Advertisement

Multimodal Behavioral Mobility Pattern Mining and Analysis Using Topic Modeling on GPS Data

Conference paper
  • 116 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11406)

Abstract

Identifying risky driving behavior is of central importance for increasing traffic safety. This paper tackles the task of analyzing real (naturalistic) driving data captured by in-vehicle sensors using interpretable data science methods. In particular, we focus on symbolic time-series abstraction and the subsequent behavioral profile identification using topic modeling approaches. For our experiments, we utilize a real-world dataset. Our results indicate interesting behavioral driving profiles including important patterns and factors for traffic safety modeling.

References

  1. 1.
    Arsintescu, L., Kato, K.H., Cravalho, P.F., Feick, N.H., Stone, L.S., Flynn-Evans, E.E.: Validation of a touchscreen psychomotor vigilance task. Accid. Anal. Prev. 126, 173–176 (2017)CrossRefGoogle Scholar
  2. 2.
    Aryal, A., Ghahramani, A., Becerik-Gerber, B.: Monitoring fatigue in construction workers using physiological measurements. Autom. Constr. 82, 154–165 (2017)CrossRefGoogle Scholar
  3. 3.
    Atzmueller, M.: Data mining on social interaction networks. J. Data Min. Digit. Hum. 1 (2014)Google Scholar
  4. 4.
    Atzmueller, M.: Detecting community patterns capturing exceptional link trails. In: Proceedings of IEEE/ACM ASONAM. IEEE Press, Boston (2016)Google Scholar
  5. 5.
    Atzmueller, M.: Onto explicative data mining: exploratory, interpretable and explainable analysis. In: Proceedings of Dutch-Belgian Database Day. TU Eindhoven (2017)Google Scholar
  6. 6.
    Atzmueller, M.: Declarative aspects in explicative data mining for computational sensemaking. In: Seipel, D., Hanus, M., Abreu, S. (eds.) WFLP/WLP/INAP -2017. LNCS (LNAI), vol. 10997, pp. 97–114. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00801-7_7CrossRefGoogle Scholar
  7. 7.
    Atzmueller, M., Lemmerich, F.: Exploratory pattern mining on social media using geo-references and social tagging information. IJWS 2(1/2), 80–112 (2013)CrossRefGoogle Scholar
  8. 8.
    Atzmueller, M., Puppe, F., Buscher, H.P.: Profiling examiners using intelligent subgroup mining. In: Proceedings of IDAMAP, pp. 46–51, Aberdeen, Scotland (2005)Google Scholar
  9. 9.
    Atzmueller, M., Schmidt, A., Kibanov, M.: DASHTrails: an approach for modeling and analysis of distribution-adapted sequential hypotheses and trails. In: Proceedings of WWW 2016 (Companion). IW3C2/ACM (2016)Google Scholar
  10. 10.
    Basner, M., Dinges, D.F.: Maximizing sensitivity of the psychomotor vigilance test (PVT) to sleep loss. Sleep 34(5), 581–591 (2011)CrossRefGoogle Scholar
  11. 11.
    Bener, A., Lajunen, T., Özkan, T., Yildirim, E., Jadaan, K.S.: The impact of aggressive behaviour, sleeping, and fatigue on road traffic crashes as comparison between minibus/van/pick-up and commercial taxi drivers. Profiling Exam. Using Intell. Subgr. Min. 5, 21–31 (2017)Google Scholar
  12. 12.
    Blei, D.M.: Probabilistic topic models. CACM 55(4), 77–84 (2012)CrossRefGoogle Scholar
  13. 13.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)zbMATHGoogle Scholar
  14. 14.
    Brodsky, W., Olivieri, D., Chekaluk, E.: Music genre induced driver aggression: a case of media delinquency and risk-promoting popular culture. Music Sci. 1, 2059204317743118 (2018)CrossRefGoogle Scholar
  15. 15.
    Brunnauer, A., Segmiller, F.M., Löschner, S., Grun, V., Padberg, F., Palm, U.: The effects of transcranial direct current stimulation (TDCS) on psychomotor and visual perception functions related to driving skills. Front. Behav. Neurosci. 12, 16 (2018)CrossRefGoogle Scholar
  16. 16.
    Cantin, V., Lavallière, M., Simoneau, M., Teasdale, N.: Mental workload when driving in a simulator: effects of age and driving complexity. Accid. Anal. Prev. 41(4), 763–771 (2009)CrossRefGoogle Scholar
  17. 17.
    Chen, C.P., Zhang, C.Y.: Data-intensive applications, challenges, techniques and technologies: a survey on big data. Inf. Sci. 275, 314–347 (2014)CrossRefGoogle Scholar
  18. 18.
    Chen, H.Y.W., Donmez, B., Hoekstra-Atwood, L., Marulanda, S.: Self-reported engagement in driver distraction: an application of the theory of planned behaviour. Transp. Res. Part F Traffic Psychol. Behav. 38, 151–163 (2016)CrossRefGoogle Scholar
  19. 19.
    Garbarino, S., et al.: Insomnia is associated with road accidents. Further evidence from a study on truck drivers. PLoS one 12(10), e0187256 (2017)CrossRefGoogle Scholar
  20. 20.
    Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining. In: Proceedings of SIGKDD, pp. 330–339. ACM (2007)Google Scholar
  21. 21.
    Guo, F., Fang, Y.: Individual driver risk assessment using naturalistic driving data. Accid. Anal. Prev. 61, 3–9 (2013)CrossRefGoogle Scholar
  22. 22.
    Harri, J., Filali, F., Bonnet, C.: Mobility models for vehicular Ad Hoc networks: a survey and taxonomy. IEEE Commun. Surv. Tutor. 11(4), 19–41 (2009)CrossRefGoogle Scholar
  23. 23.
    Hendrickson, A.T., Wang, J., Atzmueller, M.: Identifying exceptional descriptions of people using topic modeling and subgroup discovery. In: Ceci, M., Japkowicz, N., Liu, J., Papadopoulos, G.A., Raś, Z.W. (eds.) ISMIS 2018. LNCS (LNAI), vol. 11177, pp. 454–462. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01851-1_44CrossRefGoogle Scholar
  24. 24.
    Jones, M.J., et al.: The psychomotor vigilance test: a comparison of different test durations in elite athletes. J. Sport. Sci. 36(18), 2033–2037 (2018)CrossRefGoogle Scholar
  25. 25.
    Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing SAX: a novel symbolic representation of time series. DMKD 15(2), 107–144 (2007)MathSciNetGoogle Scholar
  26. 26.
    Loh, S., Lamond, N., Dorrian, J., Roach, G., Dawson, D.: The validity of psychomotor vigilance tasks of less than 10-minute duration. Behav. Res. Methods Instrum. Comput. 36(2), 339–346 (2004)CrossRefGoogle Scholar
  27. 27.
    McLaurin, E., et al.: Variations on a theme: topic modeling of naturalistic driving data. In: Proceedings of Human Factors and Ergonomics Society Annual Meeting, pp. 2107–2111 (2014)CrossRefGoogle Scholar
  28. 28.
    Merino, S., Atzmueller, M.: Behavioral Topic modeling on naturalistic driving data. In: Proceedings of BNAIC. Jheronimus Academy of Data Science, Den Bosch, The Netherlands (2018)Google Scholar
  29. 29.
    Puschmann, D., Barnaghi, P., Tafazolli, R.: Using LDA to uncover the underlying structures and relations in smart city data streams. IEEE Syst. J. 12(2), 1755–1766 (2018)CrossRefGoogle Scholar
  30. 30.
    Saxby, D.J., Matthews, G., Neubauer, C.: The relationship between cell phone use and management of driver fatigue: it’s complicated. J. Saf. Res. 61, 129–140 (2017)CrossRefGoogle Scholar
  31. 31.
    Sehgal, S., Kapoor, R.: Mathematical relationship among visual reaction time, age and BMI in healthy adults. Indian J. Appl. Res. 8(8), 35 (2018)Google Scholar
  32. 32.
    Venkatraman, V., Liang, Y., McLaurin, E.J., Horrey, W.J., Lesch, M.F.: Exploring driver responses to unexpected and expected events using probabilistic topic models. In: Proceedings of International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, pp. 375–381. University of Iowa (2017)Google Scholar
  33. 33.
    Verhein, F., Chawla, S.: Mining spatio-temporal patterns in object mobility databases. Data Min. Knowl. Discov. 16(1), 5–38 (2008)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Wohleber, R.W., Matthews, G.: Multiple facets of overconfidence: implications for driving safety. Transp. Res. Part F Traffic Psychol. Behav. 43, 265–278 (2016)CrossRefGoogle Scholar
  35. 35.
    Yang, L., Li, X., Guan, W., Zhang, H.M., Fan, L.: Effect of traffic density on drivers’ lane change and overtaking manoeuvres in freeway situation: a driving simulator based study. Traffic Inj. Prev. 19, 1–25 (2018)CrossRefGoogle Scholar
  36. 36.
    Zhang, G., Yau, K.K., Zhang, X., Li, Y.: Traffic accidents involving fatigue driving and their extent of casualties. Accid. Anal. Prev. 87, 34–42 (2016)CrossRefGoogle Scholar
  37. 37.
    Zheng, Y., Wang, J., Li, X., Yu, C., Kodaka, K., Li, K.: Driving risk assessment using cluster analysis based on naturalistic driving data. In: Proceedings of International Conference on Intelligent Transportation Systems, pp. 2584–2589. IEEE (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Tilburg UniversityTilburgThe Netherlands

Personalised recommendations