Fossil Fuels



Petroleum, natural gas, and coal will remain the most important energy sources for some time to come (see also Box 6.1) despite all the efforts to protect the climate. Fossil fuels store the energy that living creatures of bygone times extracted from sunlight through photosynthesis. This chapter deals with the biomass that has built up and that later was converted into other compounds. Algae are the most important in the case of petroleum, while land plants are the most important in the case of coal.


  1. Abdalla, C., and J. Drohan. 2010. Water withdrawals for development of Marcellus Shale Gas in Pennsylvania. Penn State Cooperative Extension.Google Scholar
  2. Abidin, A.Z., T. Puspasari, and W.A. Nugroho. 2012. Polymers for enhanced oil recovery technology. Procedia Chemistry 4: 11–16.CrossRefGoogle Scholar
  3. Ahlbrandt, T.S., R.M. Pollastro, T.R. Klett, C.J. Schenk, S.J. Lindquist and J.E. Fo., 2000. Region 2 assessment summary—Middle East and North Africa. In U.S. Geological Survey World petroleum assessment 2000—Description and results. U.S. Geological Survey Digital Data Series 60.Google Scholar
  4. Aitken, C.M., D.M. Jones, and S.R. Larter. 2004. Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature 431: 291–294.CrossRefGoogle Scholar
  5. Alsharhan, A.S. 1989. Petroleum geology of the United Arab Emirates. Journal of Petroleum Geology 12: 253–288.CrossRefGoogle Scholar
  6. Andrews, A. 2010. Unconventional Gas Shales: Development, Technology, and Policy Issues. Diane Publishing.Google Scholar
  7. Andruleit, H., H.G. Babies, J. Meßner, S. Rehder, M. Schauer, and S. Schmidt. 2011. Reserven, Ressourcen und Verfügbarkeit von Energierohstoffen 2011. Deutsche Rohstoffagentur (DERA) in der Bundesanstalt für Geologie und Rohstoffe.Google Scholar
  8. Andruleit, H., H.G. Babies, A. Bahr, J. Kus, J. Meßner, and M. Schauer. 2012a. Energiestudie 2012. Reserven, Ressourcen und Verfügbarkeit von Energierohstoffen. Deutsche Rohstoffagentur in der Bundesanstalt für Geowissenschaften und Rohstoffe.Google Scholar
  9. Andruleit, H., A. Bahr, C. Bönnemann, J. Erbacher, D. Franke, J.P. Gerling, N. Gestermann, T. Himmelsbach, M. Kosinowski, S. Krug, R. Pierau, T. Pletsch, U. Rogalla, S. Schlömer and NiKo-Projekt-Team. 2012b. Abschätzung des Erdgaspotenzials aus dichten Tongesteinen (Schiefergas) in Deutschland. Bundesanstalt für Geowissenschaften und Rohstoffe.Google Scholar
  10. Anonymous, 2008. Saarland: Kohleabbau löst Erdbeben mit Stärke 4,0 aus. Spiegel Online, February 24, 2008.
  11. Anonymous. 2010. Plumbing the depths. The Economist, 6. März 2010.Google Scholar
  12. Anonymous. 2011. In deep waters. Brazil’s offshore oil. The Economist, 3. February 2011.Google Scholar
  13. Anonymous, 2012. Ohio quakes probably triggered by waste disposal well, say seismologists. Lamont-Doherty Earth Observatory. June 01, 2012.
  14. Arbeitskreis gesellschaftliche Akteure. 2011. Fracking und seismische Ereignisse – Erdbeben und Fracking. Fracking, Erdgassuche in Deutschland. September 12, 2011.
  15. Bennett, B., M. Fustic, P. Farrimond, H. Huang, and S.R. Larter. 2006. 25-Norhopanes: Formation during biodegradation of petroleum in the subsurface. Organic Geochemistry 37: 787–797.CrossRefGoogle Scholar
  16. BGR. 2011. Faktenblatt „Fracking“.Google Scholar
  17. Bjørlykke, K. 2011a. Petroleum Geoscience. Heidelberg: Springer.Google Scholar
  18. Brown, H.E., W.S. Holbrook, M.J. Hornbach, and J. Nealon. 2006. Slide structure and role of gas hydrate at the northern boundary of the Storegga Slide, offshore Norway. Marine Geology 220: 179–186.CrossRefGoogle Scholar
  19. Bull, S., J. Cartwright, and M. Huuse. 2009. A review of kinematic indicators from mass-transport complexes using 3D seismic data. Marine and Petroleum Geology 26: 1132–1151.CrossRefGoogle Scholar
  20. Campbell, C. 1989. Oil Price Leap in the Early Nineties. Noroil, Kingston-upon-Thames.Google Scholar
  21. Cook, A.E., D. Goldberg, and R.L. Kleinberg. 2008. Fracture-controlled gas hydrate systems in the northern Gulf of Mexico. Marine and Petroleum Geology 25: 932–941.CrossRefGoogle Scholar
  22. Cramer, B., and H. Andruleit (ed.). 2009. Energierohstoffe 2009. Reserven, Ressourcen und Verfügbarkeit. Bundesanstalt für Geowissenschaften und Rohstoffe (BGR).Google Scholar
  23. dapd. 2012. Wasserentnahme war schuld an Erdbeben in Spanien.
  24. Davies, R.J., S.A. Mathias, J. Moss, S. Hustoft, and L. Newport. 2012. Hydraulic fractures: How far can they go? Marine and Petroleum Geology 37: 1–6.CrossRefGoogle Scholar
  25. Department of Energy and Climate Change. 2012. The unconventional hydrocarbon resources of Britain’s onshore basins – shale gas.Google Scholar
  26. Diessel, C.F.K. 1992a. Coal-Bearing Depositional Systems. Heidelberg: Springer.CrossRefGoogle Scholar
  27. Dolfing, J., S.R. Larter, and I.M. Head. 2008. Thermodynamic constraints on methanogenic crude oil biodegradation. The ISME Journal 2: 442–452.CrossRefGoogle Scholar
  28. Ecomides, M. 2011. Don’t be swayed by faucets on fire and other anti-fracking propaganda. Forbes. March 07, 2011.
  29. EIA. 2011. Lower 48 states shale plays (Karte). (abgerufen 10.06.2013).
  30. EIA. 2013. Analysis & Projections. Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States. Accessed June 18, 2013.
  31. Ewen, C., D. Borchardt, S. Richter, and R. Hammerbacher. 2011. Risikostudie Fracking-Sicherheit und Umweltverträglichkeit der Fracking-Technologie für die Erdgasgewinnung aus unkonventionellen Quellen (Übersichtsfassung), 2011.Google Scholar
  32. Fallgren, P.H., S. Jin, C. Zeng, Z. Ren, A. Lu and P.J.S. Colberg. 2013. Comparison of coal rank for enhanced biogenic natural gas production. International Journal of Coal Geology (Published online).Google Scholar
  33. Fischer, L. 2013. Fracking ohne Wasser - Die umweltfreundliche Option? Fischblog. Accessed April 14, 2013.
  34. Foustoukos, D.I., and W.E. Seyfried Jr. 2004. Hydrocarbons in hydrothermal vent fluids: The role of chromium-bearing catalysts. Science 304: 1002–1005.CrossRefGoogle Scholar
  35. Fox, J.E., and T.S. Ahlbrandt. 2002. Petroleum geology and total petroleum systems of the Widyan Basin and Interior Platform of Saudi Arabia and Iraq. U.S. Geological Survey Bulletin 2202–E.Google Scholar
  36. Frohlich, C. 2012. Two-year survey comparing earthquake activity and injection-well locations in the Barnett Shale, Texas. Proceedings of the National Academy of Sciences (August 6). Scholar
  37. Gärtner, M. 2013. Fracking: Amerikas Schiefergas-Boom droht jähes Ende. Manager Magazin. May 13, 2013.,2828,899442,00.html.
  38. Glasby, G.P. 2006. Abiogenic origin of hydrocarbons: An historical overview. Resource Geology 56: 85–98.CrossRefGoogle Scholar
  39. Gluyas, J., and R. Swarbrick. 2004a. Petroleum Geoscience. Malden, MA: Blackwell Publishing.Google Scholar
  40. Grajales-Nishimura, J.M., E. Cedillo-Pardo, C. Rosales-Domínguez, D.J. Morán-Zenteno, W. Alvarez, P. Claeys, J. Ruíz-Morales, J. García-Hernández, P. Padilla-Avila, and A. Sánchez Ríos. 2000. Chicxulub impact: The origin of reservoir and seal facies in the southeastern Mexico oil fields. Geology 28: 307–310.CrossRefGoogle Scholar
  41. Gruber, W., and R.F. Sachsenhofer. 2001. Coal deposition in the Noric Depression (Eastern Alps): Raised and low-lying mires in Miocene pull-apart basins. International Journal of Coal Geology 48: 89–114.CrossRefGoogle Scholar
  42. Hallmann, C., L. Schwark, and K. Grice. 2008. Community dynamics of anaerobic bacteria in deep petroleum reservoirs. Nature Geoscience 1: 588–591.CrossRefGoogle Scholar
  43. Han, D.K., C.Z. Yang, Z.Q. Zhang, Z.H. Lou, and Y.I. Chang. 1999. Recent development of enhanced oil recovery in China. Journal of Petroleum Science and Engineering 22: 181–188.CrossRefGoogle Scholar
  44. Head, I.M., D.M. Jones, and S.R. Larter. 2003. Biological activity in the deep subsurface and the origin of heavy oil. Nature 426: 344–352.CrossRefGoogle Scholar
  45. Hein, F.J. 2006. Heavy oil and oil (tar) sands in North America: An overview & summary of contributions. Natural Resources Research 15: 67–84.CrossRefGoogle Scholar
  46. Heydari, E., and W.J. Wade. 2002. Massive recrystallization of low-Mg calcite at high temperatures in hydrocarbon source rocks: Implications for organic acids as factors in diagenesis. AAPG Bulletin 86: 1285–1303.Google Scholar
  47. Hovland, M. and O.T. Gudmestad. 2001. Potential influence of gas hydrates on seabed installations. In Natural Gas Hydrates; Occurrence, Distribution and Detection, vol. 124, ed. C.K. Paull and W. Dillon, 307–315. American Geophysical Union Monograph.Google Scholar
  48. Hower, J.C., and R.A. Gayer. 2002. Mechanisms of coal metamorphism: Case studies from Paleozoic coalfields. International Journal of Coal Geology 50: 215–245.CrossRefGoogle Scholar
  49. Hughes, J.D. 2013. Rohstoffe: Schiefergas im Realitätstest. Accessed march 07, 2013.
  50. Hunt, J.M. 1995a. Petroleum Geochemistry and Geology. New York: Freeman & Co.Google Scholar
  51. Jackson, R.B., A. Vengosh, T.H. Darrah, N.R. Warner, A. Down, R.J. Poreda, S.G. Osborn, K. Zhao, and J.D. Karr. 2013. Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction. Proceedings of the National Academy of Sciences., Scholar
  52. Jacome, M.I., N. Kusznir, F. Audemard, and S. Flint. 2003. Tectonostratigraphic evolution of the Maturin foreland basin—Eastern Venezuela. In The Circum-Gulf of Mexico and the Caribbean—Hydrocarbon Habitats, Basin Formation, and Plate Tectonics, vol. 79, ed. C. Bartolini, R.T. Buffler and J. Blickwede, 735–749. American Association of Petroleum Geologists Memoir.Google Scholar
  53. Janocko, M., W. Nemec, S. Henriksen, and M. Warchol. 2013. The diversity of deep-water sinuous channel belts and slope valley-fill complexes. Marine and Petroleum Geology 41: 7–34.CrossRefGoogle Scholar
  54. Johnson, R. 2012. Canadian Oil Sands Flyover. Business Insider,
  55. Johnson, E.A., S. Liu, and Y. Zhang. 1989. Depositional environments and tectonic controls on the coal-bearing Lower to Middle Jurassic Yan’an Formation, southern Ordos Basin, China. Geology 17: 1123–1126.CrossRefGoogle Scholar
  56. Jones, D.M., I.M. Head, N.D. Gray, J.J. Adams, A.K. Rowan, C.M. Aitken, B. Bennett, H. Huang, A. Brown, B.F.J. Bowler, T. Oldenburg, M. Erdmann, and S.R. Larter. 2008. Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451: 176–181.CrossRefGoogle Scholar
  57. Klemme, H.D., and G.F. Ulmishek. 1991. Effective petroleum source rocks of the World: Stratigraphic distribution and controlling depositional factors. AAPG Bulletin 75: 1809–1851.Google Scholar
  58. Kosinowski, M., U. Berner, D. Franke, C. Gaedicke, P. Gerling, T. Himmelsbach, R. Jatho, et al. 2012. Stellungnahme der Bundesanstalt für Geowissenschaften und Rohstoffe zum Gutachten des Umweltbundesamtes (UBA) „Umweltauswirkungen von Fracking bei der Aufsuchung und Gewinnung von Erdgas aus unkonventionellen Lagerstätten – Risikobewertung, Handlungsempfehlungen und Evaluierung bestehender rechtlicher Regelungen und Verwaltungsstrukturen“. UFOPLAN - NR. 3711 23 299. Bundesanstalt für Geowissenschaften und Rohstoffe.
  59. Kvenvolden, K.A. 1995. A review of the geochemistry of methan in natural gas hydrate. Organic Geochemistry 23: 997–1008.CrossRefGoogle Scholar
  60. Levy, M. 2011. Fracking wastewater disposal process to be altered in Pennsylvania. Huffington Post, April 19, 2011.
  61. Li, G., and W. Zhou. 2006. Impact of karst water on coal mining in North China. Environmental Geology 49: 449–457.CrossRefGoogle Scholar
  62. Lingenhöhl, D. 2011. Schiefergas: Das Risiko ist beherrschbar.
  63. Liu, L., T. Zhang, X. Zhao, S. Wu, J. Hu, X. Wang, and Y. Zhang. 2013. Sedimentary architecture models of deepwater turbidite channel systems in the Niger Delta continental slope, West Africa. Petroleum Science 10: 139–148.CrossRefGoogle Scholar
  64. Maugeri, L. 2004. Oil: Never cry wolf—Why the petroleum age is far from over. Science 304: 1114–1115.CrossRefGoogle Scholar
  65. May, D.A., and J.J. Monaghan. 2003. Can a single bubble sink a ship? American Journal of Physics 71: 842–849.CrossRefGoogle Scholar
  66. Melezhik, V.A., M.M. Filippov, and A.E. Romanshkin. 2004. A giant Palaeoproterozoic deposit of shungite in NW Russia: Genesis and practical applications. Ore Geology Reviews 24: 135–154.CrossRefGoogle Scholar
  67. Meinert, J., M. Vanneste, S. Bünz, K. Andreassen, H. Haflidason, and H.P. Sejrup. 2005. Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide. Marine and Petroleum Geology 22: 233–244.CrossRefGoogle Scholar
  68. Mix, M. 2012. Erdgasbohrungen lösen Erdbeben aus. August 08, 2012.
  69. Montgomery, C.T., and M. Smith. 2010. Hydraulic fracturing: The past, present and future. Journal of Petroleum Technology 62: 26.CrossRefGoogle Scholar
  70. Müller, T. 2013. Niederlande: Wenn die Erde täglich bebt. Zeit online, February 18, 2013.
  71. Nestler, R. 2013. Energie: Deutschland und das Schiefergas. Accessed January 07, 2013.
  72. North, F.K. 1985. Petroleum Geology. Allen & Unwin.Google Scholar
  73. Pollastro, R.M. 2003. Total petroleum systems of the Paleozoic and Jurassic, greater Ghawar uplift and adjoining provinces of central Saudi Arabia and northern Arabian-Persian Gulf. U. S. Geological Survey Bulletin 2202-H.Google Scholar
  74. Proskurowski, G., M.D. Lilley, J.S. Seewald, G.L. Früh-Green, E.J. Olson, J.E. Lupton, S.P. Sylva, and D.S. Kelley. 2008. Abiogenic hydrocarbon production at Lost City Hydrothermal Field. Science 319: 604–607.CrossRefGoogle Scholar
  75. Ross, A.S., P. Farrimond, M. Erdmann, and S.R. Larter. 2010. Geochemical compositional gradients in a mixed oil reservoir indicative of ongoing biodegradation. Organic Geochemistry 41: 307–320.CrossRefGoogle Scholar
  76. Ruppel, C. 2011a. Methane hydrates and the future of natural gas. MITEI Natural Gas Report, Supplementary Paper 4, The Future of natural gas. MIT energy initiative study.Google Scholar
  77. Ruppel, C. 2011b. Methane hydrates and contemporary climate change. Nature Education Knowledge 3: 29.Google Scholar
  78. Ruppel, C., R. Boswell, and E. Jones. 2008. Scientific results from Gulf of Mexico Gas Hydrates Joint Industry Project Leg 1 drilling: Introduction and overview. Marine and Petroleum Geology 25: 819–829.CrossRefGoogle Scholar
  79. Schrammar, S. 2012. Erdgasförderung als Erdbeben-Auslöser? Deutschlandfunk, February 16, 2012.
  80. Schrope, M. 2011. Deep wounds. Nature 472: 152–154.CrossRefGoogle Scholar
  81. Schutter, S.R. 2003. Hydrocarbon occurrence and exploration in and around igneous rocks. Geological Society London, Special Publication 214: 7–33.CrossRefGoogle Scholar
  82. Seewald, J.S. 2003. Organic-inorganic interactions in petroleum-producing sedimentary basins. Nature 426: 327–333.CrossRefGoogle Scholar
  83. Sen, R. 2008. Biotechnology in petroleum recovery: The microbial EOR. Progress in Energy and Combustion Science 34: 714–724.CrossRefGoogle Scholar
  84. Sephton, M.A., and R.M. Hazen. 2013. On the origins of deep hydrocarbons. Reviews in Mineralogy and Geochemistry 75: 449–465.CrossRefGoogle Scholar
  85. Sloan, E.D., and C.A. Koh. 2007. Clathrate Hydrates of Natural Gases, 3 ed. CRC Press, Taylor & Francis Group.Google Scholar
  86. Süss, M.P., A. Schäfer, and G. Drozdzewsiki. 2001. Discussion. A sequence stratigraphic model for the Lower Coal Measures (Upper Carboniferous) of the Ruhr district, north-west Germany. Sedimentology 48: 1171–1186.CrossRefGoogle Scholar
  87. Süss, M.P., G. Drozdzewski, and A. Schäfer. 2007. Sedimentary environment dynamics and the formation of coal in the Pennsylvanian Variscan foreland in the Ruhr Basin (Germany, Western Europe). International Journal of Coal Geology 69: 267–287.CrossRefGoogle Scholar
  88. Taylor, G.H., M. Teichmüller, A. Davis, C.F.K. Diessel, R. Littke, and P. Robert. 1998a. Organic Petrology. Berlin and Stuttgart: Gebrüder Borntraeger.Google Scholar
  89. Tenbrock, C., and F. Vorholz. 2013. Fracking: Amerika im Gasrausch. Zeit Online, February 07, 2013.
  90. Thielemann, T., B. Cramer, and A. Schippers. 2004. Coalbed methane in the Ruhr Basin, Germany: A renewable energy resource? Organic Geochemistry 35: 1537–1549.CrossRefGoogle Scholar
  91. Thomas, L. 2012a. Coal Geology, 2nd ed. Oxford: Wiley-Blackwell.CrossRefGoogle Scholar
  92. Thomas, S.. 2008. Enhanced Oil Recovery—An overview. Oil & Gas Science and Technology – Revue d’IFP Energies Nouvelles 63, 9–19.Google Scholar
  93. Tollefson, J. 2013. Gas drilling taints groundwater. Nature 498: 415–416.CrossRefGoogle Scholar
  94. Uken, M. 2013. Internationale Energieagentur: Europas vergebliche Hoffnung auf Fracking. Zeit Online, November 06, 2013.
  95. Urbina, I. 2011. South African farmers see threat from fracking. New York Times, December 30, 2011.
  96. USGS. 2000. U.S. Geological Survey World petroleum assessment 2000.Google Scholar
  97. USGS. 2009. An estimate of recoverable heavy oil resources of the Orinoco Oil Belt, Venezuela. Fact Sheet 2009–3028.Google Scholar
  98. Volkov, V.N. 2003. Phenomenon of the formation of very thick coal beds. Lithology and Mineral Resources 38: 223–232.CrossRefGoogle Scholar
  99. Vukomanovic, O. 2011. UK firm says shale fracking caused earthquakes. Reuters, February 11, 2011.
  100. Watts, A. 2011. The Gasland movie: A Fracking shame—Director pulls video to hide inconvenient truths. Watts up with that? April 06, 2011.
  101. Wilhelms, A., S.R. Larter, I. Head, P. Farrimond, R. di-Primio, and C. Zwach. 2001. Biodegradation of oil in uplifted basins prevented by deep-burial sterilization. Nature 411: 1034–1037.CrossRefGoogle Scholar
  102. Wilson, H.H. 1987. The structural evolution of the golden lane, Tampico Embayment, Mexico. Journal of Petroleum Geology 10: 5–40.CrossRefGoogle Scholar
  103. Yang, Y., W. Li, and L. Ma. 2005. Tectonic and stratigraphic controls of hydrocarbon systems in the Ordos basin: A multicycle cratonic basin in central China. AAPG Bulletin 89: 255–269.CrossRefGoogle Scholar
  104. Yao, Y., D. Liu, D. Tang, S. Tang, Y. Che, and W. Huang. 2009. Preliminary evaluation of the coalbed methane production potential and its geological controls in the Weibei Coalfield, Southeastern Ordos Basin, China. International Journal of Coal Geology 78: 1–15.CrossRefGoogle Scholar

Further Reading

  1. Bjørlykke, K. 2011b. Petroleum Geoscience. Heidelberg: Springer.Google Scholar
  2. Diessel, C.F.K. 1992b. Coal-Bearing Depositional Systems. Heidelberg: Springer.CrossRefGoogle Scholar
  3. Gluyas, J., and R. Swarbrick. 2004b. Petroleum Geoscience. Malden, MA: Blackwell Publishing.Google Scholar
  4. Hunt, J.M. 1995b. Petroleum Geochemistry and Geology. New York: Freeman & Co.Google Scholar
  5. Lohmann, D., and N. Podbregar. 2012. Im Fokus: Bodenschätze. Springer, Heidelberg: Auf der Suche nach Rohstoffen.CrossRefGoogle Scholar
  6. North, F.K. 1985. Petroleum Geology. Allen & Unwin.Google Scholar
  7. Pohl, W.L. 2011. Economic Geology. Chichester: Wiley-Blackwell.Google Scholar
  8. Rothe, P. 2010. Schätze der Erde. Darmstadt: Primus Verlag.Google Scholar
  9. Seidler, C. 2012. Deutschlands verborgene Rohstoffe: Kupfer. Hanser, München: Gold und seltene Erden.CrossRefGoogle Scholar
  10. Taylor, G.H., M. Teichmüller, A. Davis, C.F.K. Diessel, R. Littke, and P. Robert. 1998b. Organic Petrology. Berlin and Stuttgart: Gebrüder Borntraeger.Google Scholar
  11. Thomas, L. 2012b. Coal Geology, 2nd ed. Oxford: Wiley-Blackwell.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.BerlinGermany
  2. 2.MarxenGermany

Personalised recommendations