Skip to main content

Collaborative Broadcast in \(\mathcal {O}(\log \log n)\) Rounds

  • Conference paper
  • First Online:
Algorithms for Sensor Systems (ALGOSENSORS 2019)

Abstract

We consider the multihop broadcasting problem for n nodes placed uniformly at random in a disk and investigate the number of hops required to transmit a signal from the central node to all other nodes under three communication models: Unit-Disk-Graph (UDG), Signal-to-Noise-Ratio (SNR), and the wave superposition model of multiple input/multiple output (MIMO).

In the MIMO model, informed nodes cooperate to produce a stronger superposed signal. We do not consider the problem of transmitting a full message nor do we consider interference with other messages. In each round, the informed senders try to deliver to other nodes the required signal strength such that the received signal can be distinguished from the noise.

We assume a sufficiently high node density \(\rho = \varOmega (\log n)\) in order to launch the broadcasting process. In the unit-disk graph model, broadcasting takes \(\mathcal {O}(\sqrt{n/\rho })\) rounds. In the other models, we use an Expanding Disk Broadcasting Algorithm, where in a round only triggered nodes within a certain distance from the initiator node contribute to the broadcasting operation.

This algorithm achieves a broadcast in only \(\mathcal {O}\left( \frac{\log n}{\log \rho }\right) \) rounds in the SNR-model. Adapted to the MISO model, it broadcasts within \(\mathcal {O}(\log \log n - \log \log \rho )\) rounds. All bounds are asymptotically tight and hold with high probability, i.e. \(1- n^{-\mathcal {O}(1)}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avin, C., Emek, Y., Kantor, E., Lotker, Z., Peleg, D., Roditty, L.: SINR diagrams: convexity and its applications in wireless networks. J. ACM 59(4), 18 (2012)

    Article  MathSciNet  Google Scholar 

  2. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Math. 86(1–3), 165–177 (1990)

    Article  MathSciNet  Google Scholar 

  3. Dong, L., Petropulu, A., Poor, H.: A cross-layer approach to collaborative beamforming for wireless ad hoc networks. IEEE Trans. Signal Process. 56(7), 2981–2993 (2008)

    Article  MathSciNet  Google Scholar 

  4. Ferrari, F., Zimmerling, M., Thiele, L., Saukh, O.: Efficient network flooding and time synchronization with glossy. In: Proceedings of the 10th ACM/IEEE International Conference on Information Processing in Sensor Networks, pp. 73–84. IEEE, Chicago, April 2011

    Google Scholar 

  5. Ferrari, F., Zimmerling, M., Mottola, L., Thiele, L.: Low-power wireless bus. In: Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems, SenSys 2012, pp. 1–14. ACM, New York (2012)

    Google Scholar 

  6. Franceschetti, M., Migliore, M.D., Minero, P.: The capacity of wireless networks: information-theoretic and physical limits. IEEE Trans. Inf. Theory 55(8), 3413–3424 (2009)

    Article  MathSciNet  Google Scholar 

  7. de Freitas, E.P., da Costa, J.P.C.L., de Almeida, A.L.F., Marinho, M.: Applying MIMO techniques to minimize energy consumption for long distances communications in wireless sensor networks. In: Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2012. LNCS, vol. 7469, pp. 379–390. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32686-8_35

    Chapter  Google Scholar 

  8. Gandhi, R., Mishra, A., Parthasarathy, S.: Minimizing broadcast latency and redundancy in ad hoc networks. IEEE/ACM Trans. Network. (TON) 16(4), 840–851 (2008)

    Article  Google Scholar 

  9. Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Trans. Inf. Theory 46, 388–404 (2000)

    Article  MathSciNet  Google Scholar 

  10. Halldórsson, M.M., Tonoyan, T.: Leveraging indirect signaling for topology inference and fast broadcast. In: Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, PODC 2018, pp. 85–93. ACM, New York (2018)

    Google Scholar 

  11. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58(301), 13–30 (1963)

    Article  MathSciNet  Google Scholar 

  12. Janson, T.: Energy-efficient collaborative beamforming in wireless ad hoc networks. Ph.D. thesis, University of Freiburg, Germany (2015)

    Google Scholar 

  13. Janson, T., Schindelhauer, C.: Analyzing randomly placed multiple antennas for MIMO wireless communication. In: Fifth International Workshop on Selected Topics in Mobile and Wireless Computing (IEEE STWiMob), Barcelona (2012)

    Google Scholar 

  14. Janson, T., Schindelhauer, C.: Broadcasting in logarithmic time for ad hoc network nodes on a line using MIMO. In: Proceedings of the 25th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2013. ACM, July 2013

    Google Scholar 

  15. Janson, T., Schindelhauer, C.: Ad-Hoc network unicast in O(log log n) using beamforming. http://arxiv.org/abs/1405.0417, May 2014

  16. Janson, T., Schindelhauer, C.: Cooperative beamforming in ad-hoc networks with sublinear transmission power. In: IEEE 10th International Conference on Wireless and Mobile Computing. Networking and Communications (WiMob), pp. 144–151. IEEE, Larnaca, October 2014

    Google Scholar 

  17. Janson, T., Schindelhauer, C.: Self-synchronized cooperative beamforming in ad-hoc networks. In: 16th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2014), Paderborn, Germany, September 2014

    Google Scholar 

  18. Jeon, S.W., Chung, S.Y.: Two-phase opportunistic broadcasting in large wireless networks. In: IEEE International Symposium on Information Theory, ISIT 2007, pp. 2771–2775. IEEE (2007)

    Google Scholar 

  19. Kumberg, T., Schindelhauer, C., Reindl, L.: Exploiting concurrent wake-up transmissions using beat frequencies. Sensors 17(8), 1717 (2017)

    Article  Google Scholar 

  20. Lebhar, E., Lotker, Z.: Unit disk graph and physical interference model: putting pieces together. In: IEEE International Symposium on Parallel Distributed Processing (IPDPS 2009), pp. 1–8, May 2009

    Google Scholar 

  21. Merzakreeva, A., Özgür, A., Lévêque, O.: Telescopic beamforming for large wireless networks. In: IEEE International Symposium on Information Theory, Istanbul (2013)

    Google Scholar 

  22. Niesen, U., Gupta, P., Shah, D.: On capacity scaling in arbitrary wireless networks. IEEE Trans. Inf. Theory 55(9), 3959–3982 (2009)

    Article  MathSciNet  Google Scholar 

  23. Oak, A.: Analysis of a collaborative iterative MISO broadcasting algorithm. Master’s thesis, University of Freiburg, Freiburg, Germany, March 2018

    Google Scholar 

  24. Oyman, O., Paulraj, A.J.: Power-bandwidth tradeoff in dense multi-antenna relay networks. IEEE Trans. Wireless Commun. 6(6) (2007)

    Article  Google Scholar 

  25. Oyman, O., Paulraj, A.J.: Cooperative OFDMA and distributed MIMO relaying over dense wireless networks, uS Patent 8,027,301, 27 September 2011

    Google Scholar 

  26. Ozgur, A., Lévêque, O., David, N.: Hierarchical cooperation achieves optimal capacity scaling in ad hoc networks. IEEE Trans. Inf. Theory 53(10), 3549–3572 (2007)

    Article  MathSciNet  Google Scholar 

  27. Özgür, A., Leveque, O., Tse, D.: Hierarchical cooperation achieves optimal capacity scaling in ad hoc networks. IEEE Trans. Inf. Theory 53(10), 3549–3572 (2007)

    Article  MathSciNet  Google Scholar 

  28. Özgür, A., Lévêque, O., Tse, D.: Spatial degrees of freedom of large distributed mimo systems and wireless ad hoc networks. IEEE J. Sel. Areas Commun. 31(EPFL–ARTICLE–185421), 202–214 (2013)

    Article  Google Scholar 

  29. Peleg, D.: Time-efficient broadcasting in radio networks: a review. In: Janowski, T., Mohanty, H. (eds.) ICDCIT 2007. LNCS, vol. 4882, pp. 1–18. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77115-9_1

    Chapter  Google Scholar 

  30. Schindelhauer, C., Oak, A., Janson, T.: Collaborative broadcast in O(log log n) rounds. arXiv e-prints arXiv:1906.05153, June 2019

  31. Sirkeci-Mergen, B., Gastpar, M.C.: On the broadcast capacity of wireless networks with cooperative relays. IEEE Trans. Inf. Theory 56(8), 3847–3861 (2010)

    Article  MathSciNet  Google Scholar 

  32. Sirkeci-Mergen, B., Scaglione, A., Mergen, G.: Asymptotic analysis of multistage cooperative broadcast in wireless networks. IEEE/ACM Trans. Netw. 14(SI), 2531–2550 (2006)

    MathSciNet  MATH  Google Scholar 

  33. Sutton, F., Buchli, B., Beutel, J., Thiele, L.: Zippy: on-demand network flooding. In: Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems, pp. 45–58. ACM (2015)

    Google Scholar 

  34. Tse, D., Viswanath, P.: Fundamentals of Wireless Communication. Cambridge University Press, New York (2005)

    Book  Google Scholar 

  35. Xue, F., Kumar, P.R.: The number of neighbors needed for connectivity of wireless networks. Wireless Netw. 10(2), 169–181 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

We like to thank the organizers of the Dagstuhl Seminar 17271, July 2–7, 2017, Foundations of Wireless Networking, where this research has begun and first results have been found. We would like to thank Alexander Leibold, who performed and checked the automated proofs and anonymous reviewers of a previous version for their detailed and valuable input. We would also like to thank Tigran Tonoyan, Magnús M. Halldórsson and Zvi Lotker for many fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Schindelhauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schindelhauer, C., Oak, A., Janson, T. (2019). Collaborative Broadcast in \(\mathcal {O}(\log \log n)\) Rounds. In: Dressler, F., Scheideler, C. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2019. Lecture Notes in Computer Science(), vol 11931. Springer, Cham. https://doi.org/10.1007/978-3-030-34405-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34405-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34404-7

  • Online ISBN: 978-3-030-34405-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics