Skip to main content

Deposits Formed by Sedimentation and Weathering

  • Chapter
  • First Online:
The World of Mineral Deposits
  • 1830 Accesses

Abstract

Weathering, transport, and sedimentation are other processes that lead to effective fractionation. Little wonder important metal deposits are found in sediments. Resources such as sand, gravel, and limestone (Chap. 7) and fossil fuels (Chap. 6) would also fit into this chapter. Changes in flow velocity in rivers lead to sorted deposits of sand and gravel. Weather-resistant minerals with a high density can be enriched to form placer deposits (Sect. 5.9). However, fine clay minerals and dissolved ions are transported into the sea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature

  • Al-Farraj, A. 2005. An evolutionary model for sabkha development on the north coast of the UAE. Journal of Arid Environments 63: 740–755.

    Article  Google Scholar 

  • Aleva, G.J.J. 1994. Laterites: Concepts, geology, morphology and chemistry. International Soil Reference and Information Centre (ISRIC).

    Google Scholar 

  • Allen, P.A., and J.L. Etienne. 2008. Sedimentary challenge to Snowball Earth. Nature Geoscience 1: 817–825.

    Article  Google Scholar 

  • Anonymous, 1908. The Welcome Stranger—biggest nugget known. NZ Truth, S. 8.

    Google Scholar 

  • Anonymous, 2010. Barnett to open Boddington Gold Mine—ABC News (Australian Broadcasting Corporation), http://www.abc.net.au/news/2010-02-03/barnett-to-open-boddington-gold-mine/320538. Accessed 2 Apr 2013.

  • Anonymous, 2011. Nachnutzungskonzept Pumpspeicherkraftwerk, 2–4. Gesteins-Perspektiven.

    Google Scholar 

  • Anonymous, 2012. Boddington Gold Mine (BGM), Western Australia (WA)—Mining Technology. http://www.mining-technology.com/projects/boddington. Accessed 2 Apr 2013.

  • Atkinson, H. and M. Hale, 1993. Phosphate production in Central and Southern Africa, 1900–1992. Minerals Industry International, September, 22–30.

    Google Scholar 

  • Bao, Z., and Z. Zhao. 2008. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geology Reviews 33: 519–535.

    Article  Google Scholar 

  • Barbara Rohstoffbetriebe GmbH, 1991. Grube Wohlverwahrt-Nammen.

    Google Scholar 

  • Bárdossy, G. 1982. Karst bauxites. Bauxite deposits on carbonate rock. Amsterdam, Netherlands: Elsevier.

    Google Scholar 

  • Barifaijo, E., 2001. The petrology of the volcanic rocks of Uganda. In GSU Newsletter, 1. Presented at the regional conference on basement geology, groundwater, mineral resources, and mining related environmental problems in Eastern Africa, 58–59. Kampala, Uganda: Geological Society of Uganda.

    Google Scholar 

  • Baturin, G.N. 2000. Phosphorites on the sea floor: Origin composition and distribution. New York: Elsevier.

    Google Scholar 

  • Bechtel, A., Y.-N. Shieh, W.C. Elliott, S. Oszczepalski, and S. Hoernes. 2000. Mineralogy, crystallinity and stable isotopic composition of illitic clays within the Polish Zechstein basin: Implications for the genesis of Kupferschiefer mineralization. Chemical Geology 163: 189–205.

    Article  Google Scholar 

  • Bechtel, A., R. Gratzer, W. Püttmann, and S. Oszczepalski. 2001a. Variable alteration of organic matter in relation to metal zoning at the Rote Fäule front (Lubin-Sieroszowice mining district, SW Poland). Organic Geochemistry 32: 377–395.

    Article  Google Scholar 

  • Bechtel, A., Y. Sun, W. Püttmann, S. Hoernes, and J. Hoefs. 2001b. Isotopic evidence for multi-stage base metal enrichment in the Kupferschiefer from the Sangerhausen Basin, Germany. Chemical Geology 176: 31–49.

    Article  Google Scholar 

  • Bechtel, A., R. Gratzer, W. Püttmann, and S. Oszczepalski. 2002. Geochemical characteristics across the oxic/anoxic interface (Rote Fäule front) within the Kupferschiefer of the Lubin-Sieroszowice mining district (SW Poland). Chemical Geology 185: 9–31.

    Article  Google Scholar 

  • Bekker, A., J.F. Slack, N. Planavsky, B. Krapez, A. Hofmann, K.O. Konhauser, and O.J. Rouxel. 2010. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Economic Geology 105: 467–508.

    Article  Google Scholar 

  • Bell, K., and J. Blenkinsop. 1987. Nd and Sr isotopic compositions of East African carbonatites: Implications for mantle heterogeneity. Geology 15: 99–102.

    Article  Google Scholar 

  • Belykh, V.I., E.I. Dunai, and I.P. Lugovaya. 2007. Physicochemical formation conditions of banded iron formations and high-grade iron ores in the region of the Kursk Magnetic Anomaly: Evidence from isotopic data. Geology of Ore Deposits 49: 159–177.

    Article  Google Scholar 

  • Beukes, N.J., H. Dorland, J. Gutzmer, M. Nedachi, and H. Ohmoto. 2002. Tropical laterites, life on land, and the history of atmospheric oxygen in the Paleoproterozoic. Geology 30: 491–494.

    Article  Google Scholar 

  • BGR, n.d. Erkundungsstandort Gorleben. http://www.bgr.bund.de/DE/Themen/Endlagerung/Endlagerstandorte/Gorleben/gorleben_node.html. (Abgerufen Mai 2013).

  • Bluhm, H. 2001. Re-establishment of an abyssal megabenthic community after experimental physical disturbance of the seafloor. Deep Sea Research Part II: Topical Studies in Oceanography 48: 3841–3868.

    Article  Google Scholar 

  • Borowski, C. 2001. Physically disturbed deep-sea macrofauna in the Peru Basin, southeast Pacific, revisited 7 years after the experimental impact. Deep Sea Research Part II: Topical Studies in Oceanography 48: 3809–3839.

    Article  Google Scholar 

  • Bowell, R.J., R.P. Foster, and A.P. Gize. 1993. The mobility of gold in tropical rain forest soils. Economic Geology 88: 999–1016.

    Article  Google Scholar 

  • Brocks, J.J., G.A. Logan, R. Buick, and R.E. Summons. 1999. Archean molecular fossils and the early rise of eukaryotes. Science 285: 1033–1036.

    Article  Google Scholar 

  • Buick, R. 2008. When did oxygenic photosynthesis evolve? Philosophical Transactions of the Royal Society B: Biological Sciences 363: 2731–2743.

    Article  Google Scholar 

  • Butler, G.P. 1969. Modern evaporite deposition and geochemistry of coexisting brines, the sabkha, Trucial Coast, Arabian Gulf. Journal of Petrology 39: 70–89.

    Google Scholar 

  • Byerly, G.R., D.R. Lower, and M.M. Walsh. 1986. Stromatolites from the 3,300–3,500-Myr Swaziland Supergroup, Barberton Mountain Land, South Africa. Nature 319: 489–491.

    Article  Google Scholar 

  • Cabral, A.R., M. Radtke, F. Munnik, B. Lehmann, U. Reinholz, H. Riesemeier, M. Tupinamba, and R. Kwitko-Ribeiro. 2011. Iodine in alluvial platinum-palladium nuggets: Evidence for biogenic precious-metal fixation. Chemical Geology 281: 125–132.

    Article  Google Scholar 

  • Cailteux, J.L.H., A.B. Kampunzu, C. Lerouge, A.K. Kaputo, and J.P. Milesi. 2005. Genesis of sediment-hosted stratiform copper-cobalt deposits, central African Copperbelt. Journal of African Earth Sciences 42: 134–158.

    Article  Google Scholar 

  • Carlisle, D. 1983. Concentration of uranium and vanadium in calcretes and gypcretes. Geological Society, London, Special Publications 11: 185–195.

    Article  Google Scholar 

  • Chowdhury, M.R., V. Venkatesh, M.A. Anandalwar and D.K. Paul, 1965. Recent concepts on the origin of Indian laterite. Memoirs of the Geological Survey of India A 31.

    Google Scholar 

  • Colin, F., P. Lecomte, and B. Boulange. 1989. Dissolution features of gold particles in a lateritic profile at Dondo Mobi, Gabon. Geoderma 45: 241–250.

    Article  Google Scholar 

  • Crerar, D.A., and H. Barnes. 1974. Deposition of deep-sea manganese nodules. Geochimica et Cosmochimica Acta 38: 279–300.

    Article  Google Scholar 

  • Cronan, D.S. 2000. Handbook of marine mineral deposits. Marine science series. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Dahanayake, K. and W. Krumbein, 1986. Microbial structures in oolitic iron formations. Mineralium Deposita 21.

    Google Scholar 

  • Dalvi, A.D., W.G. Bacon, R.C. Osborne, 2004. The past and the future of nickel laterites. In PDAC 2004 international convention, trade show & investors exchange, 7–10. Toronto: The Prospectors and Developers Association of Canada.

    Google Scholar 

  • Dambeck, H. 2012. Osmosekraftwerk: Grüner Strom aus süßem Wasser—Spiegel Online. http://www.spiegel.de/wissenschaft/technik/osmosekraftwerke-liefern-oekostrom-aus-salzwasser-und-suesswasser-a-823820.html. Accessed 13 Apr 2013.

  • Davies, K.A. 1947. The phosphate deposits of the Eastern Province, Uganda. Economic Geology 42: 137–146.

    Article  Google Scholar 

  • Decrée, S., E. Deloule, T. De Putter, S. Dewaele, F. Mees, J. Yans, and C. Marignac. 2011. SIMS U-Pb dating of uranium mineralization in the Katanga Copperbelt: Constraints for the geodynamic context. Ore Geology Reviews 40: 81–89.

    Article  Google Scholar 

  • DeDuve, C., and I. Hausser-Siller. 1994. Ursprung des Lebens: Präbiotische Evolution und die Entstehung der Zelle. Heidelberg: Spektrum Akadademischer Verlag.

    Google Scholar 

  • Delaney, M.L. 1998. Phosphorus accumulation in marine sediments and the oceanic phosphorus cycle. Global Biogeochemical Cycles 12: 563–572.

    Article  Google Scholar 

  • De Putter, T., F. Mees, S. Decrée, and S. Dewaele. 2010. Malachite, an indicator of major Pliocene Cu remobilization in a karstic environment. (Katanga, Democratic Republic of Congo). Ore Geology Reviews 38: 90–100.

    Article  Google Scholar 

  • Dèry, P. and B. Anderson, 2007. Peak phosphorus. Energy Bulletin.

    Google Scholar 

  • Dosseto, A., S.P. Turner, and J. Chappell. 2008. The evolution of weathering profiles through time: New insights from uranium-series isotopes. Earth and Planetary Science Letters 274: 359–371.

    Article  Google Scholar 

  • Duggen, S., K. Hoernle, P. van den Bogaard, L. Rüpke, and J.P. Morgan. 2003. Deep roots of the Messinian salinity crisis. Nature 422: 602–606.

    Article  Google Scholar 

  • Duggen, S., K. Hoernle, P. van den Bogaard, and D. Garbe-Schönberg. 2005. Post-collisional transition from subduction- to Intraplate-type magmatism in the westernmost Mediterranean: Evidence for continental-edge delamination of subcontinental lithosphere. Journal of Petrology 46: 1155–1201.

    Article  Google Scholar 

  • Ehrenreich, A., and F. Widdel. 1994. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Applied Environmental Microbiology 60: 4517–4526.

    Article  Google Scholar 

  • El Desouky, H.A., P. Muchez, and J. Cailteux. 2009. Two Cu-Co sulfide phases and contrasting fluid systems in the Katanga Copperbelt, Democratic Republic of Congo. Ore Geology Reviews 36: 315–332.

    Article  Google Scholar 

  • Emmerich, M., 2013. Paläontologie: Eiserne Spuren urzeitlicher Mikroben. Spektrum.de. http://www.spektrum.de/alias/palaeontologie/eiserne-spuren-urzeitlicher-mikroben/1192103. Accessed 24 Apr 2013.

  • Evans, R.K. 2008. An abundance of lithium. Santiago: World Lithium.

    Google Scholar 

  • Force, E.R., and W.F. Cannon. 1988. Depositional model for shallow-marine manganese deposits around black shale basins. Economic Geology 83: 93–117.

    Article  Google Scholar 

  • Frimmel, H.E. 2002. Genesis of the World’s largest gold deposits. Science 297: 1815–1817.

    Article  Google Scholar 

  • Frimmel, H.E. 2005. Archaean atmospheric evolution: Evidence from the Witwatersrand gold fields, South Africa. Earth-Science Reviews 70: 1–46.

    Article  Google Scholar 

  • Frimmel, H.E. 2008. Earth’s continental crustal gold endowment. Earth and Planetary Science Letters 267: 45–55.

    Article  Google Scholar 

  • Garrels, R.M., and C.L. Christ. 1965. Solutions, minerals, and equilibria. New York: Harper & Row.

    Google Scholar 

  • Germann, K., 1981. Phosphat-Gesteine. Lagerstätten der Steine, Erden und Industrieminerale, Vademecum. GDMB Verlag Chemie, 159–165.

    Google Scholar 

  • Gilbert, N. 2009. The disappearing nutrient. Nature 461: 716–718.

    Article  Google Scholar 

  • Golightly, J.P. 1979. Nickeliferous laterites: a general description. In international laterite symposium, New Orleans, Society of Mining Engineers, 38–56. American Institute of Mining, Metallurgical, and Petroleum Engineers.

    Google Scholar 

  • Grace, H. 1991. Investigations in Kenya and Malawi using as-dug laterite as bases for bituminous surfaced roads. Geotechechnical and Geological Engineering 9: 183–195.

    Article  Google Scholar 

  • Graham, R.C., A.M. Rossi, and K.R. Hubbert. 2010. Rock to regolith conversion: Producing hospitable substrates for terrestrial ecosystems. GSA Today 20: 4–9.

    Article  Google Scholar 

  • Grotzinger, J.P., and D.H. Rothman. 1996. An abiotic model for stromatolite morphogenesis. Nature 383: 423–425.

    Article  Google Scholar 

  • Harder, H. 1989. Mineral genesis in Ironstones: a model based upon laboratory experiments and petrographic observations. In Phanerozoic Ironstones, 9–18. Geological Society Special Publication.

    Google Scholar 

  • Hardisty, J. 1990. Beaches: Form & process: Numerical experiments with monochromatic waves on the orthogonal profile. London, Boston: Unwin Hyman.

    Google Scholar 

  • Haubold, H., G. Katzung, and G. Schaumberg. 2006. Die Fossilien des Kupferschiefers: Pflanzen- und Tierwelt zu Beginn des Zechsteins; eine Erzlagerstätte und ihre Paläontologie. Hohenwarsleben: Westarp-Wissenschaften.

    Google Scholar 

  • Heinrich D., M. Holland and M. Schidlowski, 1982. Mineral deposits and the evolution of the biosphere. Berlin, Heidelberg.

    Google Scholar 

  • Hoashi, M., D.C. Bevacqua, T. Otake, Y. Watanabe, A.H. Hickman, S. Utsunomiya, and H. Ohmoto. 2009. Primary haematite formation in an oxygenated sea 3.46 billion years ago. Nature Geoscience 2: 301–306.

    Article  Google Scholar 

  • Hoffman, P.F., and D.P. Schrag. 2002. The snowball Earth hypothesis: Testing the limits of global change. Terra Nova 14: 129–155.

    Article  Google Scholar 

  • Holland, H.D. 2002. Volcanic gases, black smokers, and the great oxidation event. Geochimica et Cosmochimica Acta 66: 3811–3826.

    Article  Google Scholar 

  • Holland, H.D., and M. Schidlowski (eds.). 1982. Mineral deposits and the evolution of the biosphere. Berlin: Springer.

    Google Scholar 

  • Horstmann, U.E., D.H. Cornell, B.J. Fryer, R. Scheepers, and F. Walraven. 2001. Rare earth elements and Nd isotopic compositions in banded iron-formations of the Griqualand West Sequence, Northern Cape Province, South Africa. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 152: 439–465.

    Google Scholar 

  • Hou, B., A.J. Fabris, J.L. Keeling, and M.C. Fairclough. 2007. Cenozoic palaeochannel-hosted uranium and current exploration methods, South Australia. Mesa Journal 46: 34–39.

    Google Scholar 

  • Hough, R.M., C.R.M. Butt, S.M. Reddy, and M. Verrall. 2007. Gold nuggets: Supergene or hypogene? Australian Journal of Earth Sciences 54: 959–964.

    Article  Google Scholar 

  • James, H.L. 1954. Sedimentary facies of iron-formation. Economic Geology 49: 253–293.

    Article  Google Scholar 

  • Jorgenson, J.D. 2012. World Mine Production and Reserves—Iron Ore. USGS.

    Google Scholar 

  • Kappler, A., C. Pasquero, K.O. Konhauser, and D.K. Newman. 2005. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology 33: 865–868.

    Article  Google Scholar 

  • Kasting, J.F. 1987. Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambrian Research 34: 205–229.

    Article  Google Scholar 

  • Kesler, S.E., P.W. Gruber, P.A. Medina, G.A. Keoleian, M.P. Everson, and T.J. Wallington. 2012. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geology Reviews 48: 55–69.

    Article  Google Scholar 

  • Kimberley, M.M. 1980. The Paz de Rio oolitic inland-sea iron formation. Economic Geology 75: 97–106.

    Article  Google Scholar 

  • Kimberley, M.M. 1989. Exhalative origins of iron formations. Ore Geology Reviews 5: 13–145.

    Article  Google Scholar 

  • Kirk, J., J. Ruiz, J. Chesley, S. Titley, and J. Walshe. 2001. A detrital model for the origin of gold and sulfides in the Witwatersrand basin based on Re-Os isotopes. Geochimica et Cosmochimica Acta 65: 2149–2159.

    Article  Google Scholar 

  • Kirk, J., J. Ruiz, J. Chesley, J. Walshe, and G. England. 2002. A major Archean, gold- and crust-forming event in the Kaapvaal Craton, South Africa. Science 297: 1856–1858.

    Article  Google Scholar 

  • Klein, C. 2005. Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins. American Mineralogist 90: 1473–1499.

    Article  Google Scholar 

  • Köhler, I., K. Konhauser, and A. Kappler. 2010. Role of Microorganisms in Banded Iron Formations. In Geomicrobiology: Molecular and environmental perspective, ed. L.T. Barton, M. Mandl, and A. Loy. Heidelberg: Springer.

    Google Scholar 

  • Köhler, I., K.O. Konhauser, D. Papineau, A. Bekker and A. Kappler, 2013. Biological carbon precursor to diagenetic siderite with spherical structures in iron formations. Nature Communications 4.

    Google Scholar 

  • Konhauser, K.O., T. Hamade, R. Raiswell, R.C. Morris, F.G. Ferris, G. Southam, and D.E. Canfield. 2002. Could bacteria have formed the Precambrian banded iron formations? Geology 30: 1079–1082.

    Article  Google Scholar 

  • Konhauser, K.O., D.K. Newman, and A. Kappler. 2005. The potential significance of microbial Fe(III) reduction during deposition of Precambrian banded iron formations. Geobiology 3: 167–177.

    Article  Google Scholar 

  • Konhauser, K.O., L. Amskold, S.V. Lalonde, N.R. Posth, A. Kappler, and A. Anbar. 2007. Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition. Earth and Planetary Science Letters 258: 87–100.

    Article  Google Scholar 

  • Krapez, B., M.E. Barly, and A.L. Pickard. 2003. Hydrothermal and resedimented origins of the precursor sediments to banded iron formation: Sedimentological evidence from the Early Palaeoproterozoic Brockman Supersequence of Western Australia. Sedimentology 50: 979–1011.

    Article  Google Scholar 

  • Krauskopf, K.B. 1957. Separation of manganese from iron in sedimentary processes. Geochimica et Cosmochimica Acta 12: 61–84.

    Article  Google Scholar 

  • Kucha, H., and W. Przylowicz. 1999. Noble metals in organic matter and clay-organic matrices, Kupferschiefer, Poland. Economic Geology 94: 1137–1162.

    Article  Google Scholar 

  • Kucha, H., and M. Pawlikowski. 1986. Two-brine model of the genesis of strata-bound Zechstein deposits (Kupferschiefer type), Poland. Mineralium Deposita 21: 70–80.

    Article  Google Scholar 

  • Kühne, W.G. 1976. Goldtransport durch Inlandeis. Dem Andenken von Egon Erwin Kisch (1885–1948) gewidmet. Der Aufschluss 27: 165–169.

    Google Scholar 

  • Kühne, W.G. 1983. Gold für uns aus der Kiesgrube. Der Aufschluss 34: 215–218.

    Google Scholar 

  • Langer, E. 1969. Die Nickellagerstätte des Morro do Niquel in Minas Gerais, Brasilien: ihr Aufschluss, ihre Bemusterung und Bewertung. Borntraeger: Gebr.

    Google Scholar 

  • Lascelles, D.F. 2007. Black smokers and density currents: A uniformitarian model for the genesis of banded iron-formations. Ore Geology Reviews 32: 381–411.

    Article  Google Scholar 

  • Lee Bray, E. 2012. Bauxite and Alumina. Geological Survey. USA: Mineral Commodity Summaries.

    Google Scholar 

  • Liedtke, M., and J. Vasters. 2008. Renaissance des deutschen Kupferschieferbergbaus?, 29. Commodity Top News: Bundesamt für Geologie und Rohstoffe.

    Google Scholar 

  • Lierl, H.-J., and W. Jans. 1990. Geschiebegold aus Schleswig-Holstein. Geschiebekunde aktuell 6 (47): 49–57.

    Google Scholar 

  • Lottermoser, B.G. 1990. Rare-earth element mineralisation within the Mt. Weld carbonatite laterite. Western Australia. Lithos 24: 151–167.

    Google Scholar 

  • Louthean Publishing (ed.), 2004. The Australian mines handbook 2003/04 edition 71.

    Google Scholar 

  • Lowe, D.R. 1980. Stromatolites 3,400-Myr old from the Archean of Western Australia. Nature 284: 441–443.

    Article  Google Scholar 

  • Machens, E. 2011. Hans Merensky—Geologe und Mäzen: Platin. Schweizerbart, Stuttgart: Gold und Diamanten in Afrika.

    Google Scholar 

  • Mann, A.W. 1984. Mobility of gold and silver in lateritic weathering profiles; some observations from Western Australia. Economic Geology 79: 38–49.

    Article  Google Scholar 

  • Mann, A.W., and R.L. Deutscher. 1978. Genesis principles for the precipitation of carnotite in calcrete drainages in Western Australia. Economic Geology 73: 1724–1737.

    Article  Google Scholar 

  • McCuaig, T.C., M. Behn, H. Stein, S.G. Hagemann, N.J. McNaughton, K.F. Cassidy, D. Champion and L. Wyborn, 2001. The Boddington gold mine: a new style of Archaean Au-Cu deposit. In Fourth International Archaean Symposium, Extended Abstracts, 453–455.

    Google Scholar 

  • Meier, C. 2010. Rohstoffe: Bevor der Dünger ausgeht—Spektrum.de http://www.wissenschaft-online.de/artikel/1024445%26_z=859070. Accessed 20 Mar 2013.

  • Meyer, F.M., U. Happel, J. Hausberg, and A. Wiechowski. 2002. The geometry and anatomy of the Los Pijiguaos bauxite deposit, Venezuela. Ore Geology Reviews 20: 27–54.

    Article  Google Scholar 

  • Minter, A.H.G. 1978. A sedimentological synthesis of placer gold, uranium and pyrite concentrations in Proterozoic Witwatersrand deposits. In Fluvial Sedimentology, ed. A.D. Miall, 5, 801–829. Canadian Society for Petroleum Geology, Memoir.

    Google Scholar 

  • Morris, R.C. 1985. Genesis of iron ore in banded iron-formation by supergene and supergene-metamorphic processes—a conceptual model. In Handbook of strata-bound and stratiform ore deposits, ed. K.H. Wolf, 13, 73–235. Amsterdam: Elsevier.

    Google Scholar 

  • Morris, R.C. 2002. Genesis of high-grade hematite orebodies of the Hamersley Province, Western Australia—a discussion. Economic Geology 97: 177–181.

    Article  Google Scholar 

  • Ochsenius, C. 1877. Die Bildung der Steinsalzlager und ihrer Mutterlaugensalze unter specieller Berücksichtigung der Flötze von Douglashall in der egeln’schen Mulde. Pfeffer, Halle: C. E. M.

    Google Scholar 

  • Oftedahl, C. 1958. A theory of exhalative-sedimentary ores. Geologiska Föreningen i Stockholm Förhandlingar 80: 1–19.

    Article  Google Scholar 

  • Oszczepalski, S. 1999. Origin of the Kupferschiefer polymetallic mineralization in Poland. Mineralium Deposita 34: 599–613.

    Article  Google Scholar 

  • Pašava, J., S. Oszczepalski, and A. Du. 2010. Re-Os age of non-mineralized black shale from the Kupferschiefer, Poland, and implications for metal enrichment. Mineralium Deposita 45: 189–199.

    Article  Google Scholar 

  • Petrascheck, W.E. 1989. The genesis of allochthonous karst-type bauxite deposits of Southern Europe. Mineralium Deposita 24: 77–81.

    Article  Google Scholar 

  • Pickard, A.L. 2002. SHRIMP U-Pb zircon ages of tuffaceous mudrocks in the Brockman Iron Formation of the Hamersley Range, Western Australia. Australian Journal of Earth Sciences 49: 491–507.

    Article  Google Scholar 

  • Pickard, A.L., M.E. Barley, and B. Krapez. 2004. Deep-marine depositional setting of banded iron formation: Sedimentological evidence from interbedded clastic sedimentary rocks in the early Palaeoproterozoic Dales Gorge Member of Western Australia. Sedimentary Geology 170: 37–62.

    Article  Google Scholar 

  • Piestrzynski, A., J. Pieczonka, and A. Gluszek. 2002. Redbed-type gold mineralisation, Kupferschiefer, south-west Poland. Mineralium Deposita 37: 512–528.

    Article  Google Scholar 

  • Planavsky, N., O. Rouxel, A. Bekker, R. Shapiro, P. Fralick, and A. Knudsen. 2009. Iron-oxidizing microbial ecosystems thrived in late Paleoproterozoic redox-stratified oceans. Earth and Planetary Science Letters 286: 230–242.

    Article  Google Scholar 

  • Pohl, W.L. 2005. Mineralische und Energie-Rohstoffe. 5. Ed. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart.

    Google Scholar 

  • Porrenga, D. 1967. Glauconite and chamosite as depth indicators in the marine environment. Marine Geology 5: 495–501.

    Article  Google Scholar 

  • Posth, N.R., K.O. Konhauser, and A. Kappler. 2008. Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans. Nature Geoscience 10: 703–708.

    Article  Google Scholar 

  • Poulton, S.W., P.W. Fralick, and D.E. Canfield. 2010. Spatial variability in oceanic redox structure 1.8 billion years ago. Nature Geoscience 3: 486–490.

    Article  Google Scholar 

  • Preidl, M., and M. Metzler. 1984. The sedimentation of copper-bearing shales (Kupferschiefer) in the Sudetic foreland. Mineralium Deposita 19: 243–248.

    Article  Google Scholar 

  • Reedman, J.H. 1984. Resources of phosphate, niobium, iron, and other elements in residual soils over the Sukulu carbonatite complex, southeastern Uganda. Economic Geology 79: 716–724.

    Article  Google Scholar 

  • Reith, F., S.L. Rogers, D.C. McPhail, and D. Webb. 2006. Biomineralization of gold: Biofilms on bacterioform gold. Science 313: 233–236.

    Article  Google Scholar 

  • Richter-Bernburg, G. 1953. Über salinare Sedimentation. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 105: 593–645.

    Google Scholar 

  • Ries, G. 2001. Lateritische Nickellagerstätten in Neu Kaledonien. Der Aufschluss 52: 79–83.

    Google Scholar 

  • Ries, G. 2007. Die Entwicklung der Erdatmosphäre. Der Aufschluss 58: 217–226.

    Google Scholar 

  • Ries, G. 2010. Die Entwicklungsgeschichte der Erdatmosphäre und ihres Sauerstoffgehaltes. Bergbau 61: 109–118.

    Google Scholar 

  • Risacher, F., H. Alonso, and C. Salazar. 2003. The origin of brines and salts in Chilean salars: A hydrochemical review. Earth-Science Reviews 63: 249–293.

    Article  Google Scholar 

  • Robb, L.J., and F.M. Meyer. 1995. The Witwatersrand Basin, South Africa: Geological framework and mineralization processes. Ore Geology Review 10: 67–94.

    Article  Google Scholar 

  • Santosh, M., and P.K. Omana. 1991. Very high purity gold form lateritic weathering profiles of Nilambur, Southern India. Geology 19: 746–749.

    Article  Google Scholar 

  • Sawlowicz, Z. 1989. On the origin of copper mineralization in the Kupferschiefer: A sulphur isotope study. Terra Nova 1 (4): 339–343.

    Article  Google Scholar 

  • Schellmann, W. 1983. Geochemical principles of lateritic nickel ore formation. In Proceedings of the international seminar of laterisation processes, 2o, 119–135. São Paulo.

    Google Scholar 

  • Schlüter, T. 1991. Systematik, Palökologie und Biostratonomie von Phalacrocorax kuehnaeus nov. spec., einem fossilen Kormoran (Aves: Phalacrocoracidae) aus mutmaßlich oberpliozänen Phosphoriten N Tansanias. Berliner Geowissenschaftliche Abhandlungen. A 134: 279–309.

    Google Scholar 

  • Schoettle, M., and G.M. Friedmann. 1971. Fresh Water Iron-Manganese Nodules in Lake George, New York. Geological Society of America Bulletin 82: 101–110.

    Article  Google Scholar 

  • Schultz, L. 1993. Planetologie: eine Einführung. Basel, Boston: Birkhäuser Verlag.

    Google Scholar 

  • Simonson, B.M. 1985. Sedimentological constraints on the origins of Precambrian iron-formations. Geological Society of America Bulletin 96: 244–252.

    Article  Google Scholar 

  • Slack, J.F., T. Grenne, A. Bekker, O.J. Rouxel, and P.A. Lindberg. 2007. Suboxic deep seawater in the late Paleoproterozoic: Evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA. Earth and Planetary Science Letters 255: 243–256.

    Article  Google Scholar 

  • Slack, J.F., and W.F. Cannon. 2009. Extraterrestrial demise of banded iron formations 1.85 billion years ago. Geology 37: 1011–1014.

    Article  Google Scholar 

  • Smirnov, V.I. 1989. European part of the USSR. Mineral Deposits of Europe 4: 279–407.

    Google Scholar 

  • Sorby, H.C. 1857. On the origin of the Cleveland Hill ironstone. Geol. Polytechnic. Soc. West Riding Yorkshire Proc. 3: 457–461.

    Article  Google Scholar 

  • Squyres, S.W., J.P. Grotzinger, R.E. Arvidson, J.F. Bell, W. Calvin, P.R. Christensen, B.C. Clark, J.A. Crisp, W.H. Farrand, K.E. Herkenhoff, J.R. Johnson, G. Klingelhöfer, A.H. Knoll, S.M. McLennan, H.Y. McSween, R.V. Morris, J.W. Rice, R. Rieder, and L.A. Soderblom. 2004. In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars. Science 306: 1709–1714.

    Article  Google Scholar 

  • Sun, Y.-Z., and W. Püttmann. 2000. The role of organic matter during copper enrichment in Kupferschiefer from the Sangerhausen basin, Germany. Organic Geochemistry 31: 1143–1161.

    Article  Google Scholar 

  • Strunz, H., 2001. Strunz mineralogical tables: chemical-structural mineral classification system. 9. Ed. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart.

    Google Scholar 

  • Talbot, C.J., and V. Pohjola. 2009. Subaerial salt extrusions in Iran as analogues of ice sheets, streams and glaciers. Earth-Science Reviews 97: 155–183.

    Article  Google Scholar 

  • Tardy, Y. 1997. Petrology of laterites and tropical soils. Rotterdam, Netherlands; Brookfield, VT, USA: A. A. Balkema.

    Google Scholar 

  • Taylor, D., H.J. Dalstra, A.E. Harding, G.C. Broadbent, and M.E. Barley. 2001. Genesis of high-grade hematite orebodies of the Hamersley Province, Western Australia. Economic Geology 96: 837–873.

    Google Scholar 

  • Taylor, D., H.J. Dalstra, and A.E. Harding. 2002. Genesis of high-hrade hematite orebodies of the Hamersley Province, Western Australia—a reply. Economic Geology 97: 179–181.

    Article  Google Scholar 

  • Thiel, H. 2001. Evaluation of the environmental consequences of polymetallic nodule mining based on the results of the TUSCH Research Association. Deep Sea Research Part II: Topical Studies in Oceanography 48: 3433–3452.

    Article  Google Scholar 

  • Thiel, H., G. Schriever, A. Ahnert, H. Bluhm, C. Borowski, and K. Vopel. 2001. The large-scale environmental impact experiment DISCOL—reflection and foresight. Deep Sea Research Part II: Topical Studies in Oceanography 48: 3869–3882.

    Article  Google Scholar 

  • Towe, K.M. 1996. Environmental oxygen conditions during the origin and early evolution of life. Advances in Space Research 18: 7–15.

    Article  Google Scholar 

  • Trechow, P. 2011. Lithium—ein Spannungsmacher auf Kreislaufkurs. ingenieur.de. http://www.ingenieur.de/Themen/Rohstoffe/Lithium-Spannungsmacher-Kreislaufkurs. Accessed 18 Apr 2013.

  • Troly, G., M. Esterle, B. Pelletier and W. Reibell, 1979. Nickel deposits in New Caledonia: some factors influencing their formation. In Proceedings of the international symposium of lateritisation processes, 81–119. New Orleans.

    Google Scholar 

  • Valayashko, M.G. 1958. Die wichtigsten geochemischen Parameter für die Bildung der Kalisalzlagerstätten. Freiburger Forschungshefte A123: 197–233.

    Google Scholar 

  • Valeton, I., M. Biermann, R. Reche, and F. Rosenberg. 1987. Genesis of nickel laterites and bauxites in greece during the jurassic and cretaceous, and their relation to ultrabasic parent rocks. Ore Geology Reviews 2: 359–404.

    Article  Google Scholar 

  • Van de Kerkhof, S. 2002. In: Die Industrialisierung europäischer Montanregionen im 19. Jahrhundert, ed. T. Pierenkemper, 225–275. Franz Steiner Verlag.

    Google Scholar 

  • Van Straaten, P. 2002. Rocks for crops: Agrominerals of Sub-Saharan Africa. Nairobi, Kenya: ICAF.

    Google Scholar 

  • van Kauwenbergh, S.J. 1991. Overview of phosphate deposits in East and Southeast Africa. Fertilizer Research 30: 127–150.

    Article  Google Scholar 

  • Van Wyk, P. and l. F. Pienaar, 1986. Diamondiferous gravels of the lower Orange River, Namaqualand, In Mineral Deposits of Southern Africa, 2.173–2.191. Johannesburg: Geological Society of South Africa.

    Google Scholar 

  • Vaughan, D.J., M.A. Sweeney, G. Friedrich, R. Diedel, and C. Haranczyk. 1989. The Kupferschiefer; an overview with an appraisal of the different types of mineralization. Economic Geology 84: 1003–1027.

    Article  Google Scholar 

  • Wagner, T., M. Okrusch, S. Weyer, J. Lorenz, Y. Lahaye, H. Taubald, and R. Schmitt. 2010. The role of the Kupferschiefer in the formation of hydrothermal base metal mineralization in the Spessart ore district, Germany: Insight from detailed sulfur isotope studies. Mineralium Deposita 45: 217–239.

    Article  Google Scholar 

  • Wang, X., and W.E.G. Müller. 2009. Marine biominerals: Perspectives and challenges for polymetallic nodules and crusts. Trends in Biotechnology 27: 375–383.

    Article  Google Scholar 

  • Wang, X., H.C. Schröder, M. Wiens, U. Schloßmacher, and W.E.G. Müller. 2009a. Manganese/polymetallic nodules: Micro-structural characterization of exolithobiontic and endolithobiontic microbial biofilms by scanning electron microscopy. Micron 40: 350–358.

    Article  Google Scholar 

  • Wang, Y., H. Xu, E. Merino, and H. Konishi. 2009b. Generation of banded iron formations by internal dynamics and leaching of oceanic crust. Nature Geoscience 2: 781–784.

    Article  Google Scholar 

  • Warren, J.K. 2010. Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth-Science Reviews 98: 217–268.

    Article  Google Scholar 

  • Weber, K.A., L.A. Achenbach, and J.D. Coates. 2006. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nature Reviews Microbiology 4: 752–764.

    Article  Google Scholar 

  • Whattam, S.A. 2009. Arc-continent collisional orogenesis in the SW Pacific and the nature, source and correlation of emplaced ophiolitic nappe components. Lithos 113: 88–114.

    Article  Google Scholar 

  • Widdel, S., S. Schnell, S. Heising, A. Ehrenreich, B. Assmus, and B. Schink. 1993. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362: 834–836.

    Article  Google Scholar 

  • Yamaguchi, K. E. n.d. Iron isotope compositions of Fe-oxide as a measure of water-rock interaction: An example from Precambrian tropical laterite in Botswana. Frontier Research on Earth Evolution (IFREE Report for 2003–2004).

    Google Scholar 

Further Reading

  • Guilbert, J.M., and C.F. Park. 1986. The geology of ore deposits. New York: WH Freeman.

    Google Scholar 

  • Laznicka, P. 2010. Giant Metallic Deposits: Future sources of industrial metals, 2nd ed. Heidelberg: Springer.

    Book  Google Scholar 

  • Lohmann, D., and N. Podbregar. 2012. Im Fokus: Bodenschätze. Springer, Heidelberg: Auf der Suche nach Rohstoffen.

    Book  Google Scholar 

  • Misra, K.C. 2000. Understanding mineral deposits. Dordrecht, Niederlande: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Okrusch, M., and S. Matthes. 2009. Mineralogie: Eine Einführung in die spezielle Mineralogie, Petrologie und Lagerstättenkunde, 8th ed. Heidelberg: Springer.

    Google Scholar 

  • Pohl, W.L. 2011. Economic Geology. Chichester: Wiley-Blackwell.

    Google Scholar 

  • Robb, L. 2005. Introduction to ore-forming processes. Malden, Massachussetts: Blackwell Science.

    Google Scholar 

  • Rothe, P. 2010. Schätze der Erde. Darmstadt: Primus Verlag.

    Google Scholar 

  • Seidler, C. 2012. Deutschlands verborgene Rohstoffe: Kupfer. Hanser, München: Gold und seltene Erden.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Neukirchen .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neukirchen, F., Ries, G. (2020). Deposits Formed by Sedimentation and Weathering. In: The World of Mineral Deposits. Springer, Cham. https://doi.org/10.1007/978-3-030-34346-0_5

Download citation

Publish with us

Policies and ethics