The World of Metals



This chapter is intended as a reference and is therefore kept short. It may be used as an alternative way of accessing the book by listing important application areas and ore minerals and referring to respective text passages in the following chapters.


  1. Boland, M.A. 2012a. Beryllium—Important for National Defense: U.S. Geological Survey Fact Sheet 2012–3056.Google Scholar
  2. Boland, M.A. 2012b. Nickel—Makes Stainless Steel Strong: U.S. Geological Survey Fact Sheet 2012–3024.Google Scholar
  3. Boland, M.A., and S.J. Kropschot. 2011. Cobalt—For Strength and Color: U.S. Geological Survey Fact Sheet 2011–3081.Google Scholar
  4. Burt, R. 2010. Tantalum—a rare metal in abundance? TIC Bulletin 141: 2–7.Google Scholar
  5. Claasen, D. 2007. Spekulationsgewinne: Nickelpreis bricht Rekorde. Accessed 3.27.13.
  6. Dill, H.G. 2010. The “chessboard” classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium. Earth-Science Reviews 100: 1–420.CrossRefGoogle Scholar
  7. Doebrich, J. 2009. Copper—A Metal for the Ages: U.S. Geological Survey Fact Sheet 2009–3031.Google Scholar
  8. Elsner, H., F. Melcher, U. Schwarz-Schampera, and P. Buchholz. 2010. Elektronikmetalle—zukünftig steigender Bedarf bei unzureichender Versorgungslage? BGR Commodity Top News 33.Google Scholar
  9. Frimmel, H.E. 2008. Earth’s continental crustal gold endowment. Earth and Planetary Science Letters 267: 45–55.CrossRefGoogle Scholar
  10. Goonan, T.G. 2011. Rare Earth Elements—End Use and Recyclability. USGS Scientific Investigations Report 2011–5094.Google Scholar
  11. Kropschot, S.J. 2010. Molybdenum—A Key Component of Metal Alloys: U.S. Geological Survey Fact Sheet 2009–3106.Google Scholar
  12. Kropschot, S.J., and J.L. Doebrich. 2010. Chromium—Makes Stainless Steel Stainless: U.S. Geological Survey Fact Sheet 2010–3089.Google Scholar
  13. Kropschot, S.J., and J.L. Doebrich. 2011. Lead—Soft and Easy to Cast: U.S. Geological Survey Fact Sheet 2011–3045.Google Scholar
  14. Kropschot, S.J., and J.L. Doebrich. 2011. Zinc—The Key to Preventing Corrosion: U.S. Geological Survey Fact Sheet 2011–3016.Google Scholar
  15. Kühne, W.G. 1976. Goldtransport durch Inlandeis; dem Andenken von Egon Erwin Kisch (1885–1948) gewidmet. Der Aufschluss 27: 165–169.Google Scholar
  16. Kühne, W.G. 1983. Gold für uns aus der Kiesgrube. Der Aufschluss 34: 215–218.Google Scholar
  17. Liedtke, M., and H. Elsner. 2009. Seltene Erden. BGR Commodity Top News 31.Google Scholar
  18. Lierl, H.-J., and W. Jans. 1990. Geschiebegold aus Schleswig-Holstein. Geschiebekunde Aktuell 6: 47–57.Google Scholar
  19. Long, K.R., B.S. Van Gosen, N.K. Foley, and D. Cordier. 2010. The Principal Rare Earth Elements Deposits of the United States—A Summary of Domestic Deposits and a Global Perspective. USGS Scientific Investigations Report 2010–5220.Google Scholar
  20. Meyer, K.-D. 1990. Geschiebetransport im kanadischen und europäischen Inlandeis—ein Vergleich. Eiszeitalter und Gegenwart 40: 126–138.Google Scholar
  21. Migdisov, A.A., A.E. Williams-Jones, and T. Wagner. 2009. An experimental study of the solubility and speciation of the rare earth elements (III) in fluoride- and chloride-bearing aqueous solutions at temperatures up to 300 °C 71: 3056–3096.Google Scholar
  22. Naldrett, A.J., J. Kinnaird, A. Wilson, and G. Chunnett. 2008. Concentration of PGE in the earth’s crust with special reference to the bushveld complex. Earth Science Frontiers 15: 264–297.CrossRefGoogle Scholar
  23. Ries, G. 2005. Ein Cer-Orthit-haltiger Quarzit als Geschiebe. Geschiebekunde Aktuell 21: 29–30.Google Scholar
  24. Taylor, S.R. 1964. Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta 28: 1273–1285.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.BerlinGermany
  2. 2.MarxenGermany

Personalised recommendations