Hydrothermal Deposits



Hot water is a very effective medium for the transport and enrichment of certain elements that are subsequently precipitated from the water. This can happen in very different places such as at a hot spring on the seabed, along a fault, in fine cracks above a granite pluton, in a cave, or in the pores of the rock. The space necessary for precipitation can even be created by simultaneously dissolving the surrounding rock in a process called replacement.


  1. Anderson, G.M. 2008. The mixing hypothesis and the origin of Mississippi Valley-Type ore deposits. Economic Geology 103: 1683–1960.CrossRefGoogle Scholar
  2. Anschutz, P., and G. Blanc. 1995. Chemical mass balances in metalliferous deposits from the Atlantis II Deep, Red Sea. Geochimica et Cosmochimica Acta 59: 4205–4218.CrossRefGoogle Scholar
  3. Anschutz, P., and G. Blanc. 1996. Heat and salt fluxes in the Atlantis II Deep (Red Sea). Earth and Planetary Science Letters 142: 147–159.CrossRefGoogle Scholar
  4. Anschutz, P.G., C.Monnin Blanc, and J. Boulège. 2000. Geochemical dynamics of the Atlantis II Deep (Red Sea): II. Composition of metalliferous sediment pore waters. Geochimica et Cosmochimica Acta 64: 3995–4006.CrossRefGoogle Scholar
  5. Audetat, A., T. Pettke, C.A. Heinrich, and R.J. Bodnar. 2008. The composition of magmatic-hydrothermal fluids in barren and mineralized intrusions. Economic Geology 103: 877–908.CrossRefGoogle Scholar
  6. Baatartsogt, B., G. Schwinn, T. Wagner, H. Taubald, T. Beitter, and G. Markl. 2007. Contrasting paleofluid systems in the continental basement: A fluid inclusion and stable isotope study of hydrothermal vein mineralization, Schwarzwald district, Germany. Geofluids 7: 123–147.CrossRefGoogle Scholar
  7. Barrie, C.D., A.J. Boyce, A.P. Boyle, P.J. Williams, K. Blake, J.J. Wilkinson, M. Lowther, P. McDermott, and D.J. Prior. 2009. On the growth of colloform textures: a case study of sphalerite from the Galmoy ore body, Ireland. Journal of the Geological Society London 166: 563–582.CrossRefGoogle Scholar
  8. Barton, P.B., and P.M. Bethke. 1987. Chalcopyrite disease in sphalerite: Pathology and epidemiology. American Mineralogist 72: 451–467.Google Scholar
  9. Bartos, P.J. 2000. The Pallacos of Cerro Rico de Potosí, Bolivia: A new deposit type. Economic Geology 95: 645–654.CrossRefGoogle Scholar
  10. Bettencourt, J.S., W.B. Leite Jr., C.L. Goraieb, I. Sparrenberger, R.M.S. Bello, and B.L. Payolla. 2005. Sn-poymetallic greisen-type deposits associated with late-stage rapakivi granites, Brazil: fluid inclusion and stable isotope characteristics. Lithos 80: 363–386.CrossRefGoogle Scholar
  11. Bierlein, F.P., D.I. Groves, R.J. Goldfarb, and B. Dubé. 2006. Lithospheric controls on the formation of provinces hosting giant orogenic gold deposits. Mineralium Deposita 40: 874–886.CrossRefGoogle Scholar
  12. Bölücek, C., M. Akgül, and I. Türkmen. 2004. Volcanism, sedimentation and massive sulfide mineralization in a Late Cretaceous arc-related basin, Eastern Taurides, Turkey. Journal of Asian Earth Sciences 24: 349–360.CrossRefGoogle Scholar
  13. Bons, P.D. 2001a. The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures. Tectonophysics 336: 1–17.CrossRefGoogle Scholar
  14. Bons, P.D. 2001b. Development of crystal morphology during unitaxial growth in a progressively widening vein: I. The numerical model. Journal of Structural Geology 23: 865–872.CrossRefGoogle Scholar
  15. Bradley, D.C., and D.L. Leach. 2003. Tectonic controls of Mississippi Valley-type lead-zinc mineralization in orogenic forelands. Mineralium Deposita 38: 652–667.CrossRefGoogle Scholar
  16. Bradley, D.C., D.L. Leach, D. Symons, P. Emsbo, W. Premo, G. Breit, and D.F. Sangster. 2004. Reply to Discussion on „Tectonic controls of Mississippi Valley-type lead-zinc mineralization in orogenic forelands“ by S. E. Kesler, J. T. Christensen, R. D. Hagni, W. Heijlen, J. R. Kyle, K. C. Misra, P. Muchez and R. Van der Voo, Mineralium Deposita. Mineralium Deposita 39: 515–519.CrossRefGoogle Scholar
  17. Braun, A.C. 2006. Genesis of native copper lodes in the Keweenaw district, Northern Michigan: A hybrid evolved meteoric and metamorphogenic model. Economic Geology 101: 1437–1444.CrossRefGoogle Scholar
  18. Breiter, K. 2012. Nearly contemporaneous evolution of the A- and S-type fractionated granites in the Krušné hory/Erzgebirge Mts., Central Europe. Lithos 151: 105–121.CrossRefGoogle Scholar
  19. Bucher, K., and I. Stober. 2010. Fluids in the upper continental crust. Geofluids 10: 241–253.Google Scholar
  20. Castroviejo, R., C. Quesada, and M. Soler. 2011. Post-depositional tectonic modification of VMS deposits in Iberia and its economic significance. Mineralium Deposita 46: 615–673.CrossRefGoogle Scholar
  21. Catchpole, H., K. Kouzmanov, L. Fontboté, M. Guillong, and C.A. Heinrich. 2011. Fluid evolution in zoned cordilleran polymetallic veins – insights from microthermometry and LA-ICP-MS of fluid inclusions. Chemical Geology 281: 293–304.CrossRefGoogle Scholar
  22. Chauvet, A., P. Piantone, L. Barbanson, and P. Nehlig. 2001. Gold deposit formation during collapse tectonics: structural, mineralogical, geochronological, and fluid inclusion constraints in the Ouro Preto gold mines, Quadrilátero Ferrífero, Brazil. Economic Geology 96: 25–48.Google Scholar
  23. Chen, J., M.R. Walter, G.A. Logan, M.C. Hinman, and R.E. Summons. 2003. The Paleoproterozoic McArthur River (HYC) Pb/Zn/Ag deposit of northern Australia: Organic geochemistry and ore genesis. Earth and Planetary Science Letters 210: 467–479.CrossRefGoogle Scholar
  24. Chetty, D., and H.E. Frimmel. 2000. The role of evaporites in the genesis of base metal sulphide mineralisation in the Northern Platform of the Pan-African Damara Belt, Namibia: geochemical and fluid inclusion evidence from carbonate wall rock alteration. Mineralium Deposita 35: 364–376.CrossRefGoogle Scholar
  25. Ciobanu, C.L., and N.J. Cook. 2004. Skarn textures and a case study: the Ocna de Fier-Dognecea orefield, Banat, Romania. Ore Geology Reviews 24: 315–370.CrossRefGoogle Scholar
  26. Cline, J.S., A.H. Hofstra, J.L. Muntean, R.M. Tosdal, and K.A. Hickey. 2005. Carlin-type gold deposits in Nevada: Critical geologic characteristics and viable models. Economic Geology100th Anniversary Volume, 451–484.Google Scholar
  27. Cooke, D.R., and S.F. Simmons. 2000. Characteristics and genesis of epithermal gold deposits. Reviews in Economic Geology 13: 221–244.Google Scholar
  28. Cooke, D.R., S.W. Bull, R.R. Large, and P.J. McGoldrick. 2000. The importance of oxidized brines for the formation of Australian proterozoic stratiform sediment-hosted Pb-Zn (Sedex) deposits. Economic Geology 95: 1–17.CrossRefGoogle Scholar
  29. Cooke, D.R., P. Hollings, and J.L. Walshe. 2005. Giant porphyry deposits: characteristics, distribution and tectonic controls. Economic Geology 100: 801–818.CrossRefGoogle Scholar
  30. Corliss, J.B., J. Dymond, L.I. Gordon, J.M. Edmond, R.P. von Herzen, R.D. Ballard, K. Green, D. Williams, A. Bainbridge, K. Crane, and T.H. van Andel. 1979. Submarine thermal springs on the Galápagos Rift. Science 203: 1073–1083.CrossRefGoogle Scholar
  31. Danisik, M., K. Pfaff, N.J. Evans, C. Manoloukos, S. Staude, B.J. McDonald, and G. Markl. 2010. Tectonothermal history of the Schwarzwald ore district (Germany): An apatite triple dating approach. Chemical Geology 278: 58–69.CrossRefGoogle Scholar
  32. Derome, D., M. Cathelineau, M. Cuney, C. Fabre, T. Lhomme, and D.A. Banks. 2005. Mixing of sodic and calcic brines and uranium deposition at McArthur River, Saskatchewan, Canada: A Raman and laser-induced breakdown spectroscopic study of fluid inclusions. Economic Geology 100: 1529–1545.CrossRefGoogle Scholar
  33. Dietrich, A., B. Lehmann, and A. Wallianos. 2000. Bulk rock and melt inclusion geochemistry of Bolivian tin porphyry systems. Economic Geology, 313–326.CrossRefGoogle Scholar
  34. Dilek, Y., and H. Furnes. 2009. Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems. Lithos 113: 1–20.CrossRefGoogle Scholar
  35. Doyle, M.G., and R.L. Allen. 2003. Subsea-floor replacement in volcanic-hosted massive sulfide deposits. Ore Geology Reviews 23: 183–222.CrossRefGoogle Scholar
  36. Drummond, B., P. Lyons, B. Goleby, and L. Jones. 2006. Constraining models of the tectonic setting of the giant Olympic Dam iron oxide-copper-gold deposit, South Australia, using deep seismic reflection data. Tectonophysics 420: 91–103.CrossRefGoogle Scholar
  37. Duncan, R.J., H.J. Stein, K.A. Evans, M.W. Hitman, E.P. Nelson, and D.J. Kirwin. 2011. A new geochronological framework for mineralization and alteration in the Selwyn-Mount Dore Corridor, Eastern Fold Belt, Mount Isa Inlier, Australia: Genetic implications for iron oxide copper-gold deposits. Economic Geology 106: 169–192.CrossRefGoogle Scholar
  38. Dunham, K., K.E., Beer, R.A. Ellis, M.J. Gallagher, M.J.C. Nutt, and B.C. Webb. 1978. United Kingdom. In Mineral Deposits of Europe, ed. S. H.U. Bowie, A. Kvalheim and H.W. Haslam Volume: Northwest Europe. London: Institution of Mining and Metallurgy and Mineralogical Society.Google Scholar
  39. Economou-Eliopoulos, M., D.G. Eliopoulos, and S. Chryssoulis. 2008. A comparison of high-Au massive sulfide ores hosted in ophiolite complexes of the Balkan Peninsula with modern analogues: Genetic significance. Ore Geology Reviews 33: 81–100.CrossRefGoogle Scholar
  40. Eddy, C.A., Y. Dilek, S. Hurst, and E.M. Moores. 1998. Seamount formation and associated caldera complex and hydrothermal mineralization in ancient oceanic crust, Troodos ophiolite (Cyprus). Tectonophysics 292: 189–210.CrossRefGoogle Scholar
  41. Emmons, W.H. 1936. Hypogene zoning in metalliferous lodes. Report 1 of the 16th International Geological Congress, 417–432.Google Scholar
  42. Feltrin, L., J.G. McLellan, and N.H.S. Oliver. 2009. Modelling the giant, Zn–Pb–Ag Century deposit, Queensland, Australia. Computers & Geosciences 35: 108–133.CrossRefGoogle Scholar
  43. Franklin, J.M., H.L. Gibson, I.R. Jonasson and A.G. Galley. 2005. Volcanogenic massive sulfide deposits. Economic Geology 100th Anniversary Volume, 523–560.Google Scholar
  44. Gaboury, D., and V. Pearson. 2008. Rhyolite geochemical signatures and association with volcanogenic massive sulfide deposits: Examples from the Abitibi Belt, Canada. Economic Geology 103: 1531–1562.CrossRefGoogle Scholar
  45. Garven, G., S.W. Bull, and R.R. Large. 2001. Hydrothermal fluid flow models of stratiform ore genesis in the McArthur Basin, Northern Territory, Australia. Geofluids 1: 289–311.CrossRefGoogle Scholar
  46. Gessner, K., P.A. Jones, A.R. Wilde, and M. Kühn. 2006. Significance of strain localization and fracturing in relation to hydrothermal mineralization at Mount Isa, Australia. Journal of Geochemical Exploration 89: 129–132.CrossRefGoogle Scholar
  47. Glasby, G.P., K. Iizasa, M. Hannington, H. Kubota, and K. Notsu. 2008. Mineralogy and composition of Kuroko deposits from northeastern Honshu and their possible modern analogues from the Izu-Ogasawara (Bonin) Arc south of Japan: Implications for mode of formation. Ore Geology Reviews 34: 547–560.CrossRefGoogle Scholar
  48. Goldfarb, R.J., D.I. Groves, and S. Gardoll. 2001. Orogenic gold and geologic time: A global synthesis. Ore Geology Reviews 18: 1–75.CrossRefGoogle Scholar
  49. Groves, D.I., and N.M. Vielreicher. 2001. The Phalabowra (Palabora) carbonatite-hosted magnetite-copper sulfide deposit, South Africa: An end-member of the iron-oxide-copper-gold-rare earth element deposit group? Mineralium Deposita 36: 189–194.CrossRefGoogle Scholar
  50. Groves, D.I., R.J. Goldfarb, M. Gebre-Mariam, S.G. Hagemann, and F. Robert. 1998. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews 13: 7–27.CrossRefGoogle Scholar
  51. Groves, D.I., R.J. Goldfarb, F. Robert, and C.J.R. Hart. 2003. Gold deposits in metamorphic belts: overview of current understanding, outstanding problems, future research, and exploration significance. Economic Geology 98: 1–29.Google Scholar
  52. Groves, D.I., F.P. Bierlein, L.D. Meinert, and M.W. Hitzman. 2010. Iron oxide copper-gold (IOCG) deposits through earth history: implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Economic Geology 105: 641–654.CrossRefGoogle Scholar
  53. Gu, L.X., Y. Zheng, X. Tang, K. Zaw, F. Della-Pasque, C. Wu, Z. Tian, J. Lu, P. Ni, X. Li, F. Yang, and X. Wang. 2007. Copper, gold and silver enrichment in ore mylonites within massive sulphide orebodies at Hongtoushan VHMS deposit, N.E. China. Ore Geology Reviews 39: 1–29.CrossRefGoogle Scholar
  54. Guillou-Frotter, L., and E. Burov. 2003. The development and fracturing of plutonic apexes: Implications for porphyry ore deposits. Earth and Planetary Science Letters 214: 341–356.CrossRefGoogle Scholar
  55. Hall, C.M., P.L. Higueras, S.E. Kesler, R. Lunar, H. Dong, and A.N. Halliday. 1997. Dating of alteration episodes related to mercury mineralization in the Almaden district, Spain. Earth and Planetary Science Letters 148: 281–298.CrossRefGoogle Scholar
  56. Halter, W.E., T. Pettke, and C.A. Heinrich. 2002. The origin of Cu/Au ratios in porphyry-type ore deposits. Science 296: 1844–1846.CrossRefGoogle Scholar
  57. Halter, W.E., C.A. Heinrich, and T. Pettke. 2005. Magma evolution and the formation of porphyry Cu–Au ore fluids: Evidence from silicate and sulfide melt inclusions. Mineralium Deposita 39: 845–863.CrossRefGoogle Scholar
  58. Hagan, N., N. Robins, H. Hsu-Kim, S. Halabi, M. Morris, G. Woodall, T. Zhang, A. Bacon, D.B. Richter, and J. Vandenberg. 2011. Estimating historical atmospheric mercury concentrations from silver mining and their legacies in present-day surface soil in Potosí, Bolivia. Atmospheric Environment 45: 7619–7626.CrossRefGoogle Scholar
  59. Hannington, M.D., C.E.J. de Ronde, and S. Peterson. 2005. Sea-floor tectonics and submarine hydrothermal systems. Economic Geology 100th Anniversary Volume, 111–141.Google Scholar
  60. Hartley, A.J., and C.M. Rice. 2005. Controls on supergene enrichment of porphyry copper deposits in the Central Andes: A review and discussion. Mineralium Deposita 40: 515–525.CrossRefGoogle Scholar
  61. Haynes, D.W., K.C. Cross, R.T. Bills, and M.H. Reed. 1995. Olympic Dam ore genesis: A fluid-mixing model. Economic Geology 90: 281–307.CrossRefGoogle Scholar
  62. Hecht, L., and M. Cuney. 2000. Hydrothermal alteration of monazite in the Precambrian crystalline basement of the Athabasca Basin (Saskatchewan, Canada): implications for the formation of unconformity-related uranium deposits. Mineralium Deposita 35: 791–795.CrossRefGoogle Scholar
  63. Hedenquist, J.W., A.R. Arribas, and E. Gonzalez-Urien. 2000. Exporation for epithermal gold deposits. Reviews in Economic Geology 13: 245–277.Google Scholar
  64. Heinrich, C.A. 2005. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: A thermodynamic study. Mineralium Deposita 39: 864–889.CrossRefGoogle Scholar
  65. Herrington, R., V. Maslennikov, V. Zaykov, I. Seravkin, A. Kosarev, B. Buschmann, J.-J. Orgeval, N. Holland, S. Tesalina, P. Nimis, and R. Armstrong. 2005. Classification of VMS deposits: Lessons from the South Uralides. Ore Geology Reviews 27: 203–237.CrossRefGoogle Scholar
  66. Herzig, P.M., and M.D. Hannington. 1995. Polymetallic massive sulfides at the modern seafloor. A review. Ore Geology Reviews 10: 95–115.CrossRefGoogle Scholar
  67. Hollings, P., D. Cooke, and A. Clark. 2005. Regional geochemistry of Tertiary igneous rocks in central Chile: Implications for the geodynamic environment of giant porphyry copper and epithermal gold mineralization. Economic Geology 100: 887–904.CrossRefGoogle Scholar
  68. Hou, Z., H. Zhang, X. Pan, and Z. Yang. 2011. Porphyry Cu (-Mo-Au) deposits related to melting of thickened mafic lower crust: Examples from the eastern Tethyan metallogenic domain. Ore Geology Reviews 39: 21–45.CrossRefGoogle Scholar
  69. Houghton, J.L., W.C. Shanks, and W.E. Seyfried Jr. 2004. Massive sulfide deposition and trace element remobilization in the Middle Valley sediment-hosted hydrothermal system, northern Juan de Fuca Ridge. Geochimica et Cosmochimica Acta 68: 2863–2873.CrossRefGoogle Scholar
  70. Hunt, J.A., T. Baker, and D.J. Thorkelson. 2007. A review of iron oxide copper-gold deposits, with focus on the Wernecke Breccias, Yukon, Canada, as an example of a non-magmatic end member and implications for IOCG genesis and classification. Exploration and Mining Geology 16: 209–232.CrossRefGoogle Scholar
  71. Huston, D.L., S. Pehrsson, B.M. Eglington, and K. Zaw. 2010. The geology and metallogeny of volcanic-hosted massive sulfide deposits: Variations through geologic time and with tectonic setting. Economic Geology 105: 571–591.CrossRefGoogle Scholar
  72. Ireland, T., S.W. Bull, and R. Large. 2004. Mass flow sedimentology within the HYC Zn–Pb–Ag deposit, Northern Territory, Australia: evidence for syn-sedimentary ore genesis. Mineralium Deposita 39: 143–158.CrossRefGoogle Scholar
  73. Jefferson, C.W., D.J. Thomas, S.S. Gandhi, P. Ramaekers, G. Delaney, D. Brisbin, C. Cutts, D. Quirt, P. Portella, and R.A. Olson. 2007. Unconformity-associated uranium deposits of the Athabasca Basin, Saskatchewan and Alberta. In Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration methods, ed. D. Goodfellow. Geological Association of Canada, Special Publication 5.Google Scholar
  74. Joye, S.B., V.A. Samarkin, B.N. Orcutt, I.R. MacDonald, K.-U. Hinrichs, M. Elvert, A.P. Teske, K.G. Lloyd, M.A. Lever, J.P. Montoya, and C.D. Meile. 2009. Metabolic variability in seafloor brines revealed by carbon and sulphur dynamics. Nature Geoscience 2: 349–354.CrossRefGoogle Scholar
  75. Kampunzu, A.B., J.L.H. Cailteux, A.F. Kamona, M.M. Intiomale, and F. Melcher. 2009. Sediment-hosted Zn–Pb-Cu deposits in the Central African Copperbelt. Ore Geology Reviews 35: 263–297.CrossRefGoogle Scholar
  76. Kesler, S.E., and C.W. Carrigan. 2002. Discussion on ‘‘Mississippi Valley-type lead-zinc deposits through geological time: implications from recent age-dating research’’ by D. L. Leach, D. Bradley, M. T. Lewchuk, D. T. A. Symons, G. de Marsily, and J. Brannon (2001) Mineralium Deposita 36:711–740. Mineralium Deposita 37: 800–802.CrossRefGoogle Scholar
  77. Kesler, S.E., S.L. Chryssoulis, and G. Simon. 2002. Gold in porphyry copper deposits: Its abundance and fate. Ore Geology Reviews 21: 103–124.CrossRefGoogle Scholar
  78. Kesler, S.E., J.T. Chesley, J.N. Christensen, R.D. Hagni, W. Heijlen, J.R. Kyle, P. Muchez, K.C. Misra, and R. van der Voo. 2004. Discussion of ‘‘Tectonic controls of Mississippi Valley-type lead-zinc mineralization in orogenic forelands’’ by D.C. Bradley and D.L. Leach. Mineralium Deposita 39: 512–514.CrossRefGoogle Scholar
  79. Klemm, L.M., T. Pettke, and C.A. Heinrich. 2008. Fluid and Source magma evolution of the Questa porphyry Mo deposit, New Mexico, USA. Mineralium Deposita 43: 533–552.CrossRefGoogle Scholar
  80. Kovalev, K.R., Y.A. Kalinin, V.I. Polynov, E.L. Kydyrbekov, A.S. Borisenko, E.A. Naumov, M.I. Netesov, A.G. Klimenko, and M.K. Kolesnikova. 2012. The Suzdal gold-sulfide deposit in the black shale of Eastern Kazakhstan. Geology of Ore Deposits 54: 254–275.CrossRefGoogle Scholar
  81. Kyser, T.K. 2007. Fluids, basin analysis, and mineral deposits. Geofluids 7: 238–257.CrossRefGoogle Scholar
  82. Lang, J.R., and T. Baker. 2001. Intrusion-related gold systems: The present level of understanding. Mineralium Deposita 36: 477–489.CrossRefGoogle Scholar
  83. Large, D., and E. Walcher. 1999. The Rammelsberg massive sulphide Cu–Zn–Pb–Ba–Deposit, Germany: An example of sediment-hosted, massive sulphide mineralisation. Mineralium Deposita 34: 522–538.CrossRefGoogle Scholar
  84. Large, R.R. 1992. Australian volcanic-hosted massive sulfide deposits: Features, styles and genetic models. Economic Geology 87: 471–510.CrossRefGoogle Scholar
  85. Large, R.R., J. McPhie, J.B. Gemmell, W. Herrmann, and G.J. Davidson. 2001. The spectrum of ore deposit types, volcanic environments, alteration halos, and related exploration vectors in submarine volcanic successions: Some examples from Australia. Economic Geology 96: 913–938.CrossRefGoogle Scholar
  86. Large, R.R., S.W. Bull, and V.V. Maslennikov. 2011. A carbonaceous sedimentary source-rock model for Carlin-type and orogenic gold deposits. Economic Geology 106: 331–358.CrossRefGoogle Scholar
  87. Laube, N., H.E. Frimmel, and S. Hoernes. 1995. Oxygen and Carbon isotopic study on the genesis of the Steirischer Erzberg siderite deposit (Austria). Mineralium Deposita 30: 285–293.CrossRefGoogle Scholar
  88. Leach, D.L., D. Bradley, M.T. Lewchuk, D.T.A. Symons, G. de Marsily, and J. Brannon. 2001. Mississippi Valley-type lead-zinc deposits through geological time: Implications from recent age-dating research. Mineralium Deposita 36: 711–740.CrossRefGoogle Scholar
  89. Leach, D.L., D. Bradley, M. Lewchuk, D.T.A. Symons, W. Premo, J. Brannon, and G. De Marsily. 2002. Reply to Discussion on ‘‘Mississippi Valley-type lead-zinc deposits through geological time: implications from recent age-dating research’’ by S. E. Kesler and C. W. Carrigan (2001) Mineralium Deposita 36:711–740. Mineralium Deposita 37: 803–805.CrossRefGoogle Scholar
  90. Leach, D.L., R.D. Taylor, D.L. Fey, S.F. 2010. Diehl, and R.W. Saltus. 2010. A deposit model for Mississippi-Valley-Type lead-zinc-ores. In USGS, Mineral Deposit Models for Resource Assessment: U.S. Geological Survey Scientific Investigations Report 2010–5070.Google Scholar
  91. Liessmann, W. 2010. Historischer Bergbau im Harz, 3rd ed. Heidelberg: Springer.CrossRefGoogle Scholar
  92. Lowenstern, J.B. 2001. Carbon dioxide in magmas and implications for hydrothermal systems. Mineralium Deposita 36: 490–502.CrossRefGoogle Scholar
  93. Lüders, V., B. Precejus, and P. Halbach. 2001. Fluid inclusion and sulfur isotope studies in probable modern analogue Kuroko-type ores from the JADE hydrothermal field (Central Okinawa Trough, Japan). Chemical Geology 173: 45–58.CrossRefGoogle Scholar
  94. Matignac, C., B. Diagana, M. Cathelineau, M.-C. Boiron, D. Banks, S. Fourcade, and J. Vallance. 2003. Remobilisation of base metals and gold by Variscan metamorphic fluids in the south Iberian pyrite belt: Evidence from the Tharsis VMS deposit. Chemical Geology 194: 143–165.CrossRefGoogle Scholar
  95. McKibben, M.A., and W.A. Elders. 1985. Fe–Zn–Cu-Pb mineralization in the Salton Sea geothermal system, Imperial Valley, California. Economic Geology 80: 539–559.CrossRefGoogle Scholar
  96. Meinert, L. D., 2009. Skarn Web Page.
  97. Meinert, L.D., G.M. Dipple, and S. Nicolescu. 2005. World skarn deposits. Economic Geology 100th Anniversary Volume, 299–336.Google Scholar
  98. Meshik, A.P. 2005. The workings of an ancient nuclear reactor. Scientific American. Online:
  99. Meshik, A.P., H.J. Lippolt, and Y.M. Dymkov. 2000. Xenon geochronology of Schwarzwald pitchblendes. Mineralium Deposita 35: 190–205.CrossRefGoogle Scholar
  100. Meyer, M., O. Brockamp, N. Clauer, A. Renk, and M. Zuther. 2000. Further evidence for a Jurassic mineralizing event in central Europe. K–Ar dating of geothermal alteration and fluid inclusion systematics in wall rocks of the Käfersteige fluorite vein deposit in the northern Black Forest, Germany. Mineralium Deposita 35: 754–761.CrossRefGoogle Scholar
  101. Micklethwaite, S., H.A. Sheldon, and T. Baker. 2010. Active fault and shear processes and their implications for mineral deposit formation and discovery. Journal of Structural Geology 32: 151–165.CrossRefGoogle Scholar
  102. Mlynarczyk, M.S.J., and A.E. Williams-Jones. 2005. The role of collisional tectonics in the metallogeny of the Central Andean tin belt. Earth and Planetary Science Letters 240: 656–667.CrossRefGoogle Scholar
  103. Mlynarczyk, M.S.J., R.L. Sherlock, and A.E. Williams-Jones. 2003. San Rafael, Peru: Geology and structure of the worlds richest tin lode. Mineralium Deposita 38: 555–567.CrossRefGoogle Scholar
  104. Morishita, Y., and T. Nakano. 2008. Role of basement in epithermal deposits: The Kushikino and Hashiari gold deposits, southwestern Japan. Ore Geology Reviews 34: 597–609.CrossRefGoogle Scholar
  105. Muchez, P., and W. Heijlen. 2003. Origin and migration of fluids during the evolution of sedimentary basins and the origin of Zn–Pb deposits in Western and Central Europe. Journal of Geochemical Exploration 78: 553–557.CrossRefGoogle Scholar
  106. Muchez, P., W. Heijlen, D. Banks, D. Blundell, M. Boni, and F. Grandia. 2005. Extensional tectonics and the timing and formation of basin-hosted deposits in Europe. Ore Geology Reviews 27: 241–267.CrossRefGoogle Scholar
  107. Muntean, J.L., J.S. Cline, A.C. Simon, and A.A. Longo. 2011. Magmatic-hydrothermal origin of Nevada’s Carlin-type gold deposits. Nature Geoscience 4: 122–127.CrossRefGoogle Scholar
  108. Murakami, H., J.H. Seo, and C.A. Heinrich. 2010. The relation between Cu/Au ration and formation depth of porphyry-style Cu-Au ± Mo deposits. Mineralium Deposita 45: 11–21.CrossRefGoogle Scholar
  109. Nadeau, O., A.E. Williams-Jones, and J. Stix. 2010. Sulphide magma as a source of metals in arc-related magmatic hydrothermal ore fluids. Nature Geoscience 3: 501–505.CrossRefGoogle Scholar
  110. Northrop, I., and M.B. Goldhaber. 1990. Genesis of the tabular-type vanadium-uranium deposits of the Henry Basin, Utah. Economic Geology 85: 215–269.CrossRefGoogle Scholar
  111. Nozaki, T., K. Nakamura, S. Awaji, and Y. Kato. 2006. Whole-rock geochemistry of basic schists from the Besshi Area, Central Shikoku: Implications for the tectonic setting of the Besshi sulfide deposit. Resource Geology 56: 432.CrossRefGoogle Scholar
  112. Nozaki, T., Y. Kato, and K. Suzuki. 2010. Re-Os geochronology of the Iimori Besshi-type massive sulfide deposit in the Sanbagawa metamorphic belt, Japan. Geochimica et Cosmochimica Acta 74: 4322–4331.CrossRefGoogle Scholar
  113. Ohmoto, H. 1996. Formation of volcanogenic massive sulfide deposits: The Kuroko perspective. Ore Geology Reviews 10: 135–177.CrossRefGoogle Scholar
  114. Okrusch, M., and S. Matthes. 2009. Mineralogie: Eine Einführung in die spezielle Mineralogie, Petrologie und Lagerstättenkunde, 8th ed. Heidelberg: Springer.Google Scholar
  115. Oliver, N.H.S., and P.D. Bons. 2001. Mechanisms of fluid flow and fluid-rock interaction in fossil metamorphic hydrothermal systems inferred from vein-wallrock patterns, geometry and microstructure. Geofluids 1: 137–162.CrossRefGoogle Scholar
  116. Ossandón, G., R. Fréraut, L.B. Gustafson, D.D. Lindsay, and M. Zentilli. 2001. Geology of the Chuquicamata mine: A progress report. Economic Geology 96: 249–270.CrossRefGoogle Scholar
  117. Oyarzun, R., A. Márquez, J. Lillo, I. López, and S. Rivera. 2001. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic versus normal calc-alkaline magmatism. Mineralium Deposita 26: 794–798.CrossRefGoogle Scholar
  118. Oyarzun, R., A. Márquez, J. Lillo, I. López, and S. Rivera. 2002. Reply to Discussion on ‘‘Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: adakitic versus normal calc-alkaline magmatism’’ by Oyarzun R, Marquez A, Lillo J, Lopez I, Rivera S (Mineralium Deposita 36:794–798, 2001). Mineralium Deposita 37: 795–799.CrossRefGoogle Scholar
  119. Oyarzun, R., J. Oyarzun, J.J. Ménard, and J. Lillo. 2003. The cretaceous iron belt of northern Chile: role of oceanic plates, a superplume event, and a major shear zone. Mineralium Deposita 38: 640–646.CrossRefGoogle Scholar
  120. Padilla Garza, R.A., S.R. Titley, and R. Pimentel. 2001. Geology of the Escondida porphyry copper deposit, Antofagasta Region, Chile. Economic Geology 96: 307–324.CrossRefGoogle Scholar
  121. Páez, G.N., R. Ruiz, D.M. Guido, S.M. Jovic, and I.B. Schalamuk. 2011. Structurally controlled fluid flow: High-grade silver ore-shoots at Martha epithermal mine, Deseado Massif, Argentina. Journal of Structural Geology 33: 985–999.CrossRefGoogle Scholar
  122. Pearce, J.A., and P.T. Robinson. 2010. The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting. Gondwana Research 18: 60–81.CrossRefGoogle Scholar
  123. Perkins, W.G. 1997. Mount Isa lead-zinc orebodies: Replacement lodes in a zoned syndeformational copper-lead-zinc system? Ore Geology Reviews 12: 61–110.CrossRefGoogle Scholar
  124. Petersen, S., P.M. Herzig, and M.D. Hannington. 2000. Third dimension of a presently forming VMS deposit: TAG hydrothermal mound, Mid-Atlantic Ridge, 26°N. Mineralium Deposita 233–259.CrossRefGoogle Scholar
  125. Pfaff, K., R.L. Romer, and G. Markl. 2009. Mineralization history of the Schwarzwald ore district: U-Pb ages of ferberite, agate, and pitchblende. European Journal of Mineralogy 21: 817–836.CrossRefGoogle Scholar
  126. Pfaff, K., L.H. Hildebrandt, D.L. Leach, D.E. Jacob, and G. Markl. 2010. Formation of the Wiesloch Mississippi Valley-type Zn–Pb–Ag deposit in the extensional setting of the Upper Rhinegraben, SW Germany. Mineralium Deposita 45: 647–666.CrossRefGoogle Scholar
  127. Pfaff, K., A. Koenig, T. Wenzel, I. Ridley, L.H. Hildebrandt, D.L. Leach, and G. Markl. 2011. Trace and minor element variations and sulfur isotopes in crystalline and colloform ZnS: Incorporation mechanisms and implications for their genesis. Chemical Geology 286: 118–134.Google Scholar
  128. Pfaff, K., S. Staude, and G. Markl. 2012. On the origin of sellaite (MgF2)-rich deposits in Mg-poor environments. American Mineralogist 97: 1987–1997.CrossRefGoogle Scholar
  129. Piercey, S.J. 2011. The setting, style, and role of magmatism in the formation of volcanogenic massive sulfide deposits. Mineralium Deposita 46: 449–471.CrossRefGoogle Scholar
  130. Pohl, W., and R. Belocky. 1999. Metamorphism and metallogeny in the Eastern Alps. Mineralium Deposita 34: 614–629.CrossRefGoogle Scholar
  131. Pollard, P.J. 2006. An intrusion-related origin for Cu–Au mineralization in iron oxide-copper-gold (IOCG) provinces. Mineralium Deposita 41: 179–187.CrossRefGoogle Scholar
  132. Porter, T.M. (ed.). 2000. Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective. Adelaide, Australia: Australian Mineral Foundation.Google Scholar
  133. Prokin, V.A., F.P. Buslaev, and A.P. Nasedkin. 1998. Types of massive sulphide deposits in the Urals. Mineralium Deposita 34: 121–126.CrossRefGoogle Scholar
  134. Rabbia, O.M., L.B. Hernández, R.W. King, and L. López-Escobar. 2002. Discussion on ‘‘Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: adakitic versus normal calc-alkaline magmatism’’ by Oyarzun et al. (Mineralium Deposita 36:794–798, 2001). Mineralium Deposita 37, 791–794.Google Scholar
  135. Reich, M., C. Palacios, M.A. Parada, U. Fehn, E.M. Cameron, M.I. Leybourne, and A. Zúñiga. 2008. Atacamite formation by deep saline waters in copper deposits from the Atacama Desert, Chile: Evidence from fluid inclusions, groundwater chemistry, TEM, and 36Cl data. Mineralium Deposita 43: 663–675.CrossRefGoogle Scholar
  136. Reynolds, L.J. 2000. Geology of the Olympic Dam Cu-U-Au-Ag-REE deposit. In Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective, vol. 1, ed. T.M. Porter, Adelaide.Google Scholar
  137. Rice, C.M., G.B. Steele, D.N. Barfod, A.J. Boyce, and M.S. Pringle. 2005. Duration of magmatic, hydrothermal, and supergene activity at Cerro Rico de Potosi, Bolivia. Economic Geology 100: 1647–1656.CrossRefGoogle Scholar
  138. Richards, J.P. 2002. Discussion on ‘‘Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: adakitic versus normal calc-alkaline magmatism’’ by Oyarzun et al. (Mineralium Deposita 36: 794–798, 2001). Mineralium Deposita 37, 788–790.Google Scholar
  139. Richards, J.P. 2003. Tectono-magmatic precursors for porphyry Cu–(Mo–Au) deposit formation. Economic Geology 98: 1515–1533.CrossRefGoogle Scholar
  140. Richards, J.P., A.J. Boyce, and M.S. Pringle. 2001. Geologic evolution of the Escondida Area, Northern Chile: A model for spatial and temporal localization of porphyry Cu mineralization. Economic Geology 96: 271–305.CrossRefGoogle Scholar
  141. Robb, L. 2005. Introduction to Ore-Forming Processes. Malden, MA: Blackwell Science.Google Scholar
  142. Roedder, E. 1968. Noncolloidal origin of colloform textures in sphalerite ores. Economic Geology 100: 451–471.CrossRefGoogle Scholar
  143. Roedder, E. 1984. Fluid Inclusions. Reviews in Mineralogy, vol. 12. Mineralogical Society of America.Google Scholar
  144. Rosa, C.J.P., J. McPhie, J.M.R.S. Relvas, Z. Pereira, T. Oliveira, and N. Pacheco. 2008. Facies analyses and volcanic setting of the giant Neves Corvo massive sulfide deposit, Iberian Pyrite Belt, Portugal. Mineralium Deposita 43: 449–466.CrossRefGoogle Scholar
  145. Rosa, C.J.P., J. McPhie, and J.M.R.S. Relvas. 2010. Type of volcanoes hosting the massive sulfide deposits of the Iberian Pyrite Belt. Journal of Volcanology and Geothermal Research 194: 107–126.CrossRefGoogle Scholar
  146. Rosenbaum, G., D. Giles, M. Saxon, P.G. Betts, R.F. Weinberg, and C. Duboz. 2005. Subduction of the Nazca Ridge and the Inca Plateau: Insights into the formation of ore deposits in Peru. Earth and Planetary Science Letters 239: 18–32.CrossRefGoogle Scholar
  147. Sáez, R., C. Moreno, F. Gonzáles, and G.R. Almodóvar. 2011. Black shales and massive sulfide deposits: Causal or casual relationships? Insights from Rammelsberg, Tharsis, and Draa Sfar. Mineralium Deposita 46: 585–614.CrossRefGoogle Scholar
  148. Sander, S.G., and A. Koschinsky. 2011. Metal flux from hydrothermal vents increased by organic complexation. Nature Geoscience 4: 145–150.CrossRefGoogle Scholar
  149. Saupé, F., and M. Arnold. 1992. Sulphur isotope geochemistry of the ores and country rocks at the Almadén mercury deposit, Ciudad Real, Spain. Geochimica et Cosmochimica 56: 3765–3780.CrossRefGoogle Scholar
  150. Schuiling, R.D. 2011. Troodos: A giant serpentinite diapir. International Journal of Geosciences 2: 98–101.CrossRefGoogle Scholar
  151. Schulz, O., F. Vavtar, and K. Dieber. 1997. Die Siderit-Erzlagerstätte Steirischer Erzberg: Eine geowissenschaftliche Studie, mit wirtschaftlicher und geschichtlicher Betrachtung. Archiv für Lagerstättenforschung der Geologischen Bundesanstalt, 65178.Google Scholar
  152. Schmidt, M., R. Botz, E. Faber, M. Schmitt, J. Poggenburg, D. Garbe-Schönberg, and P. Stoffers. 2003. High-resolution methane profiles across anoxic brine-seawater boundaries in the Atlantis-II, Discovery, and Kebrit Deeps (Red Sea). Chemical Geology 200: 359–375.CrossRefGoogle Scholar
  153. Schwartz, M.O., S.S. Rajah, A.K. Askury, P. Putthapiban, and S. Djaswadi. 1995. The Southeast Asian tin belt. Earth-Science Reviews 38: 95–293.CrossRefGoogle Scholar
  154. Schwinn, G., and G. Markl. 2005. REE systematics in hydrothermal fluorite. Chemical Geology 216: 225–248.CrossRefGoogle Scholar
  155. Schwinn, G., T. Wagner, B. Baatartsogt, and G. Markl. 2006. Quantification of mixing processes in ore-forming hydrothermal systems by combination of stable isotope and fluid inclusion analyses. Geochimica et Cosmochimica Acta 70: 965–982.CrossRefGoogle Scholar
  156. Sebastian, U. 2013. Die Geologie des Erzgebirges. Springer Spektrum, Heidelberg.Google Scholar
  157. Seifert, T. 2008. Metallogeny and Petrogenesis of Lamprophyres in the Mid-European Variscides. Amsterdam: IOS Press.Google Scholar
  158. Seifert, T., and D. Sandmann. 2006. Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany. Ore Geology Reviews 28: 1–31.CrossRefGoogle Scholar
  159. Shanks, W.C.P., and R. Thurston (ed.). 2012. Volcanogenic massive sulfide occurrence model. U.S. Geological Survey Scientific Investigations Report 2010–5070–C.Google Scholar
  160. Shikazono, N. 2003. Geochemical and Tectonic Evolution of Arc-Backarc Hydrothermal Systems: Implication for the Origin of Kuroko and Epithermal Vein-Type Mineralizations and the Global Geochemical Cycle. Amsterdam: Elsevier.Google Scholar
  161. Sillitoe, R.H. 2003. Iron oxide-copper-gold deposits: An Andean view. Mineralium Deposita 38: 787–812.CrossRefGoogle Scholar
  162. Sillitoe, R. 2005. Supergene oxidized and enriched porphyry copper and related deposits. Economic Geology 100th Anniversary Volume, 723–768.Google Scholar
  163. Sillitoe, R. 2010. Porphyry copper systems. Economic Geology 105: 3–41.CrossRefGoogle Scholar
  164. Sillitoe, R.H., and J.W. Hedenquist. 2003. Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits. In Volcanic, Geothermal and Ore-Forming Fluids: Rulers and Witnesses of Processes within the Earth, ed. S.F. Simmons and I. Graham. Society of Economic Geologists Special Publication.Google Scholar
  165. Skinner, B.J., D.E. White, H.J. Rose and R.E. Mays. 1967. Sulfides associated with the Salton Sea geothermal brine. Economic Geology, 316–330.Google Scholar
  166. Solomon, M. 2008. Brine pool deposition for the Zn–Pb–Cu massive sulphide deposits of the Bathurst mining camp, New Brunswick, Canada. I. Comparisons with the Iberian pyrite belt. Ore Geology Reviews 33: 329–351.CrossRefGoogle Scholar
  167. Solomon, M., F. Tornos, R.R. Large, J.N.P. Badham, R.A. Both, and K. Zaw. 2004. Zn–Pb–Cu volcanic-hosted massive sulphide deposits: Criteria for distinguishing brine pool-type from black smoker-type sulphide deposition. Ore Geology Reviews 25: 259–283.CrossRefGoogle Scholar
  168. Spry, P.G., I.R. Plimer, and G.S. Teale. 2008. Did the giant Broken Hill (Australia) Zn–Pb–Ag deposit melt? Ore Geology Reviews 34: 223–241.CrossRefGoogle Scholar
  169. Staude, S., T. Wagner, and G. Markl. 2007. Mineralogy, mineral compositions and fluid evolution at the Wenzel hydrothermal deposit, Southern Germany: Implications for the formation of Kongsberg-Type silver deposits. The Canadian Mineralogist 45: 1147–1176.CrossRefGoogle Scholar
  170. Staude, S., P.D. Bons, and G. Markl. 2009. Hydrothermal vein formation by extension-driven dewatering of the middle crust: An example from SW Germany. Earth and Planetary Science Letters 286: 387–395.CrossRefGoogle Scholar
  171. Staude, S., T. Mordhorst, R. Neumann, W. Prebeck, and G. Markl. 2010. Compositional variation of the tennantite-tetrahedrite solid-solution series in the Schwarzwald ore district (SW Germany): The role of mineralization processes and fluid source. Mineralogical Magazine 74: 309–339.CrossRefGoogle Scholar
  172. Staude, S., S. Göb, K. Pfaff, F. Ströbele, W.R. Premo, and G. Markl. 2011. Deciphering fluid sources of hydrothermal systems: A combined Sr- and S-isotope study on barite (Schwarzwald, SW Germany). Chemical Geology 286: 1–20.CrossRefGoogle Scholar
  173. Staude, S., T. Mordhorst, S. Nau, K. Pfaff, G. Brügmann, D.E. Jacob, and G. Markl. 2012a. Hydrothermal carbonates of the Schwarzwald ore district, Southwestern Germany: Carbon source and conditions of formation using δ18O, δ13C, 87Sr/86Sr, and fluid inclusions. The Canadian Mineralogist 50: 1401–1434.CrossRefGoogle Scholar
  174. Staude, S., W. Werner, T. Mordhorst, K. Wemmer, D.E. Jacob, and G. Markl. 2012b. Multi-stage Ag–Bi–Co–Ni–U and Cu–Bi vein mineralization at Wittichen, Schwarzwald, SW Germany: Geological setting, ore mineralogy, and fluid evolution. Mineralium Deposita 47: 251–276.CrossRefGoogle Scholar
  175. Stober, I., and K. Bucher. 1999a. Origin of salinity of deep groundwater in crystalline rocks. Terra Nova 11: 181–185.CrossRefGoogle Scholar
  176. Stober, I., and K. Bucher. 1999b. Deep groundwater in the crystalline basement of the Black Forest region. Applied Geochemistry 14: 237–254.CrossRefGoogle Scholar
  177. Stoffell, B., M.S. Appold, J.J. Wilkinson, N.A. McClean, and T.E. Jeffries. 2008. Geochemistry and evolution of Mississippi Valley-Type mineralizing brines from the Tri-State and Northern Arkansas districts determined by LA-ICP-MS microanalysis of fluid inclusions. Economic Geology 103: 1411–1435.CrossRefGoogle Scholar
  178. Ströbele, F., S. Staude, K. Pfaff, W.R. Premo, L.H. Hildebrandt, A. Baumann, E. Pernicka, and G. Markl. 2012. Pb isotope constraints on fluid flow and mineralization processes in SW Germany. Neues Jahrbuch für Mineralogie – Abhandlungen 189, 287–309.CrossRefGoogle Scholar
  179. Thurston, P.C., J.A. Ayer, J. Goutier, and M.A. Hamilton. 2008. Depositional Gaps in Abitibi Greenstone Belt Stratigraphy: A Key to Exploration for Syngenetic Mineralization. Economic Geology 103: 1097–1134.CrossRefGoogle Scholar
  180. Tornos, F., C. Casquet, and J.M.R.S. Relvas. 2005. Transpressional tectonics, lower crust decoupling and intrusion of deep mafic sills: A model for the unusual metallogenesis of SW Iberia. Ore Geology Reviews 27: 133–163.CrossRefGoogle Scholar
  181. Tornos, F. 2006. Environment of formation and styles of volcanogenic massive sulfides: The Iberian Pyrite Belt. Ore Geology Reviews 28: 259–307.CrossRefGoogle Scholar
  182. Turner, R.J.W. 1992. Formation of Phanerozoic stratiform sediment hosted zinc-lead deposits: Evidence for the critical role of ocean anoxia. Chemical Geology 99: 165–188.CrossRefGoogle Scholar
  183. Urabe, T., and M. Kusakabe. 1990. Barite silica chimneys from the Sumisu Rift, Izu-Bonin Arc: Possible analog to hematitic chert associated with Kuroko deposits. Earth and Planetary Science Letters 100: 283–290.CrossRefGoogle Scholar
  184. Von Damm, K.L., L.G. Buttermore, S.E. Oosting, A.M. Bray, D.J. Fornari, M.D. Lilley, and W.C. Shanks III. 1997. Direct observation of the evolution of a seafloor “black smoker” from vapor to brine. Earth and Planetary Science Letters 149: 101–111.CrossRefGoogle Scholar
  185. Von Damm, K.L., M.D. Lilley, W.C. Shanks III, M. Brockington, A.M. Bray, K.M. O’Grady, E. Olson, A. Graham G. Proskurowski and the SouEPR Science Party, 2003. Extraordinary phase separation and segregation in vent fluids from the southern East Pacific Rise. Earth and Planetary Science Letters 206, 365–378.Google Scholar
  186. Vry, V.H., J.J. Wilkinson, J. Seguel, and J. Millán. 2010. Multistage intrusion, brecciation, and veining at El Teniente, Chile: Evolution of a nested porphyry system. Economic Geology 105: 119–153.CrossRefGoogle Scholar
  187. Walenta, K. 1992. Die Mineralien des Schwarzwaldes. München: Christian Weise Verlag.Google Scholar
  188. Weatherley, D.K., and R.W. Henley. 2013. Flash vaporization during earthquakes evidenced by gold deposits. Nature Geoscience 6: 294–298.CrossRefGoogle Scholar
  189. Wilcock, W.S.D., E.E.E. Hooft, D.R. Toomey, P.R. McGill, A.H. Barclay, D.S. Stakes, and T.M. Ramirez. 2009. The role of magma injection in localizing black-smoker aktivity. Nature Geoscience 2: 509–513.CrossRefGoogle Scholar
  190. Wilkinson, J.J., S.L. Eyre, and A.J. Boyce. 2005. Ore-forming processes in Irish-type carbonate-hosted Zn-Pb deposits: Evidence from mineralogy, chemistry, and isotopic composition of sulfides at the Lisheen mine. Economic Geology 100: 63–86.CrossRefGoogle Scholar
  191. Williams, A.E., and M.A. McKibben. 1989. A brine interface in the Salton Sea geothermal system, California: Fluid geochemical and isotopic characteristics. Geochimica et Cosmochimica Acta 53: 1905–1920.CrossRefGoogle Scholar
  192. Williams, P.J., M.D. Barton, D.A. Johnson, L. Fontboté, A. de Haller, G. Mark, N.H.S. Oliver and R. Marschnik. 2005. Iron oxide copper-gold deposits: Geology, space-time distribution, and possible modes of origin. Economic Geology 100th Anniversary Volume, 371–405.Google Scholar
  193. Winckler, G., R. Kipfer, W. Aeschbach-Hertig, R. Botz, M. Schmidt, S. Schuler, and R. Bayer. 2000. Sub sea floor boiling of Red Sea Brines: New indication from noble gas data. Geochimica et Cosmochimica Acta 64: 1567–1575.CrossRefGoogle Scholar
  194. Yücel, M., A. Gartman, C.S. Chan, and G.W. Luther III. 2011. Hydrothermal vents as a kinetically stable source of iron-sulphide-bearing nanoparticles to the ocean. Nature Geoscience 4: 367–371.CrossRefGoogle Scholar
  195. Zhuang, H., J. Lu, J. Fu, and D. Liu. 1999. Two kinds oft Carlin-type gold deposite in southwestern Guizhou, China. Chinese Science Bulletin 44: 178–182.CrossRefGoogle Scholar

Further Reading

  1. Guilbert, J.M., and C.F. Park. 1986. The Geology of Ore Deposits. New York: WH Freeman.Google Scholar
  2. Laznicka, P. 2010. Giant Metallic Deposits: Future Sources of Industrial Metals, 2nd ed. Heidelberg: Springer.CrossRefGoogle Scholar
  3. Misra, K.C. 2000. Understanding Mineral Deposits. Dordrecht, Niederlande: Kluwer Academic Publishers.CrossRefGoogle Scholar
  4. Neukirchen, F. 2012. Edelsteine: Brillante Zeugen für die Erforschung der Erde. Heidelberg: Springer Spektrum.CrossRefGoogle Scholar
  5. Okrusch, M., and S. Matthes. 2009. Mineralogie: Eine Einführung in die spezielle Mineralogie, Petrologie und Lagerstättenkunde, 8th ed. Heidelberg: Springer.Google Scholar
  6. Pirajno, F. 2009. Hydrothermal Processes and Mineral Sytems. Heidelberg: Springer.CrossRefGoogle Scholar
  7. Pohl, W.L. 2011. Economic Geology. Chichester: Wiley-Blackwell.Google Scholar
  8. Robb, L. 2005. Introduction to Ore-Forming Processes. Malden, MA: Blackwell Science.Google Scholar
  9. Rothe, P. 2010. Schätze der Erde. Darmstadt: Primus Verlag.Google Scholar
  10. Seidler, C. 2012. Deutschlands verborgene Rohstoffe: Kupfer. Hanser, München: Gold und seltene Erden.CrossRefGoogle Scholar
  11. Winter, J.D. 2001. Igneous and Metamorphic Petrology. New Jersey: Prentice Hall.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.BerlinGermany
  2. 2.MarxenGermany

Personalised recommendations