MBWU: Benefit Quantification for Data Access Function Offloading

  • Jianshen LiuEmail author
  • Philip KufeldtEmail author
  • Carlos MaltzahnEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11887)


The storage industry is considering new kinds of storage devices that support data access function offloading, i.e. the ability to perform data access functions on the storage device itself as opposed to performing it on a separate compute system to which the storage device is connected. But what is the benefit of offloading to a storage device that is controlled by an embedded platform, very different from a host platform? To quantify the benefit, we need a measurement methodology that enables apple-to-apple comparisons between different platforms. We propose a Media-based Work Unit (MBWU, pronounced “MibeeWu”), and an MBWU-based measurement methodology to standardize the platform efficiency evaluation so as to quantify the benefit of offloading. To demonstrate the merit of this methodology, we implemented a prototype to automate quantifying the benefit of offloading the key-value data access function.


MBWU Performance quantification Function offloading Efficiency evaluation Data access function 


  1. 1.
    Boboila, S., Kim, Y., Vazhkudai, S.S., Desnoyers, P., Shipman, G.M.: Active flash: out-of-core data analytics on flash storage. In: 2012 IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST), pp. 1–12. IEEE (2012)Google Scholar
  2. 2.
    Borthakur, D.: Under the hood: building and open-sourcing RocksDB. Facebook Engineering Notes (2013)Google Scholar
  3. 3.
    Choi, I.S., Kee, Y.S.: Energy efficient scale-in clusters with in-storage processing for big-data analytics. In: Proceedings of the 2015 International Symposium on Memory Systems, pp. 265–273. ACM (2015)Google Scholar
  4. 4.
    Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking cloud serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on Cloud Computing, pp. 143–154. ACM (2010)Google Scholar
  5. 5.
    Do, J., Kee, Y.S., Patel, J.M., Park, C., Park, K., DeWitt, D.J.: Query processing on smart SSDs: opportunities and challenges. In: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, pp. 1221–1230. ACM (2013)Google Scholar
  6. 6.
    Dong, S., Callaghan, M., Galanis, L., Borthakur, D., Savor, T., Strum, M.: Optimizing space amplification in RocksDB. In: CIDR, vol. 3, p. 3 (2017)Google Scholar
  7. 7.
    Gu, B., et al.: Biscuit: a framework for near-data processing of big data workloads. In: ACM SIGARCH Computer Architecture News, vol. 44, pp. 153–165. IEEE Press (2016)Google Scholar
  8. 8.
    Kang, D., et al.: 256 Gb 3 b/cell v-NAND flash memory with 48 stacked WL layers. IEEE J. Solid-State Circ. 52(1), 210–217 (2016)CrossRefGoogle Scholar
  9. 9.
    Kang, Y., Kee, Y.S., Miller, E.L., Park, C.: Enabling cost-effective data processing with smart SSD. In: 2013 IEEE 29th Symposium on Mass Storage Systems and Technologies (MSST), pp. 1–12. IEEE (2013)Google Scholar
  10. 10.
    Kang, Y., et al.: Towards building a high-performance, scale-in key-value storage system. In: Proceedings of the 12th ACM International Conference on Systems and Storage, pp. 144–154. ACM (2019)Google Scholar
  11. 11.
    Keeton, K., Patterson, D.A., Hellerstein, J.M.: A case for intelligent disks (IDISKs). ACM SIGMOD Rec. 27(3), 42–52 (1998)CrossRefGoogle Scholar
  12. 12.
    Kim, S., Oh, H., Park, C., Cho, S., Lee, S.W.: Fast, energy efficient scan inside flash memory SSDs. In: Proceeedings of the International Workshop on Accelerating Data Management Systems (ADMS) (2011)Google Scholar
  13. 13.
    Minturn, D.: NVM express over fabrics. In: 11th Annual OpenFabrics International OFS Developers’ Workshop, Monterey, CA, USA (2015)Google Scholar
  14. 14.
    Ouyang, J., Lin, S., Hou, Z., Wang, P., Wang, Y., Sun, G.: Active SSD design for energy-efficiency improvement of web-scale data analysis. In: Proceedings of the 2013 International Symposium on Low Power Electronics and Design, pp. 286–291. IEEE Press (2013)Google Scholar
  15. 15.
    Phothilimthana, P.M., Liu, M., Kaufmann, A., Peter, S., Bodik, R., Anderson, T.: Floem: a programming system for NIC-accelerated network applications. In: 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2018), pp. 663–679 (2018)Google Scholar
  16. 16.
    PINE64: ROCKPro64 4 GB Single Board Computer, February 2019.
  17. 17.
    Riedel, E., Gibson, G.: Active disks-remote execution for network-attached storage. Technical report, School of Computer Science, Carnegie-Mellon University, Pittsburgh (1997)Google Scholar
  18. 18.
    Riedel, E., Gibson, G., Faloutsos, C.: Active storage for large-scale data mining and multimedia applications. In: Proceedings of 24th Conference on Very Large Databases, pp. 62–73. Citeseer (1998)Google Scholar
  19. 19.
    Shulaker, M.M., et al.: Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 547(7661), 74 (2017)CrossRefGoogle Scholar
  20. 20.
    Thatcher, J., Kim, E., Landsman, D., Fausset, M., Jones, A.: Solid state storage performance test specification v2.0.1. Technical report, SNIA, Feburary 2018Google Scholar
  21. 21.
    Theis, T.N., Wong, H.S.P.: The end of Moore’s law: a new beginning for information technology. Comput. Sci. Eng. 19(2), 41 (2017)CrossRefGoogle Scholar
  22. 22.
    Tiwari, D., et al.: Active flash: towards energy-efficient, in-situ data analytics on extreme-scale machines. In: Presented as Part of the 11th USENIX Conference on File and Storage Technologies (FAST 2013), pp. 119–132 (2013)Google Scholar
  23. 23.
    Wang, J., Park, D., Kee, Y.S., Papakonstantinou, Y., Swanson, S.: SSD in-storage computing for list intersection. In: Proceedings of the 12th International Workshop on Data Management on New Hardware, p. 4. ACM (2016)Google Scholar
  24. 24.
    Wikipedia Contributors: Java remote method invocation – Wikipedia, the free encyclopedia (2018). Accessed 5 June 2019
  25. 25.
    Wikipedia Contributors: 3d xpoint – Wikipedia, the free encyclopedia (2019). Accessed 1 July 2019
  26. 26.
    Wikipedia Contributors: iSCSI – Wikipedia, the free encyclopedia (2019). Accessed 5 June 2019
  27. 27.
    Wikipedia Contributors: Tensor processing unit – Wikipedia, the free encyclopedia (2019). Accessed 9 June 2019
  28. 28.
    Wikipedia Contributors: Zipf’s law – Wikipedia, the free encyclopedia (2019). Accessed 10 June 2019

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of California, Santa CruzSanta CruzUSA
  2. 2.SeagateLongmontUSA

Personalised recommendations