Magmatic Deposits



Magma is fused rock (i.e., melt including dissolved gases and any crystals floating in it). Magma can cool and solidify at depth to form a large rock body such as a pluton, extrude at a volcano as lava, or finely fragment as an ash cloud. Corresponding igneous (i.e., magmatic) rocks are called plutonic (or intrusive) and volcanic (or extrusive) (Figs. 3.1, 3.2 and 3.3).


  1. Ames, D.E., A. Davidson, and N. Wodicka. 2008. Geology of the giant Sudbury polymetallic mining camp, Ontario, Canada. Economic Geology 103: 1057–1077.CrossRefGoogle Scholar
  2. Arndt, N.T., G.K. Czamanske, R.J. Walker, C. Chauvel, and V.A. Fedorenko. 2003. Geochemistry and origin of the intrusive hosts of the Noril’sk-Talnakh Cu-Ni-PGE sulfide deposits. Economic Geology 98: 495–515.Google Scholar
  3. Arzamastsev, A.A. 1994. Unique Paleozoic Intrusions of the Kola Peninsula. Apatity: Geological Institute of the Kola Science Centre.Google Scholar
  4. Arzamastsev, A.A., L.V. Arzamastseva, A.V. Travin, B.V. Belyatsky, A.M. Shamatrin, A.V. Antonov, A.N. Larionov, N.V. Rodionov, and S.A. Sergeev. 2007. Duration of formation of magmatic system of polyphase paleozoic alkaline complexes of the central Kola: U-Pb, Rb-Sr, Ar-Ar Data. Doklady Earth Sciences 413A: 432–436.CrossRefGoogle Scholar
  5. Ashwal, L.D. 1993. Anorthosites. Berlin: Springer.CrossRefGoogle Scholar
  6. Bailey, J.C., H. Sørensen, T. Andersen, L.N. Kogarko, and J. Rose-Hansen. 2006. On the origin of microrhythmic layering in arfvedsonite lujavrite from the Ilímaussaq alkaline complex, South Greenland. Lithos 91: 301–318.CrossRefGoogle Scholar
  7. Ballhaus, C. 1998. Origin of podiform chromite deposits by magma mingling. Earth and Planetary Science Letters 156: 185–193.CrossRefGoogle Scholar
  8. Ballhaus, C., and P. Sylvester. 2000. Noble metal enrichment processes in the Merensky Reef, Bushveld complex. Journal of Petrology 41: 545–561.CrossRefGoogle Scholar
  9. Barnes, S.J. 2007. Cotectic precipitation of olivine and sulfide liquid from komatiite magma and the origin of komatiite-hosted disseminated nickel sulfide mineralization at Mount Keith and Yakabindie, Western Australia. Economic Geology 299–304.Google Scholar
  10. Bell, K. (ed.). 1989. Carbonatites: Genesis and evolution. London: Chapman & Hall.Google Scholar
  11. Bell, K., and J. Keller. 1995. Carbonatite volcanism: Oldoinyo Lengai and the petrogenesis of natrocarbonatites. Heidelberg: Springer.CrossRefGoogle Scholar
  12. Bell, K., and G.R. Tilton. 2001. Nd, Pb and Sr isotopic compositions of East African carbonatites: Evidence for mantle mixing and plume inhomogeneity. Journal of Petrology 42: 1927–1945.CrossRefGoogle Scholar
  13. Boudreau, A.E., and A.R. McBirney. 1997. The Skaergaard layered series. Part III. Non-dynamic layering. Journal of Petrology 38: 1003–1020.CrossRefGoogle Scholar
  14. Brooker, R.A., and B.A. Kjarsgaard. 2011. Silicate-carbonate liquid immiscibility and phase relations in the System SiO2-Na2O-Al2O3-CaO-CO2 at 0.1–2.5 GPa with applications to carbonatite genesis. Journal of Petrology 52: 1281–1305.CrossRefGoogle Scholar
  15. Büchl, A., G. Brügmann, and V.G. Batanova. 2004. Formation of podiform chromitite deposits: Implications from PGE abundances and Os isotopic compositions of chromites from the Troodos complex, Cyprus. Chemical Geology 208: 217–232.CrossRefGoogle Scholar
  16. Caran, Ş., H. Çoban, M.E.J. Flower, C.J. Ottley, and K.Y. lmaz. 2010. Podiform chromitites and mantle peridotites of the Antalya ophiolite, Isparta Angle (SW Turkey): Implications for partial melting and melt-rock interaction in oceanic and subduction-related settings. Lithos 114: 307–326.CrossRefGoogle Scholar
  17. Castor, S.B. 2008. The Mountain Pass rare-earth carbonatite and associated ultrapotassic rocks, California. Canadian Mineralogist 46: 779–806.CrossRefGoogle Scholar
  18. Cawthorn, R.G. 2007. Cr and Sr: Keys to parental magmas and processes in the Bushveld Complex, South Africa. Lithos 95: 198–381.CrossRefGoogle Scholar
  19. Cawthorn, R.G., and S.J. Webb. 2001. Connectivity between the western and eastern limbs of the Bushveld Complex. Tectonophysics 330: 195–209.CrossRefGoogle Scholar
  20. Černý, P. 1992. Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research. Applied Geochemistry 7: 393–416.CrossRefGoogle Scholar
  21. Černý, P., and T.S. Ercit. 2005. The classification of granitic pegmatites revisited. The Canadian Mineralogist 43: 2005–2026.CrossRefGoogle Scholar
  22. Charlier, B., and T.L. Grove. 2012. Experiments on liquid immiscibility along tholeiitic liquid lines of descent. Contributions to Mineralogy and Petrology 164: 27–44.CrossRefGoogle Scholar
  23. Charlier, B., J.-C. Duchesne, and J. Vander Auwera. 2006. Magma chamber processes in the Tellnes ilmenite deposit (Rogaland Anorthosite Province, SW Norway) and the formation of Fe-Ti ores in massif-type anorthosites. Chemical Geology 234: 264–290.CrossRefGoogle Scholar
  24. Clarke, B., R. Uken, and J. Reinhardt. 2009. Structural and compositional constraints on the emplacement of the Bushveld Complex, South Africa. Lithos 111: 21–36.CrossRefGoogle Scholar
  25. Darling, J.R., C.J. Hawkesworth, P.C. Lightfoot, C.D. Storey, and E. Tremblay. 2010. Isotopic heterogeneity in the Sudbury impact melt sheet. Earth and Planetary Science Letters 289: 347–356.CrossRefGoogle Scholar
  26. Dawson, J.B. 1962. Sodium carbonate lavas from Oldoinyo Lengai, Tanganyika. Nature 195: 1075–1076.CrossRefGoogle Scholar
  27. De Waal, S.A., Z. Xu, C. Li, and H. Mouri. 2004. Emplacement of viscous mushes in the Jinchuan ultramafic intrusion, Western China. Canadian Mineralogist 42: 371–392.CrossRefGoogle Scholar
  28. Distler, V.V., V.V. Kryachko, and M.A. Yudovskaya. 2008. Ore petrology of chromite-PGE mineralization in the Kempirsai ophiolite complex. Mineralogy and Petrology 92: 31–58.CrossRefGoogle Scholar
  29. Dowling, S.E., and R.E.T. Hill. 1998. Komatiite-hosted nickel sulphide deposits, Australia. Special Jubilee Issue of Australian Geological Survey Organisation Journal 17: 121–127.Google Scholar
  30. Downes, H., E. Balaganskaya, A. Beard, R. Liferovich, and D. Demaiffe. 2005. Petrogenetic processes in the ultramafic, alkaline and carbonatitic magmatism in the Kola Alkaline Province: A review. Lithos 85: 48–75.CrossRefGoogle Scholar
  31. Eales, H.V. 2000. Caveats in defining the magmas parental to the mafic rocks of the Bushveld Complex, and the manner of their emplacement: review and commentary. Mineralogical Magazine 66: 815832.Google Scholar
  32. Eales, H.V. 2002. Implications of the chromium budget of the Western Limb of the Bushveld Complex. South African Journal of Geology 103: 141–150.CrossRefGoogle Scholar
  33. Féménias, O., N. Coussaert, S. Brassinnes, and D. Demaiffre. 2005a. Emplacement processes and cooling history of layered cyclic unit II-7 from the Lovozero alkaline massif (Kola Peninsula, Russia). Lithos 83: 371393.Google Scholar
  34. Féménias, O., D. Ohnstetter, N. Coussaert, J. Berger, and D. Demaiffre. 2005b. Origin of micro-layering in a deep magma chamber: Evidence from two ultramafic-mafic layered xenoliths from Puy Beaunit. Lithos 83: 347–370.CrossRefGoogle Scholar
  35. Frietsch, R., and J.-A. Perdahl. 1995. Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types. Ore Geology Reviews 9: 489–510.CrossRefGoogle Scholar
  36. Giehl, C., M. Marks, and M. Nowak. 2013. Phase relations and liquid lines of descent of an iron-rich peralkaline phonolitic melt: an experimental study. Contributions to Mineralogy and Petrology 165: 283–304.CrossRefGoogle Scholar
  37. Gittins, J., and R.E. Harmer. 1997. What is ferrocarbonatite? A revised classification. Journal of African Earth Sciences 25: 159–168.CrossRefGoogle Scholar
  38. Gittins, J., R.E. Harmer, and D.S. Barker. 2005. The bimodal composition of carbonatites: Reality or misconception? Lithos 85: 129–139.CrossRefGoogle Scholar
  39. Godel, B., S.-J. Barnes, and W.D. Maier. 2011. Parental magma composition inferred from trace element in cumulus and intercumulus silicate minerals: An example from the lower and lower critical zones of the Bushveld Complex, South-Africa. Lithos 125: 537–552.CrossRefGoogle Scholar
  40. Goodenough, K.M., B.G.J. Upton, and R.M. Ellam. 2000. Geochemical evolution of the Ivigtut granite, South Greenland: a fluorine-rich “A-type” intrusion. Lithos 51: 205–221.CrossRefGoogle Scholar
  41. Graser, G., J. Potter, J. Köhler, and G. Markl. 2008. Isotope, major, minor and trace element geochemistry of late-magmatic fluids in the peralkaline Ilímaussaq intrusion, South Greenland. Lithos 106: 207–221.CrossRefGoogle Scholar
  42. Groves, D.I., and N.M. Vielreicher. 2001. The Phalaborwa (Palabora) carbonatite-hosted magnetite-copper sulfide deposit, South Africa: An end-member of the iron-oxide copper-gold-rare earth element deposit group? Mineralium Deposita 36: 189–194.CrossRefGoogle Scholar
  43. Guest, N.J. 1956. The volcanic activity of Oldoinyo L’Engai, 1954. Rec. Geological Survey Tanganyika 4: 56–59.Google Scholar
  44. Halama, R., T. Vennemann, W. Siebel, and G. Markl. 2005. The Grønnedal-Ika carbonatite-syenite compex, South Greenland: Carbonatite formation by liquid immiscibility. Journal of Petrology 46: 191–217.CrossRefGoogle Scholar
  45. Harlov, D.E., U.B. Andersson, H.-J. Förster, J.O. Nyström, P. Dulksi, and C. Broman. 2002. Apatite-monazite relations in the Kiirunavaara magnetite-apatite ore, northern Sweden. Chemical Geology 191: 47–72.CrossRefGoogle Scholar
  46. Harmer, R.E., and J. Gittins. 1997. The origin of dolomitic carbonatites: Field and experimental constraints. Journal of African Earth Sciences 25: 5–18.CrossRefGoogle Scholar
  47. Harmer, R.E., and J. Gittins. 1998. The case for primary, mantle-derived carbonatite magma. Journal of Petrology 39: 1895–1903.CrossRefGoogle Scholar
  48. Hoatson, D.M., S. Jaireth, and A.L. Jaques. 2006. Nickel sulfide deposits in Australia: Characteristics, resources, and potential. Ore Geology Reviews 29: 177–241.CrossRefGoogle Scholar
  49. Holness, M.B., G. Stripp, M.C.S. Humphreys, I.V. Veksler, T.F.D. Nielsen, and C. Tegner. 2011. Silicate liquid immiscibility within the crystal mush: Late-stage magmatic microstructures in the Skaergaard intrusion, East Greenland. Journal of Petrology 52: 175–222.CrossRefGoogle Scholar
  50. Holwell, D.A., I. McDonald, and I.B. Butler. 2011. Precious metal enrichment in the Platreef, Bushveld Complex, South Africa: Evidence from homogenized magmatic sulfide melt inclusions. Contributions to Mineralogy and Petrology 161: 1011–1026.CrossRefGoogle Scholar
  51. Hoover, J.D. 1978. Petrologic features of the Skaergaard Marginal Border Group. Carnegie Institution Washington Yearbook 77: 732–739.Google Scholar
  52. Hou, T., Z. Zhang, and T. Kusky. 2011. Gushan magnetite-apatite deposit in the Ningwu basin, lower Yangtze River Valley, SE China: Hydrothermal or Kiruna-type? Ore Geology Reviews 43: 333–346.CrossRefGoogle Scholar
  53. Irvine, T.N. 1977. Origin of chromitite layers in the Muskox intrusion. Geology 5: 273–277.CrossRefGoogle Scholar
  54. Irvine, T.N. 1980. Magmatic density currents and cumulus processes. American Journal of Science 280A: 1–58.Google Scholar
  55. Irvine, T.N., J.C.Ø. Andersen, and C.K. Brooks. 1998. Included blocks (and blocks within blocks) in the Skaergaard intrusion: Geologic relations and the origin of rhythmic modally graded layers. Geological Society of America Bulletin 110: 1398–1447.CrossRefGoogle Scholar
  56. Jakobsen, J.K., I.V. Veksler, C. Tegner, and C.K. Brooks. 2011. Crystallization of the Skaergaard intrusion from an emulsion of immiscible iron- and silica-rich liquids: Evidence from melt inclusions in plagioclase. Journal of Petrology 52: 345–373.CrossRefGoogle Scholar
  57. Jami, M., A.C. Dunlop, and D.R. Cohen. 2007. Fluid inclusion and stable isotope study of the Esfordi apatite-magnetite deposit, central Iran. Economic Geology 102: 1111–1128.CrossRefGoogle Scholar
  58. Jami, M., A.C. Dunlop, and D.R. Cohen. 2009. Fluid inclusion and stable isotope study of the Esfordi apatite-magnetite deposit, central Iran—A reply. Economic Geology 104: 140–143.CrossRefGoogle Scholar
  59. Jang, Y.D., H.R. Naslund, and A.R. McBirney. 2001. The differentiation trend of the Skaergaard intrusion and the timing of magnetite crystallization: Iron enrichment revisited. Earth and Planetary Science Letters 189: 189–196.CrossRefGoogle Scholar
  60. Jones, J.H., D. Walker, D.A. Pickett, M.T. Murrel, and P. Beattie. 1995. Experimental investigations of the partitioning of Nb, Mo, Ba, Ce, Pb, Ra, Th, Pa, and U between immiscible carbonate and silicate liquids. Geochimica et Cosmochimica Acta 59: 1307–1320.CrossRefGoogle Scholar
  61. Keays, R.R., and P.C. Lightfoot. 2004. Formation of Ni-Cu-Platinum group element sulfide mineralization in the sudbury impact melt sheet. Mineralogy and Petrology 82: 217–258.CrossRefGoogle Scholar
  62. Keller, J. 1981. Carbonatitic volcanism in the Kaiserstuhl alkaline complex: Evidence for highly fluid carbonatitic melts at the earth´s surface. Journal of Volcanology and Geothermal Research 9: 423–431.CrossRefGoogle Scholar
  63. Keppler, H. 2003. Water solubility in carbonatite melts. American Mineralogist 88: 1822–1824.CrossRefGoogle Scholar
  64. Kinnaird, J.A., F.J. Kruger, P.A.M. Nex, and R.G. Cawthorn. 2002. Chromitite formation—A key to understanding processes of platinum enrichment: Institution of mining and metallurgy transactions, section B. Applied Earth Science 111: B23–B35.CrossRefGoogle Scholar
  65. Kjarsgaard, B.A., D.L. Hamilton. 1989. The genesis of carbonatites by immiscibility. In Carbonatites: Genesis and evolution, ed. K. Bell. London: Chapman & Hall.Google Scholar
  66. Kjarsgaard, B.A., and T.D. Peterson. 1991. Nephelinite-carbonatite liquid immiscibility at Shombole volcano, East Africa: Petrographic and experimental evidence. Mineralogy and Petrology 43: 293–314.CrossRefGoogle Scholar
  67. Kogarko, L.N., V.A. Kononova, M.P. Orlova, and A.R. Woolley. 1995. Alkaline rocks and carbonatites of the world. Part 2: Former USSR. London: Chapman and Hall.Google Scholar
  68. Köhler, J., J. Konnerup-Madsen, and G. Markl. 2008. Fluid geochemistry in the Ivigtut cryolite deposit, South Greenland. Lithos 103: 369–392.CrossRefGoogle Scholar
  69. Köhler, J., J. Schönenberger, B. Upton, and G. Markl. 2009. Subduction-related mantle metasomatism and fluid exsolution from alkalic melts. Lithos 113: 731–747.CrossRefGoogle Scholar
  70. Kruger, F.J. 2005. Filling the Bushveld Complex magma chamber: lateral expansion, roof and floor interaction, Magmatic uniformities, and the formation of giant chromite, PGE and Ti-V magnetite deposits. Mineralium Deposita 40: 451–472.CrossRefGoogle Scholar
  71. Krumrei, T., E. Pernicka, M. Kaliwoda, and G. Markl. 2007. Volatiles in a peralkaline system: Abiogenic hydrocarbons and F-Cl-Br systematics in the naujaite of the Ilimaussaq intrusion, South Greenland. Lithos 95: 298–314.CrossRefGoogle Scholar
  72. Küster, D. 2009. Granitoid-hosted Ta mineralization in the Arabian-Nubian shield: Ore deposit types, tectono-metallogenetic setting and petrogenetic framework. Ore Geology Reviews 35: 68–86.CrossRefGoogle Scholar
  73. Lee, M.J., J.I. Lee, D. Garcia, J. Moutte, C.T. Williams, F. Wall, and Y. Kim. 2006a. Pyrochlore chemistry from the Sokli phoscorite-carbonatite complex, Finland: Implications for the genesis of phoscorite and carbonatite association. Geochemical Journal 40: 1–13.CrossRefGoogle Scholar
  74. Lee, M.J., J.I. Lee, S.D. Hur, Y. Kim, J. Moutte, and E. Balaganskaya. 2006b. Sr-Nd-Pb isotopic compositions of the Kovdor phoscorite-carbonatite complex, Kola Peninsula, NW Russia. Lithos 91: 250–261.CrossRefGoogle Scholar
  75. Li, C., S.-J. Barnes, E. Makovicky, J. Rose-Hansen, and M. Makovicky. 1996. Partitioning of nickel, copper, iridium, rhenium, platinum, and palladium between monosulfide solid solution and sulfide liquid: Effects of composition and temperature. Geochimica et Cosmochimica Acta 60: 1231–1238.CrossRefGoogle Scholar
  76. Li, C., E.M. Ripley, and E.A. Mathez. 2003. The effect of S on the partitioning of Ni between olivine and silicate melt in MORB. Chemical Geology 201: 295–306.CrossRefGoogle Scholar
  77. Lightfoot, P.C., and C.E.G. Farrow. 2002. Geology, geochemistry, and mineralogy of the Worthington Offset Dike: A genetic model for offset dike mineralization in the Sudbury Igneous Complex. Economic Geology 97: 1419–1446.CrossRefGoogle Scholar
  78. Lightfoot, P.C., and R.R. Keays. 2005. Siderophile and chalcophile metal variations in flood basalts from the Siberian Trap, Noril’sk Region: Implications for the origin of the Ni-Cu-PGE ores. Economic Geology 100: 439–462.CrossRefGoogle Scholar
  79. Lightfoot, P.C., R.R. Keays, and W. Doherty. 2001. Chemical evolution and origin of nickel sulfide mineralization in the Sudbury Igneous Complex, Ontario, Canada. Economic Geology 96: 1855–1875.Google Scholar
  80. London, D. 2005. Granitic pegmatites: an assessment of current concepts and directions for the future. Lithos 80: 281–303.CrossRefGoogle Scholar
  81. London, D. 2008. Pegmatites. Special Publication 10, Mineralogical Association of Canada.Google Scholar
  82. London, D. 2009. The origin of primary textures in granitic pegmatites. Canadian Mineralogist 47: 697–724.CrossRefGoogle Scholar
  83. Maier, W.D., and S.-J. Barnes. 2010. The petrogenesis of platinum-group element reefs in the Upper Main Zone of the Northern Lobe of the Bushveld Complex on the farm Moordrift, South Africa. Economic Geology 105: 841–854.CrossRefGoogle Scholar
  84. Maier, W.D., S.-J. Barnes, and D.I. Groves. 2013. The Bushveld Complex, South Africa: Formation of platinum-palladium, chrome- and vanadium-rich layers via hydrodynamic sorting of a mobilized cumulate slurry in a large, relatively slowly cooling, subsiding magma chamber. Mineralium Deposita 48: 1–56.CrossRefGoogle Scholar
  85. Markl, G., and L. Baumgartner. 2002. PH changes in peralkaline late-magmatic fluids. Contributions to Mineralogy and Petrology 144: 331–346.CrossRefGoogle Scholar
  86. Markl, G., M. Marks, G. Schwinn, and H. Sommer. 2001. Phase equilibrium constraints on intensive crystallization parameters of the Ilimaussaq Complex, South Greenland. Journal of Petrology 42: 2231–2258.CrossRefGoogle Scholar
  87. Markl, G., M.A.W. Marks, and B.R. Frost. 2010. On the controls of oxygen fugacity in the generation and crystallization of peralkaline melts. Journal of Petrology 51: 1831–1847.CrossRefGoogle Scholar
  88. Marks, M., and G. Markl. 2001. Fractionation and assimilation processes in the alkaline augite syenite unit of the Ilimaussaq intrusion, South Greenland, as deduced from phase equilibria. Journal of Petrology 42: 1947–1969.CrossRefGoogle Scholar
  89. Marks, M.A.W., T. Vennemann, W. Siebel, and G. Markl. 2004. Nd-, O-, and H-isotopic evidence for complex, closed-system fluid evolution of the peralkaline Ilimaussaq intrusion, South Greenland. Geochimica et Cosmochimica Acta 68: 3379–3395.CrossRefGoogle Scholar
  90. Marks, M.A.W., F. Neukirchen, T. Vennemann, and G. Markl. 2009. Textural, chemical, and isotopic effects of late-magmatic carbonatitic fluids in the carbonatite-syenite Tamazeght complex, High Atlas Mountains, Morocco. Mineralogy and Petrology 97: 23–42.CrossRefGoogle Scholar
  91. Marks, M.A.W., K. Hettmann, J. Schilling, B.R. Frost, and G. Markl. 2011. The mineralogical diversity of alkaline igneous rocks: Critical factors for the transition from miaskitic to agpaitic phase assemblages. Journal of Petrology 52: 439–455.CrossRefGoogle Scholar
  92. Martin, R.F. 2006. A-type granites of crustal origin ultimately result from open-system fenitization-type reactions in an extensional environment. Lithos 91: 125–136.CrossRefGoogle Scholar
  93. Martin, R.F., and C. De Vito. 2005. The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting. The Canadian Mineralogist 43: 2027–2048.CrossRefGoogle Scholar
  94. Matveev, S., and C. Ballhaus. 2002. Role of water in the origin of podiform chromitite deposits. Earth and Planetary Science Letters 203: 235–243.CrossRefGoogle Scholar
  95. McBirney, A.R. 1989. The Skaergaard layered series: I. Structure and average compositions. Journal of Petrology 30: 363–379.CrossRefGoogle Scholar
  96. McBirney, A.R. 2009. Factors governing the textural development of Skaergaard gabbros: A review. Lithos 111: 1–5.CrossRefGoogle Scholar
  97. McBirney, A.R., and A. Nicolas. 1997. The Skaergaard Layered Series. Part II. Magmatic flow and dynamic layering. Journal of Petrology 38: 569–580.CrossRefGoogle Scholar
  98. Melcher, F., W. Grum, G. Simon, T.V. Thalhammer, and E.F. Stumpfl. 1997. Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: A study of solid and fluid inclusions in chromite. Journal of Petrology 38: 1419–1458.CrossRefGoogle Scholar
  99. Mitchell, A.A., and R.N. Scoon. 2007. The Merensky Reef at Winnaarshoek, Eastern Bushveld Complex: A primary magmatic hypothesis based on a wide reef facies. Economic Geology 102: 971–1009.CrossRefGoogle Scholar
  100. Mitchell, R.H. 2005. Carbonatites and carbonatites and carbonatites. The Canadian Mineralogist 43: 2049–2068.CrossRefGoogle Scholar
  101. Molnár, F., D.H. Watkinson, and P.C. Jones. 2001. Multiple hydrothermal processes in footwall units of the North Range, Sudbury Igneous Complex, Canada, and implications for the genesis of vein-type Cu-Ni-PGE deposits. Economic Geology 96: 1645–1670.CrossRefGoogle Scholar
  102. Mondal, S.K., and E.A. Mathez. 2006. Origin of the UG2 chromitite layer, Bushveld complex. Journal of Petrology 48: 495–510.CrossRefGoogle Scholar
  103. Mungall, J.W., D.R.A. Andrews, L.J. Cabri, P.J. Sylvester, and M. Tubrett. 2005. Partitioning of Cu, Ni, Au, and platinum-group elements between monosulfide solid solution and sulfide melt under controlled oxygen and sulfur fugacities. Geochimica et Cosmochimica Acta 69: 4349–4360.CrossRefGoogle Scholar
  104. Murck, B.W., and I.H. Campbell. 1986. The effects of temperature, oxygen fugacity and melt composition on the behaviour of chromium in basic and ultrabasic melts. Geochimica et Cosmochimica Acta 50: 1871–1887.CrossRefGoogle Scholar
  105. Naldrett, A.J. 1992. A model for the Ni-Cu-PGE ores of the Noril’sk region and its application to other areas of flood basalt. Economic Geology 87: 1945–1962.CrossRefGoogle Scholar
  106. Naldrett, A.J., and A.H. Wilson. 1990. Horizontal and vertical variations in noble-metal distribution in the Great Dyke of Zimbabwe: A model for the origin of the PGE mineralization by fractional segregation of sulfide. Chemical Geology 88: 279–300.CrossRefGoogle Scholar
  107. Naldrett, A.J., J. Kinnaird, A. Wilson, and G. Chunnett. 2008. Concentration of PGE in the Earth’s crust with special reference to the Bushveld complex. Earth Science Frontiers 15: 264–297.CrossRefGoogle Scholar
  108. Naldrett, A.J., A. Wilson, J. Kinnaird, M. Yudovskaya, and G. Chunnet. 2012. The origin of chromitites and related PGE mineralization in the Bushveld Complex: New mineralogical and petrological constraints. Mineralium Deposita 47: 209–232.CrossRefGoogle Scholar
  109. Naslund, H.R. 1983. Petroloy of the upper border series of the Skaergaard intrusion. Journal of Petrology 25: 185–212.CrossRefGoogle Scholar
  110. Naslund, H.R., F. Henriques, J.O. Nystrom, W. Vivallo, and F.M. Dobbs. 2002. Magmatic iron ores and associated mineralization: Examples from the Chilean high Andes and coastal Cordillera. In Hydrothermal iron oxide-copper-gold and related deposits: A global perspective, ed. T.M. Porter. Australia: Australian Mineral Foundation, Adelaide.Google Scholar
  111. Ngwenya, B.T. 1994. Hydrothermal rare earth mineralisation in carbonatites of the Tundulu complex, Malawi: Processes at the fluid/rock interface. Geochimica et Cosmochimica Acta 58: 2061–2072.CrossRefGoogle Scholar
  112. Nivin, V.A., P.J. Treloar, N.G. Konopleva, and S.V. Ikorsky. 2005. A review of the occurrence, form and origin of C-bearing species in the Khibiny Alkaline Igneous Complex, Kola Peninsula, NW Russia. Lithos 85: 93–112.CrossRefGoogle Scholar
  113. Oberthür, T., D.W. Davis, T.G. Blenkinsop, and A. Höhndorf. 2002. Precise U-Pb mineral ages, Rb-Sr and Sm-Nd systematics for the Great Dyke, Zimbabwe—Constraints on late Archean events in the Zimbabwe craton and Limpopo belt. Precambrian Research 113: 293–305.CrossRefGoogle Scholar
  114. Okrusch, M., and S. Matthes. 2009. Mineralogie: Eine Einführung in die spezielle Mineralogie, Petrologie und Lagerstättenkunde, 8th ed. Heidelberg: Springer.Google Scholar
  115. Pauly, H., and J.C. Bailey. 1999. Genesis and evolution of the Ivigtut cryolite deposit, South Greenland. Meddelelser om Grønland, Geoscience 28. Kopenhagen.Google Scholar
  116. Pfaff, K., T. Krumrei, M. Marks, T. Wenzel, T. Rudolf, and G. Markl. 2008. Chemical and physical evolution of the ‘lower layered sequence’ from the nepheline syenitic Ilímaussaq intrusion, South Greenland: Implications for the origin of magmatic layering in peralkaline felsic liquids. Lithos 106: 280–296.CrossRefGoogle Scholar
  117. Pfaff, K., T. Wenzel, J. Schilling, M. Marks, and G. Markl. 2010. A fast and easy-to-use approach to cation site assignment for eudialyte-group minerals. Neues Jahrbuch für Mineralogie 187: 69–81.Google Scholar
  118. Philpotts, A.R. 1982. Compositions of immiscible liquids in volcanic rocks. Contributions to Mineralogy and Petrology 80: 201–218.CrossRefGoogle Scholar
  119. Pons, J., P. Barbey, H. Nachit, and J.-P. Burg. 2006. Development of igneous layering during growth of pluton: The Tarçouate Laccolith (Morocco). Tectonophysics 413: 271–286.CrossRefGoogle Scholar
  120. Prevec, S.A., P.C. Lightfoot, and R.R. Keays. 2000. Evoluton of the sublayer of the Sudbury Igneous Complex: Geochemical, Sm-Nd isotopic and petrologic evidence. Lithos 51: 271–292.CrossRefGoogle Scholar
  121. Prichard, H.M., C.R. Neary, P.C. Fisher, and M.J. O’Hara. 2008. PGE-rich podiform chromitites in the Al ‘Ays Ophiolite Complex, Saudi Arabia: An example of critical mantle melting to extract and concentrate PGE. Economic Geology 103: 1507–1529.CrossRefGoogle Scholar
  122. Rickers, K., R. Thomas, and W. Heinrich. 2006. The behavior of trace elements during the chemical evolution of the H2O-, B-, and F-rich granite-pegmatite-hydrothermal system at Ehrenfriedersdorf, Germany: A SXRF study of melt and fluid inclusions. Mineralium Deposita 41: 229–245.CrossRefGoogle Scholar
  123. Rohrbach, A., and M.W. Schmidt. 2011. Redox freezing and melting in the Earth’s deep mantle resulting from carbon-iron redox coupling. Nature 472: 209–214.CrossRefGoogle Scholar
  124. Roussel, D.H., J.S. Fedorowich, and B.O. Dressler. 2003. Sudbury Breccia (Canada): A product of the 1850 Ma Sudbury event and host to footwall Cu-Ni-PGE deposits. Earth-Science Reviews 60: 147–174.CrossRefGoogle Scholar
  125. Ryabchikov, I.D., and L.N. Kogarko. 2006. Magnetite compositions and oxygen fugacities of the Khibina magmatic system. Lithos 92: 35–45.CrossRefGoogle Scholar
  126. Salvi, S., and A.E. Williams-Jones. 1995. Zirconosilicate phase relations in the Strange Lake (Lac Brisson) pluton, Quebec-Labrador, Canada. American Mineralogist 80: 1031–1040.CrossRefGoogle Scholar
  127. Schilling, J., F.-Y. Wu, C. McCammon, T. Wenzel, M.A.W. Marks, K. Pfaff, D.E. Jacob, and G. Markl. 2011. The compositional variability of eudialyte-group minerals. Mineralogical Magazine 75: 87–115.CrossRefGoogle Scholar
  128. Schoenberg, R., F.J. Kruger, T.F. Nägler, T. Meisel, and J.D. Kramers. 1999. PGE enrichment in chromitite layers and the Merensky Reef of the western Bushveld Complex; a Re-Os and Rb-Sr isotope study. Earth and Planetary Science Letters 172: 49–64.CrossRefGoogle Scholar
  129. Scott, R.G., and K. Benn. 2002. Emplacement of sulfide deposits in the copper cliff offset dike during collapse of the sudbury crater rim: Evidence from magnetic fabric studies. Economic Geology 97: 1447–1458.CrossRefGoogle Scholar
  130. Seabrook, C.L., R.G. Cawthorn, and F.J. Kruger. 2005. The Merensky Reef, Bushveld Complex: Mixing of minerals not mixing of magmas. Economic Geology 100: 1191–1206.CrossRefGoogle Scholar
  131. Sillitoe, R.H., and D.R. Burrows. 2002. New field evidence bearing on the origin of the El Laco magnetite deposit, Northern Chile. Economic Geology 97: 1101–1109.Google Scholar
  132. Smith, M.P., P. Henderson, and L.S. Campbell. 2000. Fractionation of the REE during hydrothermal processes: Constraints from the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia, China. Geochimica et Cosmochimica Acta 64: 3141–3160.CrossRefGoogle Scholar
  133. Solovova, I.P., I.D. Ryabchikov, A.V. Girnis, A. Pedersen, and T. Hansteen. 2002. Reduced magmatic fluids in basalt from the island of Disko, central West Greenland. Chemical Geology 183: 365–371.CrossRefGoogle Scholar
  134. Sørensen, H. 1997. The agpaitic rocks—An overview. Mineralogical Magazine 61: 485–498.CrossRefGoogle Scholar
  135. Sørensen, H. 2001. Brief introduction to the geology of the Ilimaussaq alkaline complex, South Greenland. Geology of Greenland Survey Bulletin 190: 7–24.Google Scholar
  136. Sørensen, H., H. Bohse, and J.C. Bailey. 2006. The origin and mode of emplacement of lujavrites in the Ilímaussaq alkaline complex, South Greenland. Lithos 91: 286–300.CrossRefGoogle Scholar
  137. Spandler, C., J. Mavrogenes, and R. Arculus. 2005. Origin of chromitites in layered intrusions: Evidence from chromite-hosted melt inclusions from the Stillwater Complex. Geology 33: 893–896.CrossRefGoogle Scholar
  138. Therriault, A.M., A.D. Fowler, and R.A.F. Grieve. 2002. The Sudbury Igneous Complex: A differentiated impact melt sheet. Economic Geology 97: 1521–1540.CrossRefGoogle Scholar
  139. Thomas, R., P. Davidson, and H. Beurlen. 2012. The competing models for the origin and internal evolution of granitic pegmatites in the light of melt and fluid inclusion research. Mineralogy and Petrology 106: 55–73.CrossRefGoogle Scholar
  140. Thy, P., C.E. Lesher, T.F.D. Nielsen, and C.K. Brooks. 2006. Experimental constraints on the Skaergaard liquid line of descent. Lithos 92: 154–180.CrossRefGoogle Scholar
  141. Ulff-Møller, F. 1990. Formation of native iron in sediment-contaminated magma: I. A case study of the Hanekammen Complex on Disko Island, West Greenland. Geochimica et Cosmochimica Acta 54: 57–70.CrossRefGoogle Scholar
  142. Van der Merwe, J., and R.G. Cawthorn. 2005. Structures at the base of the Upper Group 2 chromitite layer, Bushveld Complex, South Africa, on Karee Mine (Lonmin Platinum). Lithos 83: 214–228.CrossRefGoogle Scholar
  143. Veksler, I.V., C. Petibon, G.A. Jenner, A.M. Dorfman, and D.B. Dingwell. 1998. Trace element partitioning in immiscible silicate-carbonate liquid systems: An initial experimental study using a centrifuge autoclave. Journal of Petrology 39: 2095–2104.CrossRefGoogle Scholar
  144. Veksler, I.V., A.M. Dorfman, A.A. Borisov, R. Writh, and D.B. Dingwell. 2007. Liquid immiscibility and the evolution of basaltic magma. Journal of Petrology 48: 2187–2210.CrossRefGoogle Scholar
  145. Voordouw, R., J. Gutzmer, and N.J. Beukes. 2009. Intrusive origin of Upper Group (UG1, UG2) stratiform chromitite seams in the Dwars River area, Bushveld Complex, South Africa. Mineralogy and Petrology 97: 75–94.CrossRefGoogle Scholar
  146. Wager, L.R., and G.M. Brown. 1968. Layered igneous rocks. San Francisco: Freeman.Google Scholar
  147. Wall, F., and A.N. Zaitsev (ed.). 2004. Phoscorites and carbonatites from mantle to mine. Mineralogical society series, vol. 10.Google Scholar
  148. Wilson, A.H., C.Z. Murahwi, and B. Coghill. 2000. Stratigraphy, geochemistry and platinum group element mineralisation of the central zone of the Selukwe subchamber of the Great Dyke, Zimbabwe. Journal of African Earth Sciences 30: 833–853.CrossRefGoogle Scholar
  149. Woolley, A.R. 1987. Alkaline rocks and carbonatites of the World. Part 1: North and South America. British Museum, London and University of Texas Press.Google Scholar
  150. Woolley, A.R. 2001. Alkaline rocks and carbonatites of the World. Part 3: Africa. London: The Geological Society.Google Scholar
  151. Xu, C., H. Zhang, Z. Huang, C. Liu, L. Qi, W. Li, and T. Guan. 2004. Genesis of the carbonatite-syenite complex and REE deposit at Maoniuping, Sichuan Province, China: Evidence from Pb isotope geochemistry. Geochemical Journal 38: 67–76.CrossRefGoogle Scholar
  152. Xu, C., L. Wang, W. Song, and M. Wu. 2010. Carbonatites in China: A review for genesis and mineralization. Geoscience Frontiers 1: 105–114.CrossRefGoogle Scholar
  153. Yang, K.-F., H.-R. Fan, M. Santosh, F.-F. Hu, and K.-Y. Wang. 2011. Mesoproterozoic carbonatitic magmatism in the Bayan Obo deposit, Inner Mongolia, North China: Constraints for the mechanism of super accumulation of rare earth elements. Ore Geology Reviews 40: 122–131.CrossRefGoogle Scholar
  154. Yang, Z., and A. Woolley. 2006. Carbonatites in China: A review. Journal of African Earth Sciences 27: 559–575.Google Scholar
  155. Zaitsev, A., and K. Bell. 1995. Sr and Nd isotope data of apatite, calcite and dolomite as indicators of source, and the relationships of phoscorites and carbonatites from the Kovdor massif, Kola peninsula, Russia. Contributions to Mineralogy and Petrology 121: 324–335.CrossRefGoogle Scholar
  156. Zhang, Z., J. Mao, A.D. Saunders, Y. Ai, Y. Li, and L. Zhao. 2009. Petrogenetic modeling of three mafic-ultramafic layered intrusions in the Emeishan large igneous province, SW China, based on isotopic and bulk chemical constraints. Lithos 113: 369–392.CrossRefGoogle Scholar
  157. Zingg, A.J. 1996. Recrystallization and the origin of layering in the Bushveld Complex. Lithos 37: 15–37.CrossRefGoogle Scholar

Further Reading

  1. Best, M.G., and E.H. Christiansen. 2001. Igneous petrology. Malden, Massachussetts: Blackwell Science.Google Scholar
  2. Guilbert, J.M., and C.F. Park. 1986. The geology of ore deposits. New York: WH Freeman.Google Scholar
  3. Laznicka, P. 2010. Giant metallic deposits: Future sources of industrial metals, 2nd ed. Heidelberg: Springer.CrossRefGoogle Scholar
  4. Markl, G. 2008. Minerale und Gesteine: Mineralogie—Petrologie—Geochemie, 2nd ed. Heidelberg: Spektrum Akademischer Verlag.Google Scholar
  5. Misra, K.C. 2000. Understanding mineral deposits. Dordrecht, Niederlande: Kluwer Academic Publishers.CrossRefGoogle Scholar
  6. Naldrett, A.J. 2004. Magmatic sulfide deposits. Heidelberg: Springer.CrossRefGoogle Scholar
  7. Neukirchen, F. 2012. Edelsteine: Brillante Zeugen für die Erforschung der Erde. Heidelberg: Springer Spektrum.CrossRefGoogle Scholar
  8. Pohl, W.L. 2011. Economic geology. Chichester: Wiley-Blackwell.Google Scholar
  9. Robb, L. 2005. Introduction to ore-forming processes. Malden, Massachussetts: Blackwell Science.Google Scholar
  10. Rothe, P. 2010. Schätze der Erde. Darmstadt: Primus Verlag.Google Scholar
  11. Winter, J.D. 2001. Igneous and metamorphic petrology. New Jersey: Prentice Hall.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.BerlinGermany
  2. 2.MarxenGermany

Personalised recommendations