Skip to main content

Deep Learning at Scale for Subgrid Modeling in Turbulent Flows: Regression and Reconstruction

  • Conference paper
  • First Online:
High Performance Computing (ISC High Performance 2019)
  • The original version of this chapter was revised: It has been changed to non-open access and the copyright holder is now “Springer Nature Switzerland AG”. The correction to this chapter is available at https://doi.org/10.1007/978-3-030-34356-9_50

Abstract

Modeling of turbulent flows is still challenging. One way to deal with the large scale separation due to turbulence is to simulate only the large scales and model the unresolved contributions as done in large-eddy simulation (LES). This paper focuses on two deep learning (DL) strategies, regression and reconstruction, which are data-driven and promising alternatives to classical modeling concepts. Using three-dimensional (3-D) forced turbulence direct numerical simulation (DNS) data, subgrid models are evaluated, which predict the unresolved part of quantities based on the resolved solution. For regression, it is shown that feedforward artificial neural networks (ANNs) are able to predict the fully-resolved scalar dissipation rate using filtered input data. It was found that a combination of a large-scale quantity, such as the filtered passive scalar itself, and a small-scale quantity, such as the filtered energy dissipation rate, gives the best agreement with the actual DNS data. Furthermore, a DL network motivated by enhanced super-resolution generative adversarial networks (ESRGANs) was used to reconstruct fully-resolved 3-D velocity fields from filtered velocity fields. The energy spectrum shows very good agreement. As size of scientific data is often in the order of terabytes or more, DL needs to be combined with high performance computing (HPC). Necessary code improvements for HPC-DL are discussed with respect to the supercomputer JURECA. After optimizing the training code, 396.2 TFLOPS were achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 08 January 2020

    In the original version of this LNCS volume, four papers were erroneously released as open access papers. This has been corrected to only two papers – papers 5 and 7.

References

  1. Keras. https://keras.rstudio.com/index.html

  2. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems. https://tensorflow.org

  3. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, July 2017

    Google Scholar 

  4. Beck, A.D., Flad, D.G., Munz, C.D.: Neural networks for data-based turbulence models. arXiv preprint arXiv:1806.04482 (2018)

  5. Bode, M., Gauding, M., Göbbert, J.H., Liao, B., Jitsev, J., Pitsch, H.: Towards prediction of turbulent flows at high reynolds numbers using high performance computing data and deep learning. In: Yokota, R., Weiland, M., Shalf, J., Alam, S. (eds.) ISC High Performance 2018. LNCS, vol. 11203, pp. 614–623. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02465-9_44

    Chapter  Google Scholar 

  6. Bode, M., Collier, N., Bisetti, F., Pitsch, H.: Adaptive chemistry lookup tables for combustion simulations using optimal B-spline interpolants. Combust. Theor. Model. 23(4), 674–699 (2019)

    Article  Google Scholar 

  7. Cao, Z.M., Nishino, K., Mizuno, S., Torii, K.: PIV measurement of internal structure of diesel fuel spray. Exp. Fluids 29(1), S211–S219 (2000)

    Article  Google Scholar 

  8. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  9. Dubief, Y., Delcayre, F.: On coherent-vortex identification in turbulence. J. Turbul. 1(1), 011 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eswaran, V., Pope, S.: An examination of forcing in direct numerical simulations of turbulence. Comput. Fluids 16(3), 257–278 (1988)

    Article  MATH  Google Scholar 

  11. Fukami, K., Nabae, Y., Kawai, K., Fukagata, K.: Synthetic turbulent inflow generator using machine learning. Phys. Rev. Fluids 4(6), 064603 (2019)

    Article  Google Scholar 

  12. Gauding, M., Danaila, L., Varea, E.: High-order structure functions for passive scalar fed by a mean gradient. Int. J. Heat Fluid Flow 67, 86–93 (2017)

    Article  Google Scholar 

  13. Gauding, M., Wang, L., Goebbert, J.H., Bode, M., Danaila, L., Varea, E.: On the self-similarity of line segments in decaying homogeneous isotropic turbulence. Comput. Fluids 180, 206–217 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gautier, N., Aider, J.L., Duriez, T., Noack, B., Segond, M., Abel, M.: Closed-loop separation control using machine learning. J. Fluid Mech. 770, 442–457 (2015)

    Article  Google Scholar 

  15. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3(7), 1760–1765 (1991)

    Article  MATH  Google Scholar 

  16. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  17. Greenspan, H., Van Ginneken, B., Summers, R.M.: Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35(5), 1153–1159 (2016)

    Article  Google Scholar 

  18. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Process. Mag. 29, 82–97 (2012)

    Article  Google Scholar 

  19. Jiménez, J.: Machine-aided turbulence theory. J. Fluid Mech. 854, R1 (2018). https://doi.org/10.1017/jfm.2018.660

  20. Jolicoeur-Martineau, A.: The relativistic discriminator: a key element missing from standard GAN. arXiv preprint arXiv:1807.00734 (2018)

  21. Kerstein, A.R.: Turbulence in combustion processes: modeling challenges. Proc. Combust. Inst. 29(2), 1763–1773 (2002)

    Article  Google Scholar 

  22. Kurth, T., et al.: Exascale deep learning for climate analysis. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis (2018)

    Google Scholar 

  23. Kutz, J.: Deep learning in fluid dynamics. J. Fluid Mech. 814, 1–4 (2017)

    Article  MATH  Google Scholar 

  24. Langheinrich, M., Nakamura, A., Abe, N., Kamba, T., Koseki, Y.: Unintrusive customization techniques for web advertising. Comput. Netw. 31(11–16), 1259–1272 (1999)

    Article  Google Scholar 

  25. Lapeyre, C.J., Misdariis, A., Cazard, N., Veynante, D., Poinsot, T.: Training convolutional neural networks to estimate turbulent sub-grid scale reaction rates. Combust. Flame 203, 255–264 (2019)

    Article  Google Scholar 

  26. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)

    Google Scholar 

  27. Lee, C., Kim, J., Babcock, D., Goodman, R.: Application of neural networks to turbulence control for drag reduction. Phys. Fluids 9(6), 1740–1747 (1997)

    Article  Google Scholar 

  28. Leonard, A.: Energy cascade in large-eddy simulations of turbulent fluid flows. Adv. Geophys. 18, 237–248 (1975)

    Article  Google Scholar 

  29. Ling, J., Kurzawski, A., Templeton, J.: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J. Fluid Mech. 807, 155–166 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Maulik, R., San, O.: A neural network approach for the blind deconvolution of turbulent flows. J. Fluid Mech. 831, 151–181 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Milano, M., Koumoutsakos, P.: Neural network modeling for near wall turbulent flow. J. Comput. Phys. 182(1), 1–26 (2002)

    Article  MATH  Google Scholar 

  32. Overholt, M., Pope, S.: Direct numerical simulation of a passive scalar with imposed mean gradient in isotropic turbulence. Phys. Fluids 8, 3128–3148 (1996)

    Article  MATH  Google Scholar 

  33. Parish, E.J., Duraisamy, K.: A paradigm for data-driven predictive modeling using field inversion and machine learning. J. Comput. Phys. 305, 758–774 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Piomelli, U.: Large-eddy simulation: achievements and challenges. Prog. Aerosp. Sci. 35(4), 335–362 (1999)

    Article  Google Scholar 

  35. Rotunno, R., Chen, Y., Wang, W., Davis, C., Dudhia, J., Holland, G.: Large-eddy simulation of an idealized tropical cyclone. Bull. Am. Meteorol. Soc. 90(12), 1783–1788 (2009)

    Article  Google Scholar 

  36. Ruelle, D., Takens, F.: On the nature of turbulence. Les rencontres physiciens-mathématiciens de Strasbourg-RCP25 12, 1–44 (1971)

    Google Scholar 

  37. Sergeev, A., Balso, M.: Horovod: fast and easy distributed deep learning in TensorFlow. arXiv:1802.05799 (2018)

  38. Shimizu, M., Kawahara, G.: Construction of low-dimensional system reproducing low-Reynolds-number turbulence by machine learning. arXiv preprint arXiv:1803.08206 (2018)

  39. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  40. Smagorinsky, J.: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Rev. 91(3), 99–164 (1963)

    Article  Google Scholar 

  41. Srinivasan, P., Guastoni, L., Azizpour, H., Schlatter, P., Vinuesa, R.: Predictions of turbulent shear flows using deep neural networks. Phys. Rev. Fluids 4(5), 054603 (2019)

    Article  Google Scholar 

  42. Wang, N., Yeung, D.Y.: Learning a deep compact image representation for visual tracking. In: Advances in Neural Information Processing Systems, pp. 809–817 (2013)

    Google Scholar 

  43. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 63–79. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_5

    Chapter  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the computing time granted for the project JHPC55 by the JARA-HPC Vergabegremium and provided on the JARA-HPC Partition part of the supercomputer JURECA at Forschungszentrum Jülich. Also financial support by the Cluster of Excellence “The Fuel Science Center”, which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – Exzellenzcluster 2186 “The Fuel Science Center” ID: 390919832, and from of the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program under grant agreement No. 695747 is acknowledged. MG acknowledges financial support provided under the grant EMCO2RE. Furthermore, the authors want to thank Jenia Jitsev, Zeyu Lian, and Mayur Vikas Joshi for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathis Bode .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bode, M., Gauding, M., Kleinheinz, K., Pitsch, H. (2019). Deep Learning at Scale for Subgrid Modeling in Turbulent Flows: Regression and Reconstruction. In: Weiland, M., Juckeland, G., Alam, S., Jagode, H. (eds) High Performance Computing. ISC High Performance 2019. Lecture Notes in Computer Science(), vol 11887. Springer, Cham. https://doi.org/10.1007/978-3-030-34356-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34356-9_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34355-2

  • Online ISBN: 978-3-030-34356-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics