patrick Gracey B, Partington SR (2009) Process for preparing ethene. WO Patent 2009050433A1, BP plc

    Google Scholar 

  • Phan TVT, Gallardo C, Mane J (2015) GREEN MOTION: a new and easy to use green chemistry metric from laboratories to industry. Green Chem 17:2846–2852

    CrossRef  CAS  Google Scholar 

  • Philippe M, Didillon B, Gilbert L (2012) Industrial commitment to green and sustainable chemistry: using renewable materials & developing eco-friendly processes and ingredients in cosmetics. Green Chem 14:952–956

    CrossRef  CAS  Google Scholar 

  • PRé Consultants (2019) Fact-based sustainable development. https://www.pre-sustainability.com/. Accessed 28 Feb 2019

  • Rennovia (2019). http://www.rennovia.com/. Accessed 28 Feb 2019

  • Ricciardi M, Cespi D, Celentano M et al (2017a) Bio-propylene glycol as value added product from Epicerol® process. Sustain Chem Pharm 6:10–13

    CrossRef  Google Scholar 

  • Ricciardi M, Passarini F, Vassura I et al (2017b) Glycidol, a valuable substrate for the synthesis of Monoalkyl Glyceryl Ethers: a simplified life cycle approach. Chemsuschem 10:2291–2300

    CrossRef  CAS  PubMed  Google Scholar 

  • Ricciardi M, Passarini F, Capacchione C et al (2018) First attempt of Glycidol-to-Monoalkyl Glyceryl Ethers conversion by acid heterogeneous catalysis: synthesis and simplified sustainability assessment. Chemsuschem 11:1829–1837

    CrossRef  CAS  PubMed  Google Scholar 

  • Roschangar F, Zhou Y, Constable DJC et al (2018) Inspiring process innovation via an improved green manufacturing metric. iGALGreen Chem 20:2206–2211

    Google Scholar 

  • Ruiz-Mercado GJ, Smith RL, Gonzalez MA (2012a) Sustainability indicators for chemical processes: I. Taxonomy. Ind Eng Chem Res 51:2309–2328

    CrossRef  CAS  Google Scholar 

  • Ruiz-Mercado GJ, Smith RL, Gonzalez MA (2012b) Sustainability indicators for chemical processes: II. Data Needs. Ind Eng Chem Res 51:2329–2353

    CrossRef  CAS  Google Scholar 

  • Ruiz-Mercado GJ, Carvalho A, Cabezas H (2016) Using Green Chemistry and engineering principles to design, assess, and retrofit chemical processes for sustainability. ACS Sustain Chem Eng 4:6208–6221

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Saling P, Kicherer A, Dittrich-Krãmer B et al (2002) Eco-efficiency analysis by BASF: the method. Int J Life Cycle Assess 4:203–218

    CrossRef  Google Scholar 

  • Saling P, Maisch R, Silvani M et al (2005) Assessing the environmental-hazard potential for life cycle assessment, eco-efficiency and SEEbalance. Int J Life Cycle Assess 10:364–371

    CrossRef  Google Scholar 

  • Salvadori R (1930) Merceologia generale. Poligrafica universitaria, Firenze, Italy

    Google Scholar 

  • Schmidt I, Meurer M, Saling P et al (2004) Managing sustainability of products and processes with the socio-eco-efficiency analysis by BASF. GMI 45 Spring. http://www.academia.edu/25480624/Managing_sustainability_of_products_and_processes_with_the_socio-eco-efficiency_analysis_by_BASF. Accessed 28 Feb 2019

  • SDGs. https://sustainabledevelopment.un.org/?menu=1300. Accessed 28 Feb 2019

  • Secchi M, Castellani V, Collina E et al (2016) Assessing eco-innovations in green chemistry: Life Cycle Assessment (LCA) of a cosmetic product with a bio-based ingredient. J Clean Prod 129:269–281

    CrossRef  CAS  Google Scholar 

  • SGI. Sustainable guar iniziative. https://www.solvay.com/en/sustainability/acting-society/sustainable-guar-initiative. Accessed on 28 Feb 2019

  • Sheldon RA (1992) Organic synthesis-past, present and future. Chem Ind 23:903–906

    Google Scholar 

  • Sheldon RA (1997) Catalysis and pollution prevention. Chem Ind 1:12–15

    Google Scholar 

  • Sheldon RA (2018) Metrics of Green Chemistry and sustainability: past, present, and future. ACS Sustain Chem Eng 6:32–48

    CrossRef  CAS  Google Scholar 

  • Shonnard A, Kicherer A, Saling P (2003) Saling, industrial application using BASF eco-efficiency analysis: perspectives on green engineering principles. Environ Sci Technol 37:5340–5348

    CrossRef  CAS  PubMed  Google Scholar 

  • Smith H (1968) The cumulative energy requirements of some final products of the chemical industry. In: World power conference, Moscow, Russia

    Google Scholar 

  • Solvay S.A. (2019). https://www.solvay.com/en/sustainability/acting-sustainable-business/sustainable-portfolio-management-spm-tool. Accessed 28 Feb 2019

  • Subramaniam E, Semenzin A, Zabeo P et al (2018) Assessing the social impacts of anno-enabled products through the life cycle: the case of nano-enabled biocidal paint. Int J Life Cycle Assess 2:348–356

    CrossRef  CAS  Google Scholar 

  • Swarr TE, Cucciniello R, Cespi D (2019) Environmental certifications and programs roadmap for a sustainable chemical industry. Green Chem 21:375–380

    CrossRef  CAS  Google Scholar 

  • Traverso M, Bell L, Saling P, Fontes J (2018) Towards social life cycle assessment: a quantitative product social impact assessment. Int J Life Cycle Assess 3:597–606

    CrossRef  Google Scholar 

  • Tripodi A, Bahadori E, Cespi D et al (2017) Acetonitrile from bioethanol ammoxidation: process design from the grass-roots and life cycle analysis. ACS Sustain Chem Eng 6:5441–5451

    CrossRef  CAS  Google Scholar 

  • Trost BM (1991) The atom economy—a search for synthetic efficiency. Science 254:1471–1477

    CrossRef  CAS  PubMed  Google Scholar 

  • UNEP, United Nation Environmental Programme (2013) The Methodological Sheets for Sub-categories in Social Life Cycle Assessment (S-LCA)

    Google Scholar 

  • UNEP/SETAC (2009) Guidelines for social life cycle assessment of products. United Nations Environmental Porgram, Paris SETAC Life Cycle Initiative United Nation Environmental Program

    Google Scholar 

  • Van Schoubroeck S, Van Dael M, Van Passel S, Int J of Life Cycle Assess (2018) A review of sustainability indicators for biobased chemicals. Renew Sust Energ Rev 94:115–126

    Google Scholar 

  • Vermeiren W, Van Gyseghem N (2011) A process for the production of bio-naphtha from complex mixtures of natural occurring fats & oils. WO Patent 2011012439A1, Total Petrochemicals Research Feluy

    Google Scholar 

  • Weiss M, Haufe J, Carus M et al (2012) A review of the environmental impacts of biobased materials. J Ind Ecol 16:S169–S181

    CrossRef  CAS  Google Scholar 

  • World Bank Group (2016) ECOFYS. Carbon Pricing Watch 2016. Washington, DC, USA. https://openknowledge.worldbank.org/handle/10986/24288. Accessed 28 Feb 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Cespi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cespi, D., Passarini, F., Neri, E., Cucciniello, R., Cavani, F. (2020). LCA Integration Within Sustainability Metrics for Chemical Companies. In: Maranghi, S., Brondi, C. (eds) Life Cycle Assessment in the Chemical Product Chain. Springer, Cham. https://doi.org/10.1007/978-3-030-34424-5_3

Download citation

Publish with us

Policies and ethics